Identification of prevailing storm runoff generation mechanisms in an intensively cultivated catchment

Open access

Abstract

The fact that flash floods initiated in arable catchments are often accompanied by massive sediment and nutrient loads often leads to the assumption that surface runoff is the principle pathway by which runoff reaches watercourses. On the basis of an evaluation of several rainfall-runoff events in a representative agricultural catchment, we show that runoff from cultivated land may be generated in a way similar to that seen on forested slopes, where shallow subsurface runoff is the predominant pathway by which runoff makes its way to watercourses in most runoff events. To identify the predominant runoff pathway, we employed a combination of turbidity measurements and stream discharge data. Suspended sediment flux, a newly introduced index representing the ratio between precipitation duration and total sediment yield, and direction of the discharge-turbidity hysteresis loops were proposed as reflective indicators of the frequency of runoff via different pathways.

In our study, most of the events initiated by rainstorms of various intensities and durations resulted in rapid increases in stream discharge. Although we observed temporal variability of topsoil properties attributable to seasonal weather changes and agricultural activities, e.g. bulk density and porosity, runoff generation was mainly driven by precipitation characteristics and the initial catchment saturation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alaoui A. Lipiec J. Gerke H.H. 2011. A review of the changes in the soil pore system due to soil deformation: a hydrodynamic perspective. Soil Till. Res. 115 1-15.

  • Bachmair S. Weiler M. Troch P.A. 2012. Intercomparing hillslope hydrological dynamics: spatio-temporal variability and vegetation cover effects. Water Resour. Res. 48 W05537. doi: 10.1029/2011wr011196.

  • Bertolino A.V.F.A. Fernandes N.F. Miranda J.P.L. Souza A.P. Lopes M.R.S. Palmieri F. 2010. Effects of plough pan development on surface hydrology and on soil physical properties in Southeastern Brazilian Plateau. J. Hydrol. 393 1-2 94-104.

  • Beven K. 2001. How far can we go in distributed hydrological modelling? Hydrol. Earth Syst. Sci 5 1-12.

  • Birkel C. Soulsby C. Tetzlaff D. 2011. Modelling catchment-scale water storage dynamics: reconciling dynamic storage with tracer-inferred passive storage. Hydrol. Process. 25 25 3924-3936.

  • Coquet Y. Simunek J. Coutadeur C. van Genuchten M.Th. Pot V. Roger-Estrade J. 2005. Water and solute transport in a cultivated silt loam soil: 1. Field observations. