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Abstract: Flood frequency analysis is usually performed as a univariate analysis of flood peaks using a suitable theoreti-
cal probability distribution of the annual maximum flood peaks or peak over threshold values. However, other flood at-
tributes, such as flood volume and duration, are necessary for the design of hydrotechnical projects, too. In this study, the 
suitability of various copula families for a bivariate analysis of peak discharges and flood volumes has been tested. 
Streamflow data from selected gauging stations along the whole Danube River have been used. Kendall’s rank correla-
tion coefficient (tau) quantifies the dependence between flood peak discharge and flood volume settings. The methodol-
ogy is applied to two different data samples: 1) annual maximum flood (AMF) peaks combined with annual maximum 
flow volumes of fixed durations at 5, 10, 15, 20, 25, 30 and 60 days, respectively (which can be regarded as a regime 
analysis of the dependence between the extremes of both variables in a given year), and 2) annual maximum flood 
(AMF) peaks with corresponding flood volumes (which is a typical choice for engineering studies). The bivariate model-
ling of the extracted peak discharge - flood volume couples is achieved with the use of the Ali-Mikhail-Haq (AMH), 
Clayton, Frank, Joe, Gumbel, Hüsler-Reiss, Galambos, Tawn, Normal, Plackett and FGM copula families. Scatterplots of 
the observed and simulated peak discharge - flood volume pairs and goodness-of-fit tests have been used to assess the 
overall applicability of the copulas as well as observing any changes in suitable models along the Danube River. The re-
sults indicate that for the second data sampling method, almost all of the considered Archimedean class copula families 
perform better than the other copula families selected for this study, and that for the first method, only the upper-tail-flat 
copulas excel (except for the AMH copula due to its inability to model stronger relationships). 
 
Keywords: Bivariate frequency analysis; Copulas; Dependence of flood peaks and volumes; Kendall’s rank correlation 
coefficient; Danube River. 

 
INTRODUCTION 

 
The design of flood protection structures where storage is 

involved requires an entire hydrograph or at least the flood 
volume/shape estimates related to the flood peaks. Therefore, 
the relationship between peaks of annual maximum floods 
(AMF) and their volumes is an interesting scientific research 
issue. From a broader perspective, however, the dependence 
between the annual extremes of both variables is also of interest 
when studied from the perspective of regimes. 

In the past, identical marginal distributions for both of these 
random variables have often been used for modelling their 
dependence in hydrology (e.g., Goel et al., 1998; Yue et al., 
2001). As flood peaks are the most commonly used data in 
hydrological frequency analysis, the majority of studies have 
analyzed flood peak frequency curves (Cunnane, 1988, 1989; 
Dawdy et al., 2012; Groupe de recherche en hydrologie statis-
tique (GREHYS), 1996; Laio et al., 2011; Mediero and  
Kjeldsen, 2014) in contrast to flood volumes, for which fewer 
studies are available (e.g. Bačová-Mitková, 2011; Mediero et 
al., 2010). Under the assumption that flood peaks and volumes 
have the same type of marginal distributions, several authors 
have used bivariate distributions for a frequency analysis of 
these variables (e.g. Singh and Singh, 1991; Shiau et al., 2006; 
Yue et al., 2001). This requirement, however, is seldom ful-

filled in practice. In the event that the flood peaks and volumes 
do not have the same type of marginal probability distribution, 
the copula approach provides a flexible solution (Gaál et al., 
2015; Giustarini et al., 2010; Szolgay et al., 2015; Zhang and 
Singh, 2006). Copulas allow for the combining of various mar-
ginal distributions into multivariate distributions (Favre et al., 
2004; Genest and Favre, 2007; Nelsen, 2006; Salvadori and De 
Michele, 2004, 2010). Copulas have recently become a popular 
tool in hydrological analysis for modeling the relationship 
among hydrological characteristics. A methodology for using 
copulas in hydrology has been described e.g. by Dupuis (2007) 
and Genest and Favre (2007). Recently, a lot of studies have 
implemented the application of copulas in engineering practice 
(see, e.g., Aronica et al., 2012; Balistrocchi and Baldassarre, 
2011; Bezak et al., 2016; De Michele and Salvadori, 2003; De 
Michele et al., 2005; Gaál et al., 2010; Zhang and Singh, 2007). 
Favre et al., (2004) were among the first authors who instituted 
the use of a two-dimensional copula for describing the relation-
ship between flood discharges and volumes. Zhang and Singh 
(2006) stressed that bivariate copula-based distributions of 
flood peaks vs. volumes and flood volumes vs. durations pro-
vide better results for showing agreement when plotting fre-
quency estimates than traditional distributions. Bačová-Mitková 
and Halmová (2014) applied parametric families of Archime-
dean copulas for an analysis of the relationship between vol-
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umes, peak discharges and durations at the Bratislava gauging 
station on the Danube River. Szolgay et al. (2012) used a joint 
analysis of maximum discharges and volumes through copulas 
for the estimation of design quantities. The analysis described a 
case study in the Vltava River Basin in the Czech Republic to 
estimate the design discharge for a return period of 10,000 
years to assess the safety of the Orlík dam. The more recent 
study of Sraj et al. (2015) applied a bivariate copula analysis to 
the annual maximum discharges and volumes from a gauging 
station on the Sava River in Slovenia. The results from three 
families were compared, and the Gumbel-Hougaard copula was 
found to be the most appropriate for modeling peak discharges 
vs. volume and volume vs. duration. 

