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Abstract: In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously 
from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used 
the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for 
solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated 
with the Markov Chain Monte Carlo (MCMC) method through implementation of the Metropolis-Hastings algorithm. 
Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the 
unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute 
concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed 
approach. 
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INTRODUCTION 

 
Efficient methods for accurately estimating physical and  

geochemical parameters of mathematical models for the analy-
sis of soil, hydrologic and contaminant transport problems are 
critically needed. A large number of increasingly sophisticated 
public domain and commercial software packages are now 
available for a broad range of applications, including coupled 
vadose zone-groundwater systems (Miller et al., 2013; Šimůnek 
and Bradford, 2008). While a range of experimental techniques 
are now available for measuring the physical properties of soils 
(Dane and Topp, 2002), many of the standard procedures are 
based on assumptions that simplify the mathematical analysis, 
such as one-dimensional flow, steady-state flow conditions 
and/or homogeneous media properties. At the same time, more 
complicated and often nonlinearly coupled physical and bioge-
ochemical processes are being included in the models for rele-
vant applications. Therefore, proper formulations and solutions 
of the associated parameter estimation problems (Beck and 
Arnold, 1977) are needed to provide estimates for the required 
subsurface media and contaminant transport properties. 

Many methods and techniques are available for estimating 
flow and transport soil properties. In this study a Bayesian 
estimator is used to identify the conditional probability distribu-
tion of the unknown properties given the measurements (i.e., 
the posterior probability density). The measurement model that 
incorporates the measurement errors and related uncertainties is 
called the likelihood (i.e., the conditional probability of the 
measurements given the parameters). The model for the un-
knowns that reflects all of the uncertainty in the parameters 
without the information conveyed by the measurements is 
called the prior model (Beck and Arnold, 1977; Kaipio and 
Somersalo, 2004; Lee, 2004; Tan et al., 2006). The formal 
mechanism to combine new information (measurements) with 
previously available information (prior) is known as Bayes’ 
theorem (Beck and Arnold, 1977; Kaipio and Somersalo, 2004; 
Lee, 2004; Tan et al., 2006). Therefore, the term Bayesian is 
often used to describe statistical inversion approaches based on 

the principles that (Kaipio and Somersalo, 2004): (i) all varia-
bles in the model are treated as random variables, (ii) the ran-
domness describes the degree of information concerning their 
realization, which is coded in probability distributions, and (iii) 
the solution of the inverse problem is the posterior probability 
distribution from which point estimates and other statistics are 
computed.  

This study aims at characterizing the unsaturated hydraulic 
and solute transport properties of variably saturated soils. Simi-
lar studies have been carried out in the past using both small-
scale laboratory soil column experiments (Abbaspour et al., 
2001, 2004; Kool et al., 1985; Parker et al., 1985) as well as for 
more elaborate field scale settings (Hosseini et al., 2011; Kohne 
et al., 2006; Si and Kachanoski, 2000; Vrugt et al., 2006), in 
which minimization of the maximum likelihood objective func-
tion was used for estimating the unknown parameters. Various 
studies have used stochastic methods for studying fluid flow 
and contaminant transport processes using synthetic experi-
mental data (Franssen et al., 2003a, Fu and Gómez-Fernandez, 
2009), including particle filters for real-time estimations 
(Franssen et al., 2003b; Li et al., 2012; Vrugt et al., 2013; Xu et 
al., 2013; Zhou et al., 2011). Additionally, Bayesian estimators 
have been used for estimating unsaturated soil hydraulic pa-
rameters (Diamantopoulos et al., 2012; Laloy et al., 2010). 

The present work differs from other studies in the literature 
by considering the estimation of soil hydraulic and transport 
properties by means of a Bayesian estimator using observed 
data of the pressure head and outflow solute concentration 
obtained from a small-scale unsaturated soil column experi-
ment. Selected unsaturated soil hydraulic and transport parame-
ters affecting fluid flow and contaminant transport are estimat-
ed with a Markov Chain Monte Carlo (MCMC) method 
through implementation of the Metropolis-Hastings algorithm 
(Hastings, 1970; Kaipio and Somersalo, 2004; Lee, 2004;  
Metropolis et al., 1953; Tan et al., 2006). The Bayesian ap-
proach permits one to include a priori information available for 
the parameters, such as from previous experimental runs or 
other experimental setups, or even from theoretical predictions.  
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The flow problem in our study is described in terms of the 
standard Richards equation assuming uniform variably-saturated 
flow model in a single-porosity system, and a two-region (dual-
porosity) type physical non-equilibrium model for transport 
(Šimůnek et al., 2003; van Genuchten and Wierenga, 1976).  

The present study extends earlier work by Orlande et al. 
(2009) who had used only simulated data in the inverse analy-
sis. For the results presented here, actual pressure head and 
solute concentration experimental measurements were collected 
in a small-scale laboratory soil column experiment and used to 
estimate the unsaturated soil hydraulic and transport parame-
ters. We analyzed the sensitivity coefficients in order to exam-
ine which parameters can be estimated simultaneously. The 
accuracy of the Bayesian approach was also evaluated by re-
producing the estimated unsaturated soil hydraulic parameters 
obtained in the earlier studies by Kool et al. (1985) and Parker 
et al. (1985) involving the use of cumulative flux measure-
ments. Below we present the mathematical formulation for the 
physical problem considered here, the solution of the inverse 
problem, a description of the experimental procedure and the 
parameter estimation results. 
 
