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Abstract: A vital topic regarding the optimum and economical design of rigid boundary open channels such as sewers 
and drainage systems is determining the movement of sediment particles. In this study, the incipient motion of sediment 
is estimated using three datasets from literature, including a wide range of hydraulic parameters. Because existing equa-
tions do not consider the effect of sediment bed thickness on incipient motion estimation, this parameter is applied in this 
study along with the multilayer perceptron (MLP), a hybrid method based on decision trees (DT) (MLP-DT), to estimate 
incipient motion. According to a comparison with the observed experimental outcome, the proposed method performs 
well (MARE = 0.048, RMSE = 0.134, SI = 0.06, BIAS = –0.036). The performance of MLP and MLP-DT is compared 
with that of existing regression-based equations, and significantly higher performance over existing models is observed. 
Finally, an explicit expression for practical engineering is also provided. 
 
Keywords: Decision tree; Incipient motion; Multilayer perceptron (MLP); Froude number. 

 
INTRODUCTION 

 
Sediment deposition on the beds of rigid boundary channels, 

such as sewer, drainage and irrigation channels is correlated to 
extensive economic and technical problems. Deposits on chan-
nel beds lead to roughness, and in contrast to smooth beds, 
hydraulic behavior and performance can be significantly al-
tered. Therefore, accurately predicting and determining sedi-
ment incipient motion is noteworthy in the optimum design of 
transport systems. 

Minimum velocity and shear stress are among the most ef-
fective factors in reducing sedimentation, and different criteria 
for both shear stress and velocity were provided by  
Vongvisessomjai et al. (2010). This method does not refer to 
sediment and flow characteristics and is thus not reliable, as it 
leads to under or overestimated critical velocity for incipient 
motion (Ebtehaj et al., 2014). Therefore, several experimental 
research works have been conducted with a large variety of 
equations to estimate the incipient motion velocity (Ab Ghani 
et al., 1999; El-Zaemey, 1991; Novak and Nalluri, 1984; Safari 
et al., 2011). Some equations are applied extensively in many 
designs owing to their simplicity, but these equations do not 
consider the thickness of sediment deposited on the bed, which 
has significant impact on the dimensionless shear stress in the 
Shields diagram (Bong et al., 2013). Moreover, since the equa-
tions are regression-based their performance in different hy-
draulic conditions is questionable. 

Due to the ability of artificial neural networks (ANNs) to 
solve complex problems and the good performance in different 
engineering sciences, this method is often used in hydraulic and 
environmental engineering (Ab Ghani et al., 2011; Ahmad et 
al., 2011; Azamathulla et al., 2008; Ebtehaj and Bonakdari, 
2016; Haddadchi et al., 2013). To predict the minimum sedi-
ment transport velocity in sewers, Ebtehaj and Bonakdari 
(2013) utilized an MLP neural network. The results indicated 

that the MLP neural network can highly accurately estimate the 
minimum velocity. Furthermore, a comparison between the 
MLP neural network and traditional equations demonstrated the 
superior performance of the MLP neural network. Sun et al. 
(2014) investigated the capability of ANN to predict the veloci-
ty distribution in combined open channels using computational 
fluid dynamics data. Kizilöz et al. (2015) predicted scour 
around submarine pipelines using ANN and found that the 
ANN results are in good agreement with the measured data. 

To enhance intelligent method performance hybrid methods 
are widely used, for instance the Taguchi-genetic algorithm for 
adaptive network-based fuzzy inference system training (Ho et 
al., 2009); the hybrid group method of data handling (GMDH) 
with genetic programming (Najafzadeh and Barani, 2011); 
evolutionary algorithms to optimize ANN layer weights 
(Ebtehaj and Bonakdari, 2014); and a combined firefly algo-
rithm (FFA) and wavelet with support vector machines (SVM), 
i.e. SVM-FFA and SVM-Wavelet (Gocić et al., 2015). Kavou-
si-Fard and Kavousi-Fard (2013) used a new hybrid method of 
the cuckoo search algorithm (CSA), autoregressive integrated 
moving average (ARIMA) and support vector regression (SVR) 
for short-term load forecasting problems. Najafzadeh and Lim 
(2014) developed a neuro fuzzy-based GMDH method using 
the particle swarm optimization (PSO) learning algorithm (NF-
GMDH-PSO) to predict scour downstream of a sluice gate. The 
authors found that the proposed method performed better than 
traditional methods. Bonakdari and Ebtehaj (2014) used the 
imperialist competitive algorithm (ICA) to improve multilayer 
perceptron (MLP) neural network application in predicting 
sediment transport at limit of deposition. A comparison be-
tween MLP and MLP-ICA indicated the significant increase in 
radial basis function (RBF) capability when using MLP as an 
evolutionary learning algorithm. 