The main objective of this study is to investigate the suitabil-
ity and evaluate the applicability of the selected copula models 
for the flood peak–volume relationship along the Danube River 
using streamflow data from seven gauging stations. The follow-
ing eleven copula families were used for the analysis: Ali-
Mikhail-Haq, Clayton, Frank, Joe, Gumbel, Hüsler-Reiss, Ga-
lambos, Tawn, Normal, Plackett and FGM copula families. In 
contrast to previous studies conducted in the Danube River area 
(e.g., Bačová-Mitková and Halmová, 2014; Gaál et al., 2015; 
Szolgay et al., 2015, 2016), the flood peak discharge and vol-
ume pairs are constructed by means of two essentially different 
approaches. In either case, flood peaks are represented by the 
AMF peak. The difference appears in the way the flood  
volumes are defined. In the first approach, the annual maxima 
of the volumes for different durations have been selected 
(which can be regarded as a regime analysis of the dependence 
of the extremes of both variables in a given year), while in the 
second approach, flood volumes corresponding to the annual 
maximum flood peaks have been used (which is a typical 
choice for engineering studies). A bivariate analysis has been 
applied to the extracted pairs of the flood peak discharge and 
flood volume data using the copulas to assess which copula 
family is the most suitable for reproducing the dependence  
 

structure of the variables selected as well as observing changes 
in their applicability along the Danube River. 
 
STUDY AREA 
 

The Danube River originates in the Black Forest (Schwarz-
wald) in Germany at an altitude of about 678 m a.s.l. at the 
confluence of the Brigach and Breg rivers in Donaueschingen. 
The Danube River flows through ten countries, and its delta is 
located in the Black Sea. The area of the entire watershed is 
801,463 km² with a main channel length of 2830 km (ICPDR, 
2009). The average discharge is 6.500 m3 s–1 before the delta. 
The climatic regime over the river basin is dominated by a clear 
seasonality, which is influenced in the northern parts by the 
Atlantic Ocean and in the eastern parts by the continental cli-
mate. The total annual precipitation in the catchment is between 
3000 mm at the high altitudes and 400 mm in the lowlands 
(Sommerwerk et al., 2009). The hydrological regime of the 
Danube River is highly influenced by precipitation patterns and 
the orographic structure of its catchment (Pekárová et al., 2008, 
2013).  

The Danube Basin can be subdivided into three main parts: 
the Upper Danube region, between the springs and the Devín 
Gate (mean elevation = 133 m a.s.l., catchment area = 
131,338 km2, mean annual discharge = 2,051 m3 s–1 at the 
Devín-Bratislava gauge), which is characterized by high precip-
itation in the west (up to 2500 mm of mean annual precipitation 
totals in the Alps), whereas the eastern regions have lower 
precipitation (700 mm of mean annual precipitation totals in the 
lowlands). The runoff regime corresponds to that of the Alpine 
tributaries with the maximum discharges in June and minimum 
discharges during the winter months. The Central Danube Re-
gion lies between the Devín Gate and the Iron Gate (60 m a.s.l., 
444,894 km2, 5,585 m3 s–1 at the Turnu Severin/Orsova gauge). 
The runoff regime is characterized by two runoff peaks in June 
and April. The April runoff peak is mainly caused by  

 

 
 
Fig. 1. The Danube River with the locations of the gauging stations analyzed. 
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Table 1. Gauging stations with the observation periods, catchment areas and elevation of the gauging stations used in the analysis. 
 