PHYSICAL PROBLEM AND MATHEMATICAL 
FORMULATION 

 
The physical problem considered here concerns the flow of 

water and a dissolved tracer through a vertical unsaturated labora-
tory soil column of length L, as shown in Figure 1. At the initial 
time (t = 0), the pressure head, hi(z), inside the soil column is 
assumed to vary linearly as a function of the position, z, in the 
column (but not necessarily following equilibrium conditions). 
For t > 0, a tracer solution with known concentration, c0, is inject-
ed at the upper end of the column at a constant flow rate, q0. The 
column is connected at its bottom to a vacuum chamber with 
pressure control, thus making it possible to keep a constant pres-
sure head, hb, at the outflow boundary. Values of the pressure 
head and solute concentration are assumed to be uniform in each 
cross section. 

 

 
 
Fig. 1. Schematic of the one-dimensional flow and solute transport 
problem considered in this study. 

 

The problem is simulated by assuming uniform flow as  
described by the standard Richards equation as follows: 
 

h
K K

t z z

θ  ∂ ∂ ∂= + ∂ ∂ ∂ 
   in   0 ≤ z ≤ L   and   t > 0 (1) 

 
where θ is the volumetric water content (L3L–3), h is the pres-
sure head (L), K is the hydraulic conductivity (LT – 1 ), z is the 
distance from the bottom boundary upwards (L), and L is the 
length of the column (L).  

Equation (1) was solved subjected to the following boundary 
conditions: 
 
h = hb    at   z = 0,   for   t > 0 (2a) 
 

0
h

K K q
z

 ∂− + = ∂ 
   at   z = L,   for   t > 0 (2b) 

 
and the initial condition: 
 
h = hi(z)   in   0 < z < L,   at   t = 0 (3) 
 
which varies linearly between the values 
 
hi(0) = h0 – Δh   at   z = 0 (4a) 
 
hi(L) = h0 +Δh   at   z = L (4b) 
 
where h0 is the initial pressure head in the middle of the column 
and Δh some positive value of the pressure head difference 
between the middle of the column and its boundaries. 

The relation between θ and h, as well as the hydraulic con-
ductivity function, K, are described here by (van Genuchten, 
1980): 
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where θr and θs are the residual and saturated water contents 
(L3L–3), respectively, Ks is the hydraulic conductivity at satura-
tion (LT – 1 ), α (L–1) and n (–) are empirical shape parameters,  
m = 1–1/n, l = 0.5 is a pore connectivity parameter, and Se is 
effective saturation given by  
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A dual-porosity (two-region) type physical non-equilibrium 

model was used for the solute transport problem. By assuming 
linear equilibrium sorption, the equations governing transport in a 
variably-unsaturated soil are given by (van Genuchten and 
Wierenga, 1976): 
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[ (1 ) ] [ ]im
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   in   0 ≤ z ≤ L   and    

t > 0 (8b) 
 
where the subscripts m and im refer to mobile and immobile 
liquid regions, respectively, c is the solute concentration (ML–3), 
f defines the fraction of sorption sites in contact with mobile 
water (–), ρb is the soil bulk density (ML–3), Kd is the 
distribution coefficient (L–3M), Dm is the dispersion coefficient 
(L2T – 1) and αm is a mass transfer coefficient determining the 
solute transfer rate between the mobile and immobile regions 
(T – 1 ). The dual-porosity formulation was used here since many 
tropical soils (often oxisols) of the type used in this study 
exhibit multi-modal pore- or particle-size distributions (e.g., 
Carducci et al., 2011; Sommer et al., 2003; Spohrer et al., 2006) 
favoring the existence of relatively immobile water pockets 
(Nkedi-Kizza et al., 1984; Melamed et al., 1994).  

A third-type condition was used at the inflow boundary 
and a zero diffusive flux at the outflow boundary, that is, 
 

0mc

z
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   at   z = 0   for   t > 0 (9a) 
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   at   z = L   for   t > 0 (9b) 

 
The initial condition is of the form: 
 ܿm=	ܿim=0		in   0 < z < L   for   t = 0 (9c) 
 
The dispersion coefficient Dm was defined following Bear’s 
classical formulation with the tortuosity given by Millington 
and Quirk's model (Kohne et al., 2006) as follows: 
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where Dd is the molecular diffusion coefficient (L 2 T – 1 ), λ is 
the dispersivity (L), and q is the volumetric fluid flux (LT – 1 ) 
given by the Darcy-Buckingham law as follows: 
 

( ) 1
h
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 (11) 

 
Following Nkedi-Kizza et al. (1984), we assumed that the 

fraction of sorption sites in contact with mobile water (f) is the 
same as the ratio of the mobile water content (θm) to the total 
water content (θ), that is:  
 

mf
θ
θ

=  (12a) 

 
with 
 

m imθ θ θ= +  (12b) 
 
By using Eqs. (12), Eqs. (8a, b) can be rewritten as: 
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A unique feature of Eqs. (13a, b) is the fact that the fraction 

of immobile water (and hence also f) is assumed to be constant 
during transient variably-saturated flow conditions, in which 
the mobile and immobile water contents can vary in time and 
space. We believe that this assumption is more realistic, and 
certainly less restrictive, than having a constant immobile water 
content (θim) in time, as assumed for example in the HYDRUS 
software package (Šimůnek et al., 2013), unless a dual-porosity 
type water flow exchange term is used between the mobile and 
immobile liquid regions. Limited experimental data (e.g., De 
Smedt and Wierenga, 1984; Maraqa et al., 1997) also support 
the assumption of having a constant immobile water fraction, f, 
independent of the degree of saturation. An additional ad-
vantage of the dual-porosity formulation used here is that the 
model simplifies immediately to the standard advection-
dispersion equation when f = 1. Hence, no a priori assumption 
is needed as to which formulation (the standard advection dis-
persion equation or the dual-porosity model) is most optimal 
for the transport problem being considered. 

The forward problem, given by Equations (1) to (7), (9) and 
(13), with all model parameters, initial and boundary conditions 
known, was solved using an implicit finite volume discretiza-
tion approach with the WUDS (Raithby and Torrance, 1974) 
interpolation scheme. The numerical solution of the forward 
problem was implemented in a Fortran code, which was veri-
fied against several reference solutions for different test-cases. 
Results presented below were obtained with the code developed 
in this work, by using converged grids. 