The main aim of this study is to develop the MLP neural 
network using decision trees (DT) for predicting the incipient 
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sediment motion in rigid boundary rectangular stormwater 
channels by using three experimental datasets (Bong et al., 
2013; Salem, 2013; Shvidchenko and Pender, 2000). The re-
sults of the MLP neural network and several regression-based 
equations are compared with the MLP-DT results. 

 
OVERVIEW OF EXITING EQUATIONS 

 
Novak and Nalluri (1984) conducted different experimental 

tests on the incipient motion of sediment particles in flumes 
with rough and smooth beds. The flumes were rectangular 
glass-walled, 15 m and 6 m long and 300 mm wide. The medi-
an diameters of sediment particles ranged from 3.6 mm to 37.2 
mm. Novak and Nalluri (1984) considered Fr as a function of 
d/R and presented the following equation: 
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 (1) 

 
where Fr is the densimetric Froude number (= Vc/(g(s–1)d)0.5), 
Vc is the critical velocity, d is the median diameter of particles, 
g is the gravitational acceleration, s is the specific gravity of 
sediment (= ρs/ρ), ρ and ρs are the fluid and sediment density 
(respectively) and R is the hydraulic radius. 

In order to present an equation for estimating the critical ve-
locity (Vc) of the incipient motion of sediment, El-Zaemey 
(1991) performed different experimental tests with sediments 
ranging from 2.9 to 8.4 mm. The maximum diameter of sedi-
ment particles employed was greater than Novak and Nalluri’s 
(1984). El-Zaemey (1991) presented the following equation, 
which has the same form as Novak and Nalluri’s (1984) equa-
tion but different coefficients: 
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To investigate the effect of sediment deposit thickness on the 

incipient motion of sediment, Ab Ghani et al. (1999) conducted 
tests in a rigid rectangular channel 10 m × 300 mm × 450 mm 
(L, W, D). The range of sediment particles used was 0.55 < d 
(mm) < 4.78. The authors evaluated the available criteria to 
survey the performance on a bed with sediment deposits. It was 
found that existing equations cannot consider the effect of 
sediment bed thickness. Therefore, they applied sediment bed 
thickness (ts) of d < ts (mm) < 10 in the tests and produced the 
following equation: 
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Safari et al. (2011) presented an equation to estimate the in-

cipient motion of sediment in rigid boundary channels with 
rectangular and V-shape bottom cross-sectional areas using two 
different datasets. The range of the median diameter of particles 
was 0.87 < d (mm) < 7.72 and the specific gravity was 2.65. 
The best fit equation presented by the authors is as follows: 
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Salem (2013) carried out a series of tests on a rectangular 

flume to survey the incipient motion of sediment. The range of 

particle sizes in the experimental tests was 0.55 < d (mm) < 
4.78. The author presented an equation in two forms. The first 
equation is the same as the equations presented earlier (by Ab 
Ghani et al., 1999; El-Zaemey, 1991; Novak and Nalluri, 1984) 

in the form of ( )/
b

Fr a d R=  (Equation 5), and the second is 

inspired from Ackers and White’s (1973) equation (Equation 
6). Salem’s (2013) equations are as follows: 
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Bong et al. (2013) performed experiments in a rectangular 

channel keeping in view the effect of sediment deposit thick-
ness. The median diameter of sediment (d) and specific gravity 
of sediment were 0.81 < d (mm) < 4.78 and 2.5 < s < 2.57 
respectively. The authors deemed sediment deposit thickness 
(ts) to be an effective parameter in estimating the critical veloci-
ty of incipient motion. Their equation is as follows: 
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where ts is the sediment deposit thickness. 