Gauged Stations Country Length of the data series (Years) 
Catchment area 

(km2) 
Gauging station elevation

(m a.s.l.) 
Hofkirchen Germany 1901–2007 47,496 299.17 
Achleiten Germany 1901–2007 76,653 287.27 
Vienna Austria 1828–2006 101,731 152 
Bratislava Slovakia 1876–2006 131,338 132.86 
Nagymaros Hungary 1893–2007 183,534 99.37 
Orsova Romania 1904–2009 576,232 44.76 
Reni Ukraine 1931–1995 /1997–2002 805,700 0.2 

 
the addition of waters from the snow melting in the Carpathians 
and from the early spring rains of the tributaries in the lowlands 
and low mountains of the area. The Lower Danube Region is 
located between the Iron Gate and the Danube’s embouchure 
into the Black Sea (1 m a.s.l., 230,768 km2, 6,499 m3 s–1 at the 
Ceatal Izmail gauge). The Danube Delta is considered to be 
region with temperate climate zones of a steppe character due 
to low precipitation totals (mean annual precipitation totals 
range from 600 mm to 300 mm) and the high summer tempera-
tures over 35°C (ICPDR, 2009). 

In this study the discharge data (annual maximum peak and 
daily discharges) of the following gauging stations: Hofkirchen 
(Germany), Achleiten (Germany), Vienna (Austria) from the 
Upper Danube Region, Bratislava (Slovakia), Nagymaros 
(Hungary) from the Central Danube Region and Orsova (Ro-
mania) and Reni (Ukraine) from the Lower Danube Region, 
were used, see Figure 1 and Table 1. 
 
METHODOLOGY 
 

This study applies a bivariate analysis of the AMF peak and 
volumes using various copula families. For all of the implemen-
tations of the bivariate analysis, the dependence of the two 
variables is assessed with Kendall’s tau correlation coefficient. 
A “blanket” goodness-of-fit (GOF) test, which is based on 
Kendall’s transformation with Cramér-von Mises’ measure of 
distance (Genest et al., 2009), has been used to evaluate and 
subsequently rank the best fitted copula families. 

Initially, all the univariate data were tested for the presence 
of temporal dependence by the Mann-Kendall test (Mann, 
1945) and the Ljung-Box test (Ljung and Box, 1978) due to 
prerequisite for a copula analysis that the data are independent 
and identically distributed (i.i.d.). Subsequently, the multivari-
ate data of the flood peaks and volumes were tested for the 
significance of the (rank) correlation (Kendall, 1955) and for 
the asymmetry of their relationship (Genest et al., 2012) to 
justify the choice of modelling by (symmetrical) copulas. 

In the next subchapter the applied copula families are de-
scribed in detail, followed by the methods of input data selec-
tion and the annual maximum flood peaks and flow volume 
separation. 
 
Copulas 

 
A copula is a function that allows for the modelling of the 

dependence structure between stochastic variables. The main 
advantage is that the copula approach can split the problem of 
constructing multivariate probability distributions into a part 
containing the marginal one-dimensional distribution functions 
and a part containing the dependence structure. These two parts 
can be studied and estimated independently and then put to-
gether into a joint distribution function. The bivariate case can 
be written as: 

 

FXY(x,y) = C(FX(x),FY(y)), (1) 
 
where FX, FY are the respective marginal distribution functions 
of the random variables X, Y. FXY represents the joint distribu-
tion function of the random vector (X,Y), and copula C is a 
function C:[0,1]2→ [0,1] that satisfies the boundary conditions 
C(t,0) = C(0,t) = 0 and C(t,1) = C(1,t) = t (uniform margins) 
for any t∈[0,1] and the so-called 2-increasing property. Thus a 
copula can be viewed as a standardized joint distribution func-
tion. Further details can be found in (Nelsen, 2006). 
 
Table 2. List of the copulas applied in this study. 
 