 
PARAMETER ESTIMATION 
 

The combined unsaturated flow and solute transport problem 
defined above involves the following vector of parameters: 
 

[ , ]T T T
Hydraulic Transport=P P P  (14a) 

 
which contains separate vectors of hydraulic and solute transport 
parameters as considered in our analysis: 
 

[ ]   0 , , ,  ,  , , T
Hy sdrau rl sic K n h hθ θ α= ΔP  (14b) 

 

[ , ( ), , , ]T
Transport b d d mf K Dρ λ α=P  (14c) 

 
Note that the parameters ρb and Kd appear only in the form 

of a product in the transport problem, and hence cannot be 
treated independently. However, ρb can be measured with rela-
tively standard techniques, which would leave only Kd as one of 
the unknowns in the vector of parameters. 

Parameter estimation within the Bayesian framework is per-
formed by treating all parameters in the mathematical formula-
tion of the physical problem as random variables, with prior 
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information coded in the form of probability distributions 
(Kaipio and Somersalo, 2004). Consider the vector of parame-
ters appearing in the physical model formulation as  
PT ≡ [P1, P2, ..., PN], where N is the number of parameters. 
Consider also that a vector of measurements Y is available for 
estimation of the parameters P. Bayes’ theorem can then be 
stated as (Kaipio and Somersalo, 2004; Lee, 2004; Tan et al., 
2006): 
 

( ) ( )
( ) ( )

( )posterior

π π
π = π =

π
P Y P

P P Y
Y

 (15) 

 

where πposterior(P) is the posterior probability density, π(P) is the 

prior density, π(Y|P) is the likelihood function, and π(Y) is the 
marginal probability density of the measurements, which is a 
normalizing constant. 

In our study we assumed that the measurement errors are 
Gaussian random variables, with zero means and constant vari-
ance, and that the measurement errors are additive and inde-
pendent of the unknowns. With these assumptions, the likeli-
hood function can be expressed as (Kaipio and Somersalo, 
2004; Lee, 2004; Tan et al., 2006): 
ሻ۾|܇ሺߨ  	= 	 ሺ2ߨሻିெ ଶ⁄ |઱|ିଵ ଶ⁄ 	݌ݔ݁	 ቄ− ଵଶ ሾ܇ − 	܇઱ିଵሾ	ሻሿ்۾ሺ܂  (16)																																																																																										ሻሿቅ۾ሺ܂	−
 

where M is the number of measurements, Σ is the covariance 
matrix of the measurement errors and T(P) is the solution of the 
direct problem obtained with the vector of parameters P. We 
note that parameters estimated through maximization of Equa-
tion (16) are referred to as maximum likelihood estimates (Beck 
and Arnold, 1977). 

The unknown parameters were estimated by using the Me-
tropolis-Hastings algorithm for the Markov Chain Monte Carlo 
(MCMC) method (Hastings, 1970; Kaipio and Somersalo, 
2004; Lee, 2004; Metropolis et al., 1953; Tan et al., 2006). 
Implementation of the Metropolis-Hastings algorithm starts 
with the selection of a proposal distribution p(P*,P(t–1)), which 
is used to draw a new candidate state P*, given the current state 
P(t–1) of the Markov chain. Once this moving distribution has 
been selected, the Metropolis-Hastings sampling algorithm can 
be implemented by repeating the following steps: 
1. Sample a Candidate Point P* from the proposal distribution 

p(P*,P(t-1)). 
2.  Calculate the acceptance factor: 
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( | ) ( , )
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3. Generate a random value U which is uniformly distributed 
on (0, 1).  

4.  If U ≤ α, set P
t
 = P*. Otherwise, set P

t
 = P(t-1). 

5. Return to step 1 in order to generate the sequence  
{P

1
, P

2
, …, P

n
}. 

For more details on the theoretical aspects of the Metropolis-
Hastings algorithm and MCMC methods, readers are referred to 
Kaipio and Somersalo (2004), Lee (2004) and Tan et al. (2006). 

Proposal densities (Kaipio and Somersalo, 2004; Lee, 2004; 
Tan et al., 2006) for implementation of the Metropolis-Hastings 
algorithm were taken in this work as random walks, with 
Gaussian perturbations for the parameters with Gaussian priors, 
and with uniform perturbations for the parameters having uni-
form priors. Gaussian perturbations had zero means and  

standard deviations of 0.01% of the prior means. Uniform  
perturbations involved maximum steps of 0.5% of the parame-
ter range established for the uniform prior. These proposal 
densities were selected based on numerical experiments. 

Estimation of the unknown parameters must be preceded by 
an analysis of the sensitivity coefficients (Beck and Arnold, 
1977; Özisik and Orlande, 2000). The sensitivity matrix is 
defined as: 
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where the sensitivity coefficients i
ij

j

T
J

P

∂=
∂

 give the sensitivity of 

the response of problem Ti (i.e., the dependent variable being the 
solution of the direct problem) with respect to changes in the 
parameter Pj. A small value of Jij indicates that large changes in Pj 
yield small changes in Ti. Estimation of parameter Pj is typically 
very difficult in that case since very similar values of Ti would be 
obtained for a wide range of Pj values. When the sensitivity 

coefficients are small, 0≈JJ T  and the inverse problem is ill-

conditioned. Furthermore, TJ J  is null when a column of J 

becomes a linear combination of the other columns (Beck and 
Arnold, 1977; Özisik and Orlande, 2000). It is therefore 
desirable to have linearly independent sensitivity coefficients Jij 
with large magnitudes so that the parameter estimation problem is 
not very sensitive to measurement errors, and hence accurate 
parameter estimates can be obtained. A comparison of the 
magnitude of the sensitivity coefficients, as well as an analysis of 
possible linear dependencies, is more easily performed by using 
reduced sensitivity coefficients instead of the original ones. The 
reduced sensitivity coefficients are obtained by multiplying the 
original sensitivity coefficients, Jij, by the parameters that they 
refer to. They have the same units as the measured variables, thus 
providing a basis for the comparisons. Since the sensitivity 
coefficients are functions of the model parameters in the 
present case, the parameter estimation problem is nonlinear and 
only a local analysis of the sensitivity coefficients is thus 
possible (Beck and Arnold, 1977; Özisik and Orlande, 2000). 
Sensitivity coefficients in our study were calculated using 
forward finite differences; convergence of this first order 
approximation was verified for all cases analyzed. 
 