 
MATERIALS AND METHODS 
Data collection 

 
In this study, Bong et al. (2013), Salem’s (2013) and Shvid-

chenko and Pender (2000) datasets are used for estimating the 
Fr. Shvidchenko and Pender (2000) conducted experiments in a 
rectangular, glass-walled channel 8 m × 0.3 m × 0.3 m (L, W, 
D). The maximum discharge produced by the pump was 30 L/s. 
The flow regime was controlled using a tailgate located at the 
output of the channel. Uniform bed thickness of 5 cm was 
intended for situations in which the total length of the sediment 
bed was 5.6 m. The slope of the flume used in all of Shvid-
chenko and Pender’s (2000) tests ranged from 0.0014 to 
0.02870. The median diameter of particles was 1.5–4.5 mm. 

Bong et al. (2013) carried out experiments on a rectangular 
channel. The discharge and flow velocity values were measured 
using an electromagnetic current meter. This current meter was 
verified using the calculated discharge of a V-notch weir in-
stalled downstream of the channel. Bong et al. (2013)  did tests 
with 4 slopes (i.e. 1/n; n = 200, 350, 500, 1000). The thickness 
of the sediments used in the tests was such that first, a layer of 
sediment was placed on the bed (ts = d), after which the thick-
ness of sediment on the channel bed was increased (ts = 5, 10, 
24 mm). Bong et al. (2013) selected sediment size and thick-
ness on the channel bed slope based on field observations by 
Ab Ghani et al. (2001). The total thickness of the sediment bed 
was 2.1 m. The observation section was 3.5 m from upstream, 
where according to initial observations the flow was fully de-
veloped. 

Salem (2013) conducted experimental tests in a rectangular 
channel 10 m × 450 mm × 300 mm (L, W, D). The side walls of 
the flume were made of glass so the particles’ movement on the 
bed would be visible. The depth of flow in the flume was set 
with a tail gate. The horizontal slope of the channel was set 
with a mechanical jack placed near the channel output. While 
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increasing the velocity until attaining the required velocity that 
led to the initial movement of sediments (incipient motion), the 
flow depth, flume slope and discharge values were recorded. 
The minimum thickness of the sediment bed in Salem’s (2013) 
tests was d. Thus, the sediment bed was spread over the entire 
channel width. The hydraulic ranges and sediment characteris-
tics are presented in Table 1. 

 
Dimensional analysis 

 
The components required to define the three-phase flow of 

air, water and sediment include flow, fluid and sediment char-
acteristics (Yalin, 1977). In providing a functional equation to 
estimate the critical velocity (Vc), it is recommended to consider 
fluid characteristics (such as fluid density (ρ)), sediment fea-
tures (such as density (ρs), median diameter of particles (d)) and 
flow characteristics (such as gravity acceleration (g) and flow 
depth or hydraulic radius (R)). In addition to the above parame-
ters, Bong et al. (2013) suggested defining the ts parameter so 
that the sediment bed thickness would be considered an effec-
tive parameter in determining the incipient sediment motion. 
Therefore, the parameters affecting minimum velocity calcula-
tion are given in the following functional relationship: 

 

( )c s sV ρ,ρ ,d,R,g,t= Φ  (8) 

 
Literature studies indicate that the initial velocity is the 

Froude number dimensionless parameter (Fr = V/(g(s–1)d)0.5) 
and dimensional analysis suggests the following equation to 
calculate the Fr parameter: 
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where Fr is the densimetric Froude number, Vc is the critical 
velocity, g is the gravitational acceleration, d is the median 
diameter of particles, s is the specific gravity of sediment 
(= ρs/ρ), R is the hydraulic radius and ts is the sediment bed 
thickness. 

A hybrid multilayer perceptron (MLP) method based on de-
cision trees (DT) (MLP-DT) is used to estimate Fr. Therefore, 
the datasets should be classified into two categories: training 
and testing. Among 235 existing data, random sampling with-
out replacement was used to obtain 70 data (30%) for model 
validation and 165 (70%) for model training. Subsequent to 
estimation and performance confirmation in both training and 
testing, the estimation accuracy of this model was compared 
with existing equations. 