Archimedean  
copulas 

Extreme-value 
copulas 

Other 
copulas 

Ali-Mikhail-Haq Hüsler-Reiss Normal 
Clayton Galambos Plackett 
Frank Tawn FGM 
Joe   
Gumbel   

 
The current study applies ten commonly-used one-

parametric families from several classes of copulas (Table 2, 
Appendix), namely, the Archimedean class (the Clayton, Frank, 
Gumbel-Hougaard, Joe and Ali-Mikhail-Haq (AMH) copulas), 
the extreme-value class (Gumbel-Hougaard, Galambos, Hüsler-
Reiss), the elliptical class (normal or Gaussian family), and the 
unclassified Plackett and Farlie-Gumbel-Morgenstern (FGM) 
parametric family of copulas. Additionally, the three-parametric 
Tawn family (of the EV class) has also been used. The Archi-
medean copulas 

,ݑ)ܥ  (ݒ = ߮ିଵ(߮(ݑ) + ,ݑ∀ ,((ݒ)߮ ݒ ∈ [0,1], (2) 
 
have the advantage of easy construction via a one-dimensional 
function ߮: [0,1] → [0,∞) called a generator. The extreme-
value (EV) copulas  
,ݑ)ܥ  (ݒ = ,ݑ∀   ,(௨௩))	஺(୪୭୥(௨)/୪୭୥ݒݑ ݒ ∈ [0,1], (3) 
 
are uniquely defined through the so-called Pickands depend-
ence function	ܣ: [0,1] → [1/2,1] (see, e.g., Bacigál and Mesiar, 
2012; Gudendorf and Segers, 2010; Tawn, 1988) and were 
theoretically derived to model the dependence between ex-
tremes of random variables, while the elliptical copulas are 
simply the copulas extracted from elliptically contoured distri-
butions. All the Archimedean (except for the Frank) and EV 
copulas are non-symmetrical with respect to secondary diago-
nals; some accumulate more of a probability mass at points 
(0,0) or (1,1), which is denoted as a lower tail or upper tail 
dependence, respectively.  

The parameters θ of the copulas are estimated by maximiz-
ing the so-called pseudo-likelihood function:  
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L(θ) = ∑i log[cθ(Ui, Vi)], (4) 
 

which, besides the copula density cθ,,, contains pseudo-
observations Ui, Vi (i = 1,..n, j = 1,2), which are a transfor-
mation of the n real observations of the respective random 
variable X, Y, through a corresponding empirical distribution 
function, also known as a plotting position. 

A “blanket” test (Genest et al., 2009) provides the goodness-
of-fit test with the Cramér-von Mises’ measure of distance:  

 
Sn = ∑i{Cθ(Ui,Vi) – Cn(Ui,Vi)}

2, (5) 
 

between the parametric copula Cθ and the empirical copula, 
which is defined as  

 
Cn(u,v) = ∑i 1(Ui  < u) 1(Vi  < v) / n. (6) 

 
Given the validity of the null hypothesis that Cθ fits well, the 
probability distribution of Sn is unknown and needs to be calcu-
lated from bootstrap simulations. 

The correlation is quantified by Kendall’s rank correlation 
coefficient ߬ ∈ [−1,1], which is a measure of concordance that 
is also able to detect nonlinear dependence (to the contrary of 
the standard Pearson correlation coefficient). Recall that there 
is a direct relation between Kendall’s ߬ and a copula, 

 ߬ = ∬ ,ݑ)ܥ ,ݑ)ܥ݀(ݒ మ[଴,ଵ](ݒ . (7) 
 
The analysis is performed with the ‘acopula’ package (Baci-

gál, 2013) under GNU R (R Core Team, 2014). Supplementary 
details about the copulas used in this study can be found in the 
Appendix. 
 
 

The annual maximum flood volumes of selected durations 
 
In the first approach the selecting of the annual maximum 

flow volumes of fixed durations around the peak wave were 
done separately, instead of defining the volume of each flood 
(thus conducting a process-oriented analysis of the hydrograph 
and defining the beginning and end of each runoff event). Here, 
this simplified algorithm for volume selection was adopted to 
emulate the volume of a wave, since this paper is more techni-
cally oriented towards studying the suitability of theoretical 
models for such a type of analysis. 

Both variables, AMF and food volumes of the fixed dura-
tion, represent the annual maxima, but they are not necessarily 
linked to the same hydrological event. Such an approach for the 
construction of a data set is more preferred among statisticians, 
since the selected bivariate sample satisfies the conditions for a 
rigorous adoption of the extreme-value class copulas. Moreo-
ver, in our case, it allows for studying the regime of extreme 
values within each year and defining the possibility that in a 
year with a high flood, there will also be a flow volume of a 
predefined duration. For notational simplicity, we will subse-
quently refer to these flow volumes as flood volumes. 