EXPERIMENTAL PROCEDURE 
 

Laboratory soil column inflow/outflow experiments were 
carried out in order to obtain the data needed to estimate the 
unknown soil hydraulic and solute transport parameters of 
concern in our study, given by Eqs. (14). The apparatus (Figure 2) 
used for the experiment consisted mostly of equipment obtained 
from Soil Measurement Systems (Tucson, AZ), designed for 
unsaturated flow experiments. We used an acrylic column with an 
internal diameter of 5.1 cm and length of 7.3 cm, packed with an 
undisturbed Brazilian Latosol soil sample, taken from a study area 
near Caetité, BA, Brazil. The bottom of the column was con-
nected to a sealed vacuum chamber, which in turn was connected  
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Fig. 2. Schematic of the experimental apparatus. 

 
to a vacuum pump. The pressure inside the vacuum chamber was 
measured with a precision mercury U-tube manometer attached to 
the chamber.  The pressure was controlled by a vacuum regulator, 
which allowed us to maintain a constant negative pressure head at 
the outflow boundary of the soil column. 

Using a high-accuracy syringe pump, a potassium bromide 
(KBr) solution with a concentration of 2.5 g/L was injected from a 
reservoir to the top of the column, at a constant rate of  
3.25 x 10–4 cm/s. Variations in the pressure head in the center of 
the vertical column, at z = 3.5 cm, were measured with a 
tensiometer attached to a pressure transducer and connected to a 
data logger and computer. A fraction collector, placed inside the 
vacuum chamber and containing a large number of sampling 
tubes, was used to collect the outflow fluid, thus allowing us to 
obtain a series of outflow rates and associated fluid 
concentrations.  

The tensiometer halfway down the column consisted of a  
10-mm diameter, 60-mm long acrylic tube. One of its ends was 
attached to a 6-mm diameter ceramic bar in direct contact with 
soil inside the column, while the other end was connected to a 
pressure transducer. The tensiometer was carefully installed such 
that outside air could not enter the column. Since transient 
pressure heads inside the column were recorded in terms of an 
electrical signal (mV), the pressure transducer needed to be 
calibrated first. For this purpose, both the pressure transducer and 
the mercury manometer were connected to the vacuum chamber 
so that it was possible to record the voltages corresponding to a 
series of pressure head values.  

KBr solute concentrations were assumed to be linearly related 
to the electric conductivity (μS/cm) of the outflow solution. This 
assumption was verified by measuring the electric conductivity of 
KBr solutions within the expected range of concentrations. It was 
then possible to immediately convert electric conductivities 
measured for each outflow sample, as well as of the inflow 
solution, into reduced solute concentrations, c(t)/c0, with c0 being 
the concentration of the injected solution. Based on values 
obtained during calibration, the standard deviations were 2.0 
cm for the pressure head and 0.01 (1%) for the normalized 
solute concentrations. 

Relatively standard experiments (Dane and Topp, 2002) were 
carried out to obtain prior information about the soil bulk density, 
ρb, the saturated hydraulic conductivity, Ks, and the saturated 
water content, θs. Mean values obtained with these measurements 
are listed in Table 1. Standard deviations of the measured data 
were approximately 1% of the mean values. The prior 
distributions for ρb, Ks, and θs were for these reasons assumed to 
have Gaussian distributions, centered at the mean values 
presented in Table 1 and with standard deviations of 1.0% of the 
mean values. Values of the residual water content θr, and the 

water retention parameters α and n, were estimated from the 
measured soil textural distribution and the bulk density using the 
Rosetta pedotransfer functions (Schaap et al., 2001). Estimated 
values for these parameters are also shown in Table 1. 
 
Table 1. Properties of the soil used in this study. 
 

Parameter Value 

θr (cm3/cm3) 0.042 

θs (cm3/cm3) 0.408 

ρb (g/cm3) 1.637 

Ks (cm/s) 9.37 x 10–4 

α (cm–1) 0.040 

n (–) 2.632 

 
RESULTS AND DISCUSSIONS 
 

Before analysis of the infiltration/outflow parameter estima-
tion problem considered in this study, we evaluated the imple-
mented MCMC method by estimating unsaturated soil hydrau-
lic parameters obtained with the one-step column outflow  
experiment described by Kool et al. (1985) and Parker et al. 
(1985). That experiment considered an undisturbed soil core of 
5.40 cm diameter and 4.00 cm length (Parker et al., 1985). For 
times t > 0, a constant pressure head of 10 m was applied at the 
top of the column, causing water stored in the soil column to 
move out of the medium, to be collected at the bottom of the 
column, which was maintained at atmospheric pressure (Parker 
et al., 1985). For the simulations and analysis of the sensitivity 
coefficients, the spatial domain was defined as a 3.95 cm long 
soil core placed over a 0.55 cm thick ceramic plate, resulting in 
a L = 4.50 cm long column consisting of two materials having 
different physical properties (the soil and the ceramic plate). 
The inverse problem dealt with cumulative outflow flux simu-
lated measurements for the estimation of hydraulic parameters 
of the soil. In order to avoid an “inverse crime”, as explained by 
Kaipio and Somersalo (2007), the one-step outflow experiment 
was simulated with the HYDRUS-1D code (Šimůnek et al., 
2013) to generate the simulated data using a different mesh 
from the finite volume numerical solution we used for the for-
ward problem. The finite volume solution for the forward  
problem was used for analysis of the sensitivity coefficients 
based on the parameter values shown in Table 2 (Kool et al., 
1985; Parker et al., 1985), as well as for the parameter estima-
tion problem using the simulated measurements. The simulated 
measurements contained additive, uncorrelated Gaussian errors, 
with zero mean and a constant standard deviation of 2% of the 
maximum cumulative flux. 
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Table 2. Parameter values used for analysis of the sensitivity coefficients in the experiment of Parker et al. (1985). 
 