 
Multi-layer perceptron neural network 

 
The MLP neural network is successfully used in different 

engineering fields to simulate complex problems (Haykin, 
 

 
 
 
 

1994). A typical MLP (Figure 1) has three types of layers: 
input, hidden and output layers (Hagan et al., 1996; Haykin, 
1994; Oliver, 2001). The initial information of the problem is 
submitted to the MLP neural network via the input layer. The 
input layer’s number of neurons is equal to the number of input 
variables of the considered problem. Each neuron in the input 
layer is connected to a neuron in the hidden layer. In the hidden 
layer, a nonlinear transformation is done to the received infor-
mation (Christopher, 1995) using activation functions. In this 
study, the sigmoid activation function is used for the hidden 
layer as shown in Eq. (10). 
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Subsequently, the output layer result is prepared by multi-

plying the weighting factor of the hidden layer’s information, as 
presented in Eq. (11).  
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where Neuron j is the network process result; Wij are the con-
necting weights between the hidden layer neurons and output 
layer neurons, respectively; and Fi is the hidden layer’s neuron 
information that is transferred to the next layer. As such, the 
output layer acts like a linear regressor of the hidden layer 
neurons’ information. The output layer results are the MLP 
neural network outcomes that can be compared with the ob-
served or experimental data. According to Eq. (11), the num-
bers of input and output layer neurons are equal to the numbers 
of input and output variables of the considered problem. How-
ever, there is no definitive rule to determine the number of 
hidden layer neurons. In this study, trial and error is used to 
determine the number of hidden layer neurons in the MLP 
models employed (Bilhan et al., 2010; Breiman et al., 1993; 
Kisi, 2008). 
 

 
 
Fig. 1. MLP structure used for the Incipient Motion problem. 
 

Table 1. Dataset ranges. 
 

Authors L, W, D (m) s = (ρs/ρ) d (mm) ts (mm) y (m) Vc (m/s) 

Salem (2013) 10, 0.3, 0.45 2.3–2.57 0.5–4.78 0.5–24 0.0135–0.159 0.188–0.619 

Bong et al. (2013) 6, 0.6, 0.4 2.54–2.57 0.81–4.78 0.81–24 0.007–0.132 0.216–0.442 

Shvidchenko and Pender (2000) 8, 0.3, 0.3 2.6-2.65 1.5–4.5 50–50 0.015–0.136 0.065–0.865 
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Hybrid decision tree-based multilayer perceptron neural 
network 

 
MLP-DT, a novel, hybrid artificial neural network is intro-

duced in this section. In this method, DT classification 
(Breiman et al., 1993) is used to attain a regression method with 
higher performance. The classification part of MLP-DT serves 
to predict the class of each sample using the input variables of 
the considered problem. In the DT process, recursive splitting is 
done to find the best divisions of input variables. First, the 
dataset is divided into two classes by placing a partition on one 
of the input variables. This partition is placed by trial and error. 
It means the whole dataset is divided in various places of each 
one of the input variables to determine which one leads to the 
highest classification performance. Subsequently, the next split 
is found through the same process. Splitting is done repetitively 
to find the best DT for the considered problem. In the present 
study, DT training stops if all tree leafs reach the considered 
Minimum Parent Size (MPS). Thus, after each partitioning, the 
number of each leaf’s samples is checked. If the number of leaf 
samples is higher than the MPS, the leaf is considered a branch 
and gets split again; else, the considered leaf is removed from 
the splitting process. 