The annual maximum flood volumes of the fixed duration 
dataset used in this study was prepared in the frame of the 
UNESCO project “Flood regime of rivers in the Danube River 
Basin” (Pekárová et al., 2008). The annual flow volumes were 
separated using daily discharge data and fixed around the flood 
peaks at seven different durations: 5, 10, 15, 20, 25, 30 and 60 
days, respectively, using a method described in Bačová-
Mitková (2002). According to this methodology for all flood 
peaks in each year, using a moving window, the flood volumes 
of certain duration were calculated and largest annual flood 

 

 
 

Fig. 2. Flowchart of the first approach for the sample selection. 
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Fig. 3. Flowchart of the second approach for the sample selection: 
flood volumes corresponding to flood peaks. 

 
volume values for the selected durations were then taken for the 
analysis. The mean daily streamflow data used in this approach 
are from the following Danube River stations: 1) Hofkirchen, 2) 
Achleiten, 3) Vienna, 4) Bratislava and 5) Nagymaros. Unfor-
tunately, the annual maximum flood volume data of selected 
durations for the Orsova and Reni stations were not available 
within the frame of the mentioned UNESCO project. 

Next, the applicability of different copula families from the 
Archimedean class and extreme-value class as well as three 
other families (Normal, Plackett and FGM) for all of the above 
data combinations was investigated. Figure 2 presents the 
flowchart of the first approach.  
 
The flood volumes corresponding to the annual maximum 
flood peaks 

 
The second approach refers to a bivariate analysis using the 

AMF peaks and their corresponding flood volumes for each 
station (Figure 3). In other words, this is an event-based analy-
sis, since each year at the given site is represented by a single 
flood event with the largest peak discharge value (and its corre-
sponding flood volume). This is rather an intuitive approach 
more preferred among engineering hydrologists in practical 
applications, and it enables the definition of conditional proba-
bilities for design purposes. 

The mean daily streamflow data used for estimating the 
flood volume separation in this approach are taken from the 
following Danube River stations: 1) Hofkirchen, 2) Bratislava, 
3) Nagymaros, 4) Orsova and 5) Reni. A local-minimum meth-
od developed by Willems (2009) was used for the separation of 
the base flow, and for a better estimation of the beginning and 
end of the flood waves. Eleven different copula families (Table 
2, Appendix) for all of the various data combinations were 
investigated for their applicability. 
 

RESULTS 
 
In this section the results indicating the suitability of the var-

ious copula families for the bivariate analysis of the AMF dis-
charges and flood volumes are presented. First, the preliminary 
data testing for the presence of temporal depend-ence, and the 
significance of (rank) correlation and asymmetry are discussed. 
Then, four different rank categories, which were created ac-
cording to the GOF test, are described. The detailed results of 
the bivariate analyses of the AMF peaks and volumes are pre-
sented separately, according to the approach of volume separa-
tion, which was described in the previous section. 

The preliminary tests revealed only a few violations of the 
copula analysis prerequisites, namely, the original flood peak 
data at the Vienna station seemed to contain a trend. No peaks 
at any station were indicated for autocorrelation. As for the 
volumes, within the both approaches no volume data shows a 
temporal dependence. Within the second approach a downward 
trend was detected at the Orsova and Reni stations due to de-
creasing volatility in recent decades. 

The correlation between the AMF peaks and all the flood 
volumes was quantified with Kendall’s Tau and results are 
summarized within the corresponding subsections. 
According to the GOF test statistic, which serves as a measure 
of the distance to the empirical distribution (the lower the bet-
ter), four different rank categories were created: a) The first to 
third ranks, and b) the total rank, which refers to the frequency 
with which a copula family scored with one of  the previous 
ranks. For instance, at the Hofkirchen station (see Table 4, 
column 3), copulas from the Frank family scored three times 
with the lowest the GOF test statistic (1st rank) among all the 
copulas estimated for each fixed volume class, then two times 
with the second lowest value of the GOF test statistic (i.e. the 
2nd rank), and just once with the third lowest value (the 3rd rank) 
– a total of scoring 6 times in the copula competition, which is 
summarized in Table 5. The total rank then represents the num-
ber of the scores across all the fixed volume classes and all the 
stations. We adopted this ranking approach to be able to select 
the best models among all those applied, as more than one 
model was always suitable. The analysis was performed with a 
focus on the stations spread along the river, different flood 
volumes (annual maximum volumes of fixed durations and 
flood volumes corresponding to flood peaks), and diverse (yet 
commonly implemented) copula models. In the following para-
graphs, a detailed analysis of the results of both approaches will 
be presented. 
 