Parameter Value 

Residual water content of the soil core θr,soil = 0.161 

Saturated water content of the soil core θs,soil = 0.388 

Saturated hydraulic conductivity of the soil core Ks,soil = 1.5 x 10–3 cm/s 

van Genuchten α parameter of the soil core αsoil= 0.033 cm–1 

van Genuchten n parameter of the soil core nsoil = 1.387 

Residual water content of the ceramic plate θr,plate = 0.0 

Saturated water content of the ceramic plate θs,plate = 1.0 

Saturated hydraulic conductivity of the ceramic plate Ks,plate = 8.7 x 10–7 cm/s 

van Genuchten α parameter of the ceramic plate αplate= 1.0 x 10–20 cm–1 

van Genuchten n parameter of the ceramic plate nplate = 1.1 

 
Variations in the cumulative outflow, as well as in the 

reduced sensitivity coefficients, are presented in Figure 3.  
Figure 3a shows that the sensitivity coefficients had very 

small values compared to the variations in the cumulative 
outflow. Figure 3b provides a close-up of the reduced 
sensitivity coefficients versus time. The variations are 
approximately three orders of magnitude smaller than the 
cumulative outflow rates, meaning that variations in the 
hydraulic parameters have very little effect on the cumulative 
outflow. The results also indicate a linear dependence between 
the parameters θr and θs, as well as among the parameters Ks, α 
and n. Since the values of θs and Ks were directly measured by 
Parker et al. (1985), we defined their a priori distributions to be 
Gaussian, centered on the values obtained for each parameter. 
Nevertheless, the parameters α and n were found to be linearly 
dependent and their curves for the sensitivity coefficients were 
coincident. This linear dependency made it necessary to fix an 
informative a priori distribution for either α and n in order to 
make the estimation possible. Van Genuchten (1978) 
previously showed a graphical procedure to obtain the 
coefficient n from observed water content data, independently 
from α. Other studies (e.g., Leij et al., 1997; van Genuchten and 
Nielsen, 1985; Yates et al., 1992) showed that for a given soil 
the values of α and n generally can be obtained independently. 
For these reasons, we assumed a Gaussian a priori distribution 
for n, centered on the value obtained by Parker et al. (1985). 
Since θs, Ks, and n could be considered as known parameters, 
their prior distributions were defined with a small standard 
deviation. For the parameters θr and α, the a priori conditions 
were defined as uniform distributions defined from the initial 
values used in Parker et al. (1985). All of the prior distributions 
are listed in Table 3. The parameter values estimated with the 
MCMC method are presented in Table 4, including their 
respective confidence intervals, and compared to the values 
obtained by Parker et al. (1985). Notice that the values obtained 
by Parker et al. (1985) are inside the confidence intervals 
obtained in our study. Figure 4 shows a comparison between 
the experimental cumulative outflow curve and the outflow 
curve obtained with the estimated MCMC parameter values. 
Results indicate excellent agreement between the experimental 
and estimated curves, with small and practically uncorrelated 
residuals (difference between experimental and estimated 
values). 

We next focus on the inverse analysis using the experimental 
setup described earlier (Fig. 2). The following measurements 
were used to estimate the sensitivity coefficients: (i) transient 
variations in the pressure head halfway down the column;  
(ii) volumetric fluid fluxes at the outlet of the column; and  

(iii) solute concentrations of the outflowing fluid. For the 
analysis of the sensitivity coefficients with respect to the 
unknown hydraulic and solute transport parameters, we used 
the values presented in Table 5. These values were selected 
based on direct measurements (see Table 1) and on expected 
values of the parameters.  
 

 
(a) 

 

 
(b) 

 

Fig 3. Variations in the cumulative outflow flux and its sensitivity 
coefficients (a), and close-up of the variations in the sensitivity 
coefficients with respect to the hydraulic parameters (b) in the 
experiment of Parker et al. (1985). 
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Fig. 4. Variations in time of the simulated measurements, estimated 
cumulative flux and the residuals of the experiment by Parker et al. 
(1985). 
 
Table 3. Prior distributions considered for the MCMC evaluation 
of the experiment of Parker et al. (1985). 
 

Parameter A priori 
Distributions 

(MCMC) 

Distribution data 

θ r  Uniform Interval: (0.6̅ߠr , 1.4̅ߠr) ̅ߠr = 0.200 

θs  Gaussian Mean:θ s = 0.388 

Standard Deviation: 0.01θ s  

sK  Gaussian Mean: sK = 1.5 x 10–3 cm/s 

Standard Deviation: 0.01 sK  

α  Uniform Interval: (0.6αത , 1.4ߙത) cm–1 
α  = 2.5 x 10–2cm–1 

n  Gaussian Mean: nത	=1.387 
Standard Deviation: 0.01 n  

 
Figure 5a shows transient variations in the pressure head in 

the middle of the soil column and the reduced sensitivity 
coefficients with respect to all the hydraulic and solute 
transport parameters, using the values presented in Table 5.  