Then the DT divides the simple MLP neural network into 
smaller networks so that each small MLP simulates every part 
of the divided dataset. Figure 2 presents the MLP-DT method 
proceeding. According to the figure, in the first step the DT is 
trained to divide the whole dataset into classes by using the 
considered input and output variables. It should be noted that 
precise DT classification may cause overtraining, which may 
decrease regression performance. Thus, the goal of DT is not to 
obtain a division with the highest classification quality but 
rather, to attain a classification that leads to the highest  
MLP-DT model regression performance. However, highly 
misclassified samples of a weak DT classification model may 
decrease MLP-DT regression performance. Therefore, the trial 
and error method is utilized in the current study to identify the 
most appropriate DT classification performance that would lead 
to the highest MLP-DT regression model precision. As men-
tioned before, DT accuracy is controlled by the MPS. If the 
MPS is assumed to equal one, the DT becomes an exact classi-
fier. For the present dataset, the MLP-DT with MPS of 15 
performed the best. In the second step of the MLP-DT proce-
dure, the MLP is split into the considered number of DT algo-
rithm classes. In the present study, the DT classification process 
splits the entire dataset into three classes: “Low”, “Med” and 
“High.” Therefore, the MLP neural network is split into three 
smaller MLPs. In this way, to achieve a fair comparison 
between the formal MLP and MLP-DT methods, the maximum 
allowable number of hidden layer neurons in the MLP is 
considered equal to the number in the smaller MLPs of the 
MLP-DT model. 

The final MLP-DT step is to collect the separate class results 
of each smaller MLP to generate the final model outcomes. 

 
Goodness of fit 

 
To evaluate the MLP and MLP-DT methods with the ob-

served experimental values and compare those with existing 
regression-based equations, the following statistical indexes are 
utilized: root mean square error (RMSE), mean absolute relative 
error (MARE), scatter index (SI) and BIAS. 
 

 
 
Fig. 2. DT procedure. 
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These indexes only exhibit the difference between the exper-
imental and predicted values but not the forecast error distribu-
tion using MLP and MLP-DT; therefore, other indexes includ-
ing absolute relative error (ARE) and threshold statistics (TS) 
are employed (Ebtehaj et al., 2015). The TSx error distribution 
index represents the predicted values for x% of the anticipated 
data. This index represents the ratio of predicted values with 
ARE of less than x% (Yx) to the total value. 
 

100x
x

Y
TS

n
= ×  (16) 
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Observed

Fr Fr
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Fr

−
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RESULTS AND DISCUSSION 

 
The results from simulating the incipient motion of sediment 

as the dimensionless parameter Fr using both MLP and  
MLP-DT are presented in this section. A comparison of the two  
models is shown in Figure 3. By considering the fact that the  
 
 

data employed has no significant role, MLP performed well in 
training and the relative error was slightly more than 10%, 
indicating good training accuracy. However, MLP did not 
perform the same in model training and testing. Also according 
to Figure 3, the MLP simulation error in the testing phase sig-
nificantly increased. Therefore, a method is still required that is 
flexible in situations with no significant effect on training. A 
hybrid decision tree (DT) and MLP were therefore applied to 
resolve this issue. 

Figure 3 indicates that the MLP-DT model performed rela-
tively comparable in both training and testing. In both cases, the 
values estimated by the proposed method had less than 10% 
relative error and data changes than in model training, signify-
ing no significant impact on model performance.  

Figure 4 shows the performance of existing regression-based 
equations in predicting the incipient motion of sediment. All 
equations use the dimensionless ratio of median particle 
diameter to hydraulic radius of flow area (d/R) to estimate Fr, 
except Bong et al.’s (2013) equation that uses the ratio of 
sediment bed thickness to the median particle diameter (ts/d). 
The difference between the two equations proposed by Salem 
(2013) is parameter (d/R). 

 
 

 
 
Fig. 3. Comparison of MLP and MLP-DT in predicting the Fr (training and testing). 
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Fig. 4. Evaluation of existing regression-based equations in Fr prediction. 

 

 

 
Fig. 5. Error distribution of MLP, MLP-DT and existing regression-based equations. 
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In general, regression-based equations represent relatively 
poor performance and high error with various model predic-
tions. Novak and Nalluri’s (1984) equation includes estimations 
with large differences as under and overestimations. The statis-
tical error indexes of the proposed models are presented in 
Table 2. According to this table, on average, Novak and Nal-
luri’s (1984) equation overestimates (BIAS = 0.173). Therefore, 
it can be concluded that the overestimation values present 
greater error than the underestimation. According to Figure 5, 
the maximum error estimated by Novak and Nalluri’s (1984) 
equation was about 140%. Also, only 15% of estimations by 
this model show relative error below 10%. El-Zaemey’s (1991) 
equation did not perform well as it overestimated the Fr with 
about 16% mean relative error (MARE = 0.167) and was three 
times greater than with MLP-DT and MLP. Figure 5 signifies 