First approach: the annual maximum flood volumes of 
selected durations 
 

One of the findings in this approach is that the (always sig-
nificant) correlation between the flood variables (i.e., the dis-
charge and volume) decreases as the flood´s duration increases 
(Table 3). A notable decrease in the correlation can be observed 
in the Austrian reach, which would require further analysis, 
e.g., with respect to the lateral inflow in this reach. Overall the 
values (except for this reach) are more or less constant for all 
the durations. The results concerning Kendall’s Tau correlation 
analysis for all the stations is that although the upper tail de-
pendence (reading from the properties of the best fitting copula) 
disappears when the floods´ durations increase, the lower tail 
dependence remains unchanged. The tests for asymmetry re-
jected the exchangeability of peaks and volumes in two out of 
35 cases; thus the copula families considered are taken as ap-
propriate in this respect. 



Joint modelling of flood peaks and volumes: A copula application for the Danube River 

387 

 
Table 3. The Kendall’s Tau correlation coefficient values for both approaches and all the stations analysed. 
 

 Volumes Hofkirchen Achleiten Vienna Bratislava Nagymaros Orsova Reni 

5D 0.85 0.75 0.75 0.85 0.88 – – 
10D 0.79 0.68 0.68 0.78 0.82 – – 
15D 0.67 0.54 0.53 0.64 0.67 – – 
20D 0.64 0.49 0.49 0.61 0.63 – – 
25D 0.61 0.46 0.46 0.59 0.6 – – 
30D 0.6 0.43 0.44 0.57 0.58 – – 
60D 0.52 0.36 0.36 0.46 0.5 – – 
Corresponding  
volumes to AMF  

0.26 – – 0.36 0.35 0.41 0.27 

 
Table 4. The rank values of the copula families according to the GOF test for both approaches. 
 

    Hofkirchen Achleiten Vienna  Bratislava Nagymaros 

Volume Ranks Copula family Copula family Copula family Copula family Copula family 

5D 

1st Frank Hüsler-Reiss Hüsler-Reiss Galambos Plackett 

2nd  Galambos Galambos Galambos Gumbel Normal 

3rd  Gumbel Tawn Gumbel Tawn Gumbel 

10D 

1st Galambos Plackett Galambos Tawn Frank 

2nd  Tawn Clayton Gumbel Galambos Tawn 

3rd  Gumbel Frank Hüsler-Reiss Gumbel Plackett 

15D 

1st Frank Clayton Clayton Plackett Normal 

2nd  Normal Plackett Normal Tawn Frank 

3rd  Clayton Frank Frank Gumbel Tawn 

20D 

1st Plackett Clayton Clayton Plackett Plackett 

2nd  Normal Normal Plackett Normal Normal 

3rd  Frank Frank Frank Clayton Frank 

25D 

1st Clayton Clayton Clayton Normal Plackett 

2nd  Frank Frank Plackett Clayton Frank 

3rd  Normal AMH Frank Frank Normal 

30D 

1st Plackett Clayton Clayton Clayton Plackett 

2nd  Frank Normal AMH Normal Clayton 

3rd  Clayton AMH Frank Frank Frank 

60D 

1st Frank Clayton Clayton Clayton Clayton 

2nd  Plackett AMH AMH Normal Normal 

3rd  Normal Plackett FGM Frank Frank 

Corresp. volumes 
to AMF 

1st AMH – – Frank AMH 

2nd Frank – – Normal Frank 

3rd Clayton – – AMH Clayton 

 
Table 5. The frequency (total) and relative frequency (total %) of the overall rankings according to the GOF test for the data samples creat-
ed on the basis of the first approach. 
 

Copula families Hofkirchen Achleiten Vienna Bratislava Nagymaros Total Total (%) 

AMH 0 3 2 0 0 5 5 
Clayton 3 6 5 4 2 20 19 
Frank 6 4 4 3 6 23 22 
Joe 0 0 0 0 0 0 0 
Gumbel 2 0 2 3 1 8 8 
Hüsler-Reiss 0 1 2 0 0 3 3 
Galambos 2 1 2 2 0 7 7 
Tawn 1 1 0 3 2 7 7 
Normal 4 2 1 4 5 16 15 
Plackett 3 3 2 2 5 15 14 
FGM 0 0 1 0 0 1 1 
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Fig. 4. The relative frequency of the ranks (in percentages) of different copula families as a measure of their applicability to all the stations 
(first approach). 
 