Note that the reduced sensitivity coefficients are all 
practically zero relative to the pressure head values. The 
reduced sensitivity coefficients with respect to the hydraulic 
parameters are about four orders of magnitude smaller than the 
pressure head, as illustrated in Figure 5b, which is a 
magnification of Figure 5a within the region of interest for 
analysis of the sensitivity coefficients. An analysis of Figure 5b 
reveals a linear dependence among the sensitivity coefficients 
with respect to Ks, α and n, as well as between θr and θs. The 
sensitivity coefficients with respect to h0 and h were 
practically zero. Figure 5b also shows that the sensitivity 
coefficients become constant when steady state conditions are 
approached. For the transport parameters, the sensitivity 
coefficients were zero, as shown in Figure 5c. This was expected 
since the transport parameters do not appear in the formulation 
of the flow problem given by Equations (1)–(4). The reverse 
situation, however, is the case in that solute transport 
information can improve the estimation of soil hydraulic 
parameters. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 5. Variations in the pressure head in the middle of the column 
and in its sensitivity coefficients (a), and close-ups of variations in the 
sensitivity coefficients with respect to the hydraulic (b) and transport 
(c) parameters. 
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Table 4. Evaluation of the MCMC analysis of the experiment of Parker et al. (1985). 
 

Parameter Values estimated by Parker et al. (1985) Estimated values using MCMC 
99% confidence intervals 

(MCMC) 
θr 0.161 0.163 (0.162 , 0.164) 
θs 0.388 0.388 (0.385 , 0.391) 
Ks(cm/s) 1.500 x 10–3 1.503 x 10–3 (1.500 x 10–3 , 1.506 x 10–3) 
α (cm–1) 3.350 x 10–2 2.990 x 10–2 (2.90 x 10–2 , 3.10 x 10–2) 
n 1.387 1.388 (1.386 , 1.390) 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. Variations in the fluid flux exiting the column and its 
sensitivity coefficients (a), and close-ups of variations in the 
sensitivity coefficients with respect to the hydraulic (b) and transport 
(c) parameters. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 7. Variations in the solute concentration of the fluid exiting the 
soil columns and its sensitivity coefficients (a), and magnifications 
of variations in the sensitivity coefficients with respect to the 
hydraulic (b) and transport (c) parameters. 
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Variations in the volumetric fluid flux exiting the column, as 
well as its sensitivity coefficients, are presented in Figure 6a. 
The parameter values listed in Table 5 were also used in this 
analysis. Similarly to the pressure head measurements 
examined in Figures 5, the sensitivity coefficients of the fluid 
flux are practically zero. Figure 6b shows that the sensitivity 
coefficients of the hydraulic parameters are again four orders of 
magnitude smaller than the measured values for our test case. 

 
Table 5. Parameter values used for the analysis of the sensitivity 
coefficients. 
 

Parameter Value 

Column height L = 7.3 cm 

Infiltration flux q0 = 3.050 x 10–4 cm/s 

Head at the bottom of the column hb = –60 cm 

Constant initial head in the column hi = –60 cm 

Residual water content θr = 0.042 

Saturated water content θs = 0.408 

Saturated hydraulic conductivity Ks = 9.730 x 10–4 cm/s 

van Genuchten α parameter α = 0.040 cm–1 

van Genuchten n parameter n = 2.632 

Fraction of sorption sites in contact 
with mobile water 

f = 0.500 

Soil bulk density ρb = 1.637 g/cm3 

Distribution coefficient Kd = 1.0 cm3/g 

Dispersivity λ = 1.0 cm 

Distribution coefficient Dd = 1.0 x 10–5 cm2/s 

Mass transfer coefficient αm = 1.0 x 10–5 s–1 

Normalized initial concentration ci = 0.0 

Normalized concentration of the 
injected tracer 

c0 = 1.0 

 
Additionally, the sensitivity coefficients with respect to the 
hydraulic parameters are all linearly dependent, while those 
with respect to the transport parameters are all zero, as can be 
observed in Figure 6c. This indicates that measurements of the 
fluid flux did not contribute much useful information for esti-
mation of the unknown hydraulic and transport parameters. 

Variations in the solute concentrations of the outflow, as 
well as its sensitivity coefficients, are presented in Figure 7a for 
the parameter values specified in Table 5. Once again, the 
reduced sensitivity coefficients are four orders of magnitude 
smaller than the solute concentrations. The sensitivity 
coefficients with respect to the hydraulic parameters in 
Figure 7b show that α and n are linearly dependent, as well as 
θs and Ks. The sensitivity coefficients are zero for h0 and Δh.  
Figure 7c further shows that the transport parameters f, (ρbKd), λ  
 

 

and n are linearly independent, while the sensitivity coefficient 
is zero for the dispersion coefficient, Dd. The latter is due to the 
dominant effects of hydrodynamic dispersion in the dispersion 
coefficient as compared to molecular diffusion (Equation 10). 

The above analysis revealed that the parameter estimation 
problem considered in this study is difficult due to small values 
and linear dependencies of the sensitivity coefficients. Only 
measurements of the pressure head in the middle of the column 
and of the outflow solute concentration provided meaningful 
information for estimation of several parameters.  

The Bayesian estimation approach is capable of dealing with 
these difficulties by using informative prior distributions for the 
parameters that could be independently measured or estimated. 
The values of θs and Ks were experimentally measured, as dis-
cussed above. The initial pressure head at the observation posi-
tion point, h0, was read by the tensiometer situated in the soil 
column, while the pressure head difference, Δh, was obtained 
from the initial pressures at the surfaces of the column. It 
was thus possible to estimate the vector of hydraulic parame-
ters assuming uniform or Gaussian prior distributions, accord-
ing to the quality of the a priori information available for each 
parameter. Since θs, Ks, h0 and Δh were directly measured, 
Gaussian prior distributions were adopted for these parameters. 
For θr, α and n, prior uniform distributions were used. For Dd, 
with practically null sensitivity coefficient, a Gaussian prior 
distribution was defined based on the known range of effective 
diffusion coefficients for unsaturated soils (e.g., Shackelford, 
1991).  