that less than 50% of estimates made by this equation had a 
relative error below 10% while the maximum relative error of 
ML-DT was about 13%. Ab Ghani et al.’s (1999) equation was 
similar to ML-DT, as it did not predict the incipient motion of 
sediment accurately. However, unlike the two previous equa-
tions, it underestimated BIAS = –0.153 on average and was 
more accurate than the equations of Novak and Nalluri (1984) 
and El-Zaemey (1991) (MARE = 0.114, RMSE = 0.358, SI = 
0.159). Safari et al.’s (2011) new proposed equation to calculate 
the Fr had the weakest performance among all traditional equa-
tions (MARE = 0.306, RMSE = 0.554, SI = 0.246, BIAS = 
–0.68). The equation corresponds to an average relative error of 
about 30% and it underestimated the Fr by about 3 times the 
actual value (the maximum estimated value error was about 
230%) (Figure 5).  

 
Table 2. Performance evaluation of MLP, MLP-DT and existing regression-based equations in predicting the incipient motion of sediment. 
 

Methods MARE RMSE SI BIAS 
MLP 0.053 0.152 0.067 –0.033 
MLP-DT 0.048 0.134 0.060 –0.036 
Novak and Nalluri (1984) – Eq. (1) 0.208 0.548 0.244 0.173 
El-Zaemey (1991) – Eq. (2) 0.167 0.583 0.259 –0.253 
Ab Ghani et al. (1999) – Eq. (3) 0.114 0.358 0.159 –0.153 
Safari et al. (2011) – Eq. (4) 0.306 0.554 0.246 –0.680 
Salem (2013) – Eq. (5) 0.109 0.349 0.155 –0.051 
Salem (2013) – Eq. (6) 0.098 0.292 0.130 –0.036 
Bong et al. (2013) – Eq. (7) 0.096 0.269 0.120 0.008 

 

 
 
Fig. 6. DT for the incipient motion problem. 
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Fig. 7. MLP-DT equation for the incipient motion problem. 

 
Eq. (8) presented by Salem (2013) solves the problems caused 
by the poor performance of other equations that use parameter 
d/R to estimate Fr (MARE = 0.098, RMSE = 0.2992, SI = 0.13, 
BIAS = –0.036). However, it is observed that some of the pre-
sented estimates had large relative errors that sometimes 
reached more than 70%. Bong et al. (2013) used the parameter 
of ratio of sediment bed thickness to the median diameter of 
particles (ts/d) and provided an equation that performs well in 
Fr estimation. Although the equation benefits from higher 
estimation performance, even compared with Salem’s (2013) 
equation that is the best among those presented in the form of 
Fr =Φ(d/R), it exhibited superior performance (MARE = 0.096, 
RMSE = 0.269, SI = 0.12, BIAS = 0.008). However, Bong et 
al.’s equation showed only about 55% of estimations with 
relative error below 10% and maximum relative error of more 
than 50%. Meanwhile, MLP-DT with 92% estimation of all 
data can solve regression-based problems with relative error of 
less than 10% and maximum relative error of about 13%. Fig-
ure 6 presents the final DT for the incipient motion problem. 

According to the tree in Figure (6), the explicit equation us-
ing MLP-DT to calculate Fr is given in the Figure 7.  

From Figure (7), it is obvious that the sum of the number of 
hidden layer neurons in the MLPs employed in the MLP-DT 
model is 12. 
 
CONCLUSIONS 
 

Due to the extreme importance of determining the incipient 
motion of sediment for rigid boundary channel design, the 
critical velocity for incipient motion was estimated in this study 
using both the multilayer perceptron (MLP) neural network and 

a hybrid method of MLP based on decision trees (DT)  
(MLP-DT). The methods presented in this study performed 
well in Fr estimation, both with a mean relative error of about 
5% (MARE (MLP) = 0.053, MARE (MLP-DT) = 0.048). The 
hybrid method proposed (MLP-DT) can reduce the MLP’s lack 
of flexibility and high-error estimation in different modes. As a 
result, the highest relative error achieved was about 13%. An 
explicit equation to calculate the Fr was also provided. Existing 
equations indicate that all methods perform poorly compared to 
the model proposed in this study. The next best equation was 
that of Bong et al. (2013) with MARE = 0.096, RMSE = 0.269, 
SI = 0.12 and BIAS = 0.008. Thus, according to the results, the 
equation suggested by the MLP-DT (Figure 7) for estimating 
the Fr performs well and can be used as an alternative for de-
sign engineers to estimate the incipient motion of sediment. 
 