 
Fig. 5. Scatter plots of 500 pair simulations according to the fitted copulas (grey color) and measured data (black color) for the data sample 
representing 60 days´ fixed volume duration. a) Bratislava Station, the Clayton fit, GOF p-value 0.042, Kendall’s Tau correlation coeffi-
cient 0.464 b) Hofkirchen Station, the Frank fit, GOF p-value 0.061, Kendall’s Tau correlation coefficient 0.521. 
 

 
 

Fig. 6. Scatter plots of the pseudo-observation for all the stations (the AMF peak vs. the corresponding flood volume) with the Kendall’s 
Tau correlation coefficient (in parentheses). 
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Fig. 7. Ranking of the relative frequency (in percentages) of the 
applicability of different copula families to all the stations for the 
data samples created based on the second approach. 
 

The copula family rankings are presented in Table 4, where, 
in the category of the first rank, the Clayton copula prevails 
with 14 counts, N = 35 (a 40% relative frequency) (Figure 4b, 
Table 4). At the Achleiten and Vienna stations, the Clayton 
family has five counts with N = 7 (a 70% relative frequency).  
In the second rank, the Normal family, which dominates in the 
ranking, has 11 counts with N = 35 (a 31% relative frequency) 
(Figure 4c, Table 4), and at the stations of Bratislava and 
Nagymaros, the same family has three counts with N = 7  
(a 43% relative frequency). Moreover, in the third rank, the 
leading copula is that of the Frank family, having 14 counts 
with N = 35 (a 40% relative frequency) (Figure 4.d, Table 4), 
and at the Vienna station, the same family has four counts with 
N = 7 (a 57% relative frequency). Finally, the GOF test indi-
cates that for the total ranking, the Frank copula performs better 
than the others with 23 counts, N = 105 (a 22% relative fre-
quency) (Figure 4a, Table 5). The Clayton copula is in the 
second place of the total ranking with 20 counts (a 19% relative 
frequency), and the Normal copula is in the third place with 16 
counts (a 15% relative frequency) (Figure 4a, Table 5). In Fig-
ure 5 two scatter plot examples of the simulated/observed data 
can be seen. 

 
Second approach: the flood volumes corresponding to 
annual maximum flood peaks 

 
Concerning the second approach, according to Kendall’s 

Tau correlation coefficient (which is again always significant), 
the correlation between the AMF peak and the corresponding 
flood volume increases along the Danube River (downstream), 
except for the Reni station (Figure 6, Table 3). No relation  
 

appears to be asymmetric with respect to the main diagonal (as 
suggested by the asymmetry test). Another finding from this 
analysis is that there is an increase in the upper tail dependence 
at the river stations located in the lower part of the river (see 
Figure 6), which is supported by the GOF test preference of 
extreme-value copulas at the Orsova and Reni stations (while at 
the Hofkirchen, Bratislava and Nagymaros stations, no copula 
with an upper tail dependence modelling capability was pre-
ferred), see Table 4. Furthermore, the analysis of the GOF test 
indicates that for the total rank, the Frank copula with four 
counts performs better than the others, N = 15 (a 27% relative 
frequency) while the AMH is in the second place with three 
counts, N = 15 (a 20% relative frequency) (Figure 7, Table 4). 
In Figure 8 two scatter plot examples of the simulated/observed 
data can be seen. In comparison with the first approach, the 
correlation of the AMF peak and the corresponding flood vol-
umes is notably lower (see the p-values in Figure 8). Moreover, 
a result that follows from the analysis is that in the low correla-
tion samples (the Hofkirchen, Bratislava and Nagymaros sta-
tions) the AMH copula family is mostly preferred (the Reni 
station is an exception due to the upper tail behaviour) (Figure 
6, Table 3, Table 4). 
 
DISCUSSION AND CONCLUSIONS 

 
In this study we provided a bivariate analysis of the stream-

flow data (the AMF peak and flood volumes) for modeling 
extreme flood events with the use of various copula families. 
First, the annual maximum flood volumes of the fixed durations 
were separated from the flood waves, which were not necessari-
ly linked to the same hydrological event. This approach leads to 
the construction of the data set allowing us to study the regime 
of extreme values within each year and to investigate the 
chance that in a year with a high flood, there would also be a 
flood with a high volume. Since this paper is more technically 
oriented towards studying the suitability of theoretical models 
for such a type of analysis, this simplified volume selection was 
adopted instead of defining the volume of each flood (thus 
conducting a process-oriented analysis of the hydrograph and 
defining the beginning and end of each runoff event). 