The estimation process was carried out in two steps. In the 
first step, the hydraulic parameters 
PHydraulic

T  = ሾ θr, θs, Ks, α, n, h0, h ሿ were estimated by using 
the measured data of the pressure head in the middle of the 
column. In the second step we used estimates for the flow pa-
rameters as prior information for the coupled flow-transport 
problem in which the transport parameters 

[ , ( ), , , ]T
Transport b d d mf K Dρ λ α=P

 
were estimated from the 

measured concentration data of the outflow and the pressure 
heads in the middle of the column. Since the hydraulic parame-
ters were treated as random in the second step, they were also 
allowed to vary in the Markov chain, in accordance with their 
prior distributions.  

The prior distributions used for the hydraulic parameters in 
the first step are presented in Table 6. In order to estimate the 
hydraulic parameters, pressure head measurements in the middle 
of the column were considered until a time equal to 3300 s for the 
solution of the inverse problem, with experimental errors assumed 
to have additive, uncorrelated Gaussian distributions with zero 
mean and standard deviation corresponding to 5% of the differ-
ence between the minimum and maximum measured values 
(2.0 cm, for our example). Table 7 lists the values estimated for 
each hydraulic parameter, while Equation (19) presents the ob-
tained correlation matrix, where strong correlations among some 
parameters can be observed, as expected. 

 

cor൫θr,θs,ks,α,n,h0,h൯=
ێێۏ
ێێێ
ۍێێ 1 –0.1622 –0.1241 –0.0395 0.2029 –0.1136 –0.0018

–0.1622 1 0.5484 0.6076 –0.3273 0.3412 –0.1045

–0.1241 0.5484 1 0.9169 –0.8413 0.1271 –0.3321

–0.0395 0.6076 0.9169 1 –0.5649 0.4137 –0.22720.2029 –0.3273 –0.8413 –0.5649 1 0.3331 0.3979

–0.1136 0.3412 0.1271 0.4137 0.3331 1 0.1959

–0.0018 –0.1045 –0.3321 –0.2272 0.3979 0.1959 1 ۑۑے
ۑۑۑ
ېۑۑ
 (19) 
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Table 6. Prior distributions of the hydraulic parameters used in the 
first step. 
 

Parameter Distribution Distribution information 

θ r  Uniform Interval: (0 ,θs ) 

θ s  Gaussian Mean:θs = 0.408 (cm3/cm3) 

Standard deviation: 0.01θs (cm3/cm3) 

sK  Gaussian Mean: sK = 7.0 x 10-4 cm/s 

Standard deviation: 0.2 sK  

α  Uniform Interval: (0.8αത		,	1.2αത) cm–1 
α = 0.018 cm–1 

n  Uniform Interval: (0.8 ത݊ , 1.2 ത݊) 
n = 1.29 

h0 Gaussian Mean: = –66.0cm 
Standard deviation: 0.05cm 

Δh Gaussian Mean: = 3.5cm 
Standard deviation: 0.05cm 

 
Table 7. Estimated values of the unsaturated soil hydraulic 
parameters. 
 

Parameter Mean 99% confidence interval 

θ r (cm3/cm3) 0.118 x 10–2 (0 , 0.366 x10–2) 

θ s (cm3/cm3) 0.409 (0.408 , 0.410) 

sK (cm/s) 1.07 x 10–3 (0.956 x 10–3 , 1.196 x10–3) 

α (cm–1) 2.107 x 10–2 (2.009 x 10–2 , 2.204 x10–2) 

n (–) 1.236 (1.228 , 1.243) 

h0 (cm) –59.308 (–59.536 , –59.081) 

Δh(cm) 3.523 (3.516 , 3.530) 

 
With the mean values of the parameters as presented in 

Table 7, it was possible to simulate the variations in the pressure 
head halfway down the column using Equations (1)–(4). Figure 8a 
shows a comparison of the experimental and simulated curves for 
the pressure head inside the soil column. The simulated curve 
generally falls within the range of the experimental errors, except 
at the very beginning of the experiment when the effects of the 
estimation of the initial pressure head and its gradient are more 
significant. Figure 8b further shows that the pressure head 
residuals (i.e. the difference between experimental and 
estimated values), although small, are correlated, which indicates 
that the mathematical model used to describe the fluid flow 
problem did not fully represent the physics of the problem. 

Figure 9 presents the number of accepted states and values of 
the hydraulic parameters at each state of the Markov chain. The 
Markov chain was generated with 50,000 states, considering the 
last 30,000 states for computation of the statistics. The 
convergence of the chain was tested by calculating the mean 
values of the parameters in different ranges inside the interval 
considered for the calculations (Geweke, 1992). The chain 
converged for all parameters, despite the linear dependence of 
θs and Ks, with respect to θr and n, respectively. The acceptance 
ratio of the Markov chain was approximately 14%. 

In the second step, the measured pressure head and solute 
concentration data were used to estimate the hydraulic and 
transport parameters of the combined vector of parameters 

[ , ]T T T
Hydraulic Transport=P P P . The estimated values of the  

 

 
(a) 

 

 
(b) 

 
Fig. 8. Comparison of experimental and simulated curves for the 
pressure head halfway down the column (a) and the residuals (b). 

 
hydraulic parameters of step 1 were then used as prior informa-
tion with Gaussian distributions centered at the mean values 
presented in Table 7 and with the covariance resulting from the 
estimation in step 1. The prior distributions used for the 
transport parameters are defined in Table 8. The value of the 
product ρbKd of the distribution coefficient was assumed to be 
very small, that is, KBr was taken approximately as a 
conservative tracer (Equation 13d), which is characteristic of 
soils such as the one used in this work at neutral pH (Goldberg 
and Kabengi, 2010). 