REFERENCES  
 
Ab Ghani, A., Salem, A.M., Abdullah, R., Yahaya, A.S., Zakar-

ia, N.A., 1999. Incipient motion of sediment particles over 
loose deposited beds in a rigid rectangular channel. Proc. 8th 
Int. Conf. Urban Storm Drainage, Sydney, Australia. 

Ab Ghani, A., Zakaria, N.A., Kassim, M., Nasir, B.A., 2001. 
Sediment size characteristics of urban drains in Malaysian 
cities. Urban Water J., 2, 335–341. 

Ab Ghani, A., Azamathulla, H.M., Chang, C.K., Zakaria, N.A., 
Hasan, Z.A., 2011. Prediction of total bed material load for 
rivers in Malaysia: A case study of Langat, Muda and Kurau 
Rivers. Environ. Fluid Mech., 11, 3, 307–318. 

Ackers, P., White, W.R., 1973. Sediment transport: new 
approach and analysis. J. Hydraul. Div., 99, 2041–2060. 



Isa Ebtehaj, Hossein Bonakdari, Amir Hossein Zaji, Charles Hin Joo Bong, Aminuddin Ab Ghani 

260 

Ahmad, Z., Azamathulla, H.Md., Zakaria, N.A., 2011. ANFIS-
based approach for the estimation of transverse mixing coef-
ficient. Water Sci. Technol., 63, 1005–1010. 

Azamathulla, H.M., Ab Ghani, A., Zakaria, N.A., Kiat, C.C., 
Siang, L.C., 2008. Knowledge extraction from trained neural 
network scour models. Modern Appl. Sci., 2, 4, 52–62. 

Bilhan, O., Emiroglu, M.E., Kisi, O., 2010. Application of two 
different neural network techniques to lateral outflow over 
rectangular side weirs located on a straight channel. Adv. 
Eng. Softw., 41, 831–837. 

Bonakdari, H., Ebtehaj, I., 2014. Study of sediment transport 
using soft computing technique. In: Schleiss et al. (Eds): 
River Flow 2014, Chapter 116, pp. 933–940, Taylor & Fran-
cis Group, London, UK. 

Bong, C.H.J., Lau, T.L., Ab Ghani, A., 2013. Verification of 
equations for incipient motion studies for rigid rectangular 
channel. Water Sci. Technol., 67, 395–403. 

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1993. 
Classification and Regression Trees. Wadsworth, Inc. 
California, USA, 368 p. 

Christopher, M., 1995. Neural networks for pattern recognition. 
Oxford University Press, Oxford, UK, 482 p. 

Ebtehaj, I., Bonakdari, H., 2013. Evaluation of sediment 
transport in sewer using artificial neural network. Eng. Appl. 
Comput. Fluid Mech., 7, 382–392. 

Ebtehaj, I., Bonakdari, H., 2014. Comparison of genetic algo-
rithm and imperialist competitive algorithms in predicting 
bed load transport in clean pipe. Water Sci. Technol., 70, 
1695–1701. 

Ebtehaj, I., Bonakdari, H., 2016. Bed load sediment transport 
estimation in a clean pipe using multilayer perceptron with 
different training algorithms. KSCE J. Civil Eng., 20, 581–
589.  

Ebtehaj, I., Bonakdari, H., Sharifi, A., 2014. Design criteria for 
sediment transport in sewers based on self-cleansing con-
cept. J. Zhejiang-Univ. Sci-A., 15, 914–924. 

Ebtehaj, I., Bonakdari, H., Khoshbin, F., Azimi, H., 2015. 
Pareto genetic design of GMDH-type neural network for 
predict discharge coefficient in rectangular side orifices. 
Flow Meas. Instrum., 41, 67–74. 