In the second approach to flood volume separation, the AMF 
peaks and their corresponding flood volumes for each station 
were sampled. This approach is mostly preferred in engineering 
studies in practical applications, since it enables the definition 
of conditional probabilities for design purposes. The positive 
and rather significant dependence of the AMF and annual  
 

 
 

Fig. 8. Scatter plots of 500 pair simulations according to the fitted copula (grey color) and measured data (black color), for the data samples 
representing annual flood peaks and the corresponding flood volumes. a) Bratislava Station, the Frank fit, GOF p-value 0.045, the Ken-
dall’s Tau correlation coefficient 0.359 b) Hofkirchen Station, the AMH fit, GOF p-value 0.04, Kendall’s Tau correlation coefficient 0.262. 
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maximum flood volumes of a fixed duration indicates that a 
detailed comparative analysis of such peaks and volumes along 
the river and between distinct periods bears a potential for new 
information on the regime of extremes and its changes.  

As for the technical part, the main outcome of the analysis is 
that for all of the applications, the most favored copula family 
is the Frank one, and the least preferred is the Joe, one which 
failed to give any good fitting (Table 5, Figures 4 and 7). The 
AMH family is mostly favored in the low correlation samples. 

In the first approach, the families with the best fit for all of 
the applications are the: 1) Frank, 2) Clayton and 3) Normal. 
Furthermore, the most favored copula families, taking into 
account their ranks, are: first rank – the Clayton, second rank – 
the Normal, and third rank – the Frank. The correlation analysis 
showed that there is: a) a certain decline in the correlation be-
tween the AMF peak and the flood volumes of fixed durations 
when the flood duration increases, and b) the persistence of a 
lower tail dependence with an increasing flood volume. When 
focusing the analysis on the stations, the Clayton family is the 
most applicable for the stations at Achleiten and Vienna. The 
second approach to the flood peak - volume sample construc-
tion shows that the Frank and AMH are the best fitted families. 
The correlation of the AMF peak – corresponding flood volume 
pairs rises as the stations downstream of the Danube River are 
passed. 

The result that the Frank copula is the most favored family 
agrees with the study of Reddy and Ganguli (2012), which 
concerning the GOF p-value, underlined the Frank copula as 
the most suitable in terms of the best fit for the flood peak-
volume pairs. Moreover, in the studies of Chowdhary et al. 
(2011) and Bačová-Mitková and Halmová (2014), the Clayton 
copula family was reported as the most suitable choice for 
simulation of the flood peak-volume pairs. The results of the 
unacceptable performance (in fitting) of the Joe copula family 
support the results of Szolgay et al. (2015). Finally, a valuable 
outcome from the results of this study, which agree with the 
results of Favre et al. (2004) and Szolgay et al. (2015, 2016), 
could be that a further investigation of the choice of the “best” 
copula families for the flood peak-volume pairs is essential. 

For a more comprehensive and complete analysis of flood 
characteristics (peaks, volumes and durations), the following 
steps could be implemented in the near future: 1) a seasonal 
analysis splitting the year into several logical periods followed 
by applying the same methods of constructing the volumes and 
copula-fitting approach as in this study, 2) assessing the im-
pacts of hydrotechnical projects on the study area (i.e., an ex-
amination of the correlation patterns between discharges – 
volumes due to dam construction), and 3) the use of partial 
duration series for a peak-over-threshold analysis using bivari-
ate or trivariate copulas. 
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APPENDIX 
 
All the copula families used in our study are expressed analytically (Bacigál, 2013): 
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Hüsler-Reiss (ݐ)ܣ = Φݐ ቎1݌ + ݌ log ቀ 1ݐ − ቁ2ݐ ቏ + (1 − Φ(ݐ ቎1݌ − ݌ log ቀ 1ݐ − ቁ2ݐ ቏ ݌ ≥ 0 
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Note: Φ–1 is a quantile function of the standard normal distribution, and Φ୮ is a joint CDF of the bivariate standard normal distribution 

with parameter p (Pearson correlation coefficient). 

 

 

 