The estimated means of the marginal posterior distributions 
for the transport parameters are presented in Table 9, together 
with their 99% confidence intervals. With the mean values for 
the parameters it was possible to compare the experimental and 
theoretical solute concentration curves of the column outflow, 
as seen in Figure 10a. Excellent agreement was obtained for the 
two curves. Although correlated, the concentration residuals are 
of the same order as the measurement uncertainties, as shown 
by Figure 10b. 
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(a) 

 

 
(b) 

 

 
 (c) 

 

 
 (d) 

 
 (e) 

 

 
 (f) 

 

 
 (g) 

 

 
 (h) 

 

Fig. 9. States of the Markov chain for the unsaturated soil hydraulic parameters: (a) accepted states, (b) θr, (c) θs, (d) Ks, (e) α , (f) n, (g) h0, 
and (h) Δh. 
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 (a) 

 

 
 (b) 
 

Fig. 10. Comparison of experimental and simulated concentrations of the outflow flux (a) and the residuals (b). 
 

 
 (a) 

 

 
 (b) 

 

 
 (c) 

 

 
 (d) 

 

 
 (e) 

 

 
 (f) 

 

Fig. 11. States of the Markov chain for the solute transport parameters: (a) accepted states, (b) f, (c) ρbKd, (d) λ, (e) Dd , and (f) αm. 
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The evolution of accepted states and the Markov chains for 
the transport parameters are presented in Figure 11. A total of 
25,000 states were considered for the Markov chains, with the 
last 10,000 states used to obtain the mean values and standard 
deviations of the marginal posterior distributions. The 
convergence of the chains was verified by using the method 
proposed by Geweke (1992), with the acceptance ratio 
corresponding to about 15% of the states of the Markov chain. 
Computational times for estimation of the hydraulic and 
transport parameters were of the order of 5 hours each, on a 
computer with an I5 2.27 GHz processor and 4.0 GByte of 
RAM memory. 

 
Table 8. Prior distributions of the transport parameters used in 
the second step. 
 

Parameter Distribution Distribution information 

f Uniform Interval: (0 , 1) 

ρbKd Uniform Interval: (0.8 ρbKd, 1.2 ρbKd ) 

ρbKd	= 1.637 x 10–11 

λ (cm) Uniform Interval: (0.2 λത , 1.8 λത) 
λത = 7.0 x 10–1 

Dd (cm²/s) Gaussian Mean: dD = 1.00 x 10–5 

Standard Deviation: 0.01 dD  

αm (s–1) Uniform Interval: (0.01 mα , 1) 

mα = 1.00 x 10–2 

 
Table 9. Estimated values of the transport parameters. 
 

Parameter Mean 99% Confidence Interval 

f  0.535 (0.514 , 0.557) 

ρbKd 1.655 x 10–11 (1.639 , 1.671) x 10–11 

λ  (cm) 0.224 (0.222 , 0.226) 

dD (cm2/s) 1.001 x 10–5 (9.998 x 10–6 , 1.003 x 10–5) 

αm (s–1) 0.276 (0.273 , 0.279) 

 
Due to correlation of the residuals observed in Figures 8 and 

10, a final analysis was performed in order to investigate the 
possibility of the measurements themselves being correlated. 
The parameters were again estimated by successively using 
only half of the measurements, that is, by halving the frequency 
of the original measurements. However, the estimated 
parameters and the residuals obtained with 50% and 25% of the 
original measurements were practically the same as those 
observed when 100% of the measurements were used. 
Therefore, the correlated residuals can be attributed to the 
strong linear dependency of the physical parameters shown in 
Figures 5–7, as well as to some mismatch between the adopted 
mathematical model and the physical processes of the problem. 
On the other hand, the small residuals observed for the 
measured concentration validate the use of the dual-porosity 
physical non-equilibrium model, in particular the hypotheses of 
having a constant f (see Equations 12a,b) and a non-reactive 
tracer (KBr) (see Equation 13d) for our experiment. 

 
CONCLUSIONS 

 
In this study we used a Bayesian approach for solving a 

parameter estimation problem involving the simultaneous 

characterization of soil hydraulic and solute transport parameters 
by means of a small-scale laboratory soil column experiment. The 
Metropolis-Hastings algorithm of the Markov Chain Monte Carlo 
method was implemented for estimation of the unknown 
parameters. The sensitivity coefficients with respect to the model 
parameters were analyzed, revealing that pressure head (at the 
middle of the column) and outflow solute concentration 
measurements provided meaningful information for estimation of 
some of the unknowns. Even for such measurements, the 
sensitivity coefficients were generally very small, thus making the 
estimation procedure difficult and sensitive to measurement 
errors. For those parameters with small or linearly dependent 
sensitivity coefficients, Gaussian priors were utilized, based on 
direct measurements with other techniques. For the other 
parameters, non-informative uniform distributions were used as 
priors. 

The estimation approach proposed in this work consisted of 
two steps. In the first step, the hydraulic parameters were 
estimated by using the measured data of the pressure head in the 
middle of the column. In the second step, these estimates of the 
flow parameters served as prior information for the coupled flow-
transport problem, in which the transport parameters were 
estimated from the measured concentration data of the column 
discharge and of the pressure head in the middle of the column. 
Since the flow parameters were treated as random variables in the 
second step, they were also allowed to vary in the Markov chain 
in accordance with their prior distributions. The convergence of 
the Markov chain was verified by calculating the difference 
between the means in different ranges of the chain. Results 
revealed the accuracy and robustness of the estimation approach 
by producing small, although correlated, residuals. 
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