El-Zaemey, A.K.S., 1991. Sediment transport over deposited 
beds in sewers. PhD Thesis, Newcastle University, Newcas-
tle Upon Tyne, UK. 

Gocić, M., Motamedi, S., Shamshirband, S., Petković, D., Ch, 
S., Hashim, R., Arif, M., 2015. Soft computing approaches 
for forecasting reference evapotranspiration. Comput. Elec-
tron. Agr., 113, 164–173. 

Haddadchi, A., Movahedi, N., Vahidi, E., Omid, M.H., 
Dehghani, A.A., 2013. Evaluation of suspended load 
transport rate using transport formulas and artificial neural 
network models (Case study: Chelchay Catchment). J. Hy-
drodynamics, Ser. B., 25, 459–470. 

 

Hagan, M.T., Demuth, H.B., Mark, H., Beale, M.H., 1996. 
Neural Network Design. PWS Publishing Company (Open 
Library), Boston, USA, 1012 p. 

Haykin, S., 1994. Neural Networks, a Comprehensive Founda-
tion. Practice Hall, New Jersey, USA, 823 p. 

Ho, W.H., Tsai, J.T., Lin, B.T., Chou, J.H., 2009. Adaptive 
network-based fuzzy inference system for prediction of sur-
face roughness in end milling process using hybrid Taguchi-
genetic learning algorithm. Expert Syst., Appl., 36, 3216–
3222. 

Kavousi-Fard, A., Kavousi-Fard, F., 2013. A new hybrid cor-
rection method for short-term load forecasting based on 
ARIMA, SVR and CSA. J. Exp. Theor. Artif. Intel., 25, 
559–574. 

Kisi, O., 2008. The potential of different ANN techniques in 
evapotranspiration modelling. Hydrol. Process., 22, 2449–
2460. 

Kizilöz, B., Çevik, E., Aydoğan, B., 2015. Estimation of scour 
around submarine pipelines with Artificial Neural Network. 
Appl. Ocean Res., 51, 241–251. 

Najafzadeh, M., Lim, S.Y., 2014. Application of improved 
neuro-fuzzy GMDH to predict scour depth at sluice gates. 
Earth Sci. Inform., 8, 187–196. 

Najafzadeh, M., Barani, G.A., 2011. Comparison of group 
method of data handling based genetic programming and 
back propagation systems to predict scour depth around 
bridge piers. Sci. Iran., 18, 1207–1213. 

Novak, P., Nalluri, C., 1984. Incipient motion of sediment 
particles over fixed beds. J. Hydraul. Res., 22, 181–197. 

Oliver, N., 2001. Nonlinear System Identification: From Clas-
sical Approaches to Neural Networks and Fuzzy Models. 
Springer-Verlag, Berlin Heidelberg, Berlin, Germany, 785 p. 

Safari, M.J.S., Mohammadi, M., Manafpour, M., 2011. Incipi-
ent motion and deposition of sediment in rigid boundary 
channels. In: Proc. 15th Int. Conf. Transport & Sedimenta-
tion of Solid Particles. Wroclaw, Poland. 

Salem, A.M., 2013. The effects of the sediment bed thickness 
on the incipient motion of particles in a rigid rectangular 
channel. In: Proc. 17th Int. Water Technology Conf., 
IWTC17, Istanbul, Turkey. 

Shvidchenko, A.B., Pender, G., 2000. Flume study of the effect 
of relative depth on the incipient motion of coarse uniform 
sediments. Water Resour. Res., 36, 619–628. 

Sun, S., Yan, H., Kouyi, G.L., 2014. Artificial neural network 
modelling in simulation of complex flow at open channel 
junctions based on large data sets. Environ. Model. Softw., 
62, 178–187. 

Vongvisessomjai, N., Tingsanchali, T., Babel, M.S., 2010. 
Non-deposition design criteria for sewers with part-full flow. 
Urban Water J., 7, 61–77. 

Yalin, M.S., 1977. Mechanics of Sediment Transport. Per-
gamon Press, Oxford, UK, 360 p. 

 
Received 16 October 2015 

Accepted 10 May 2016
 


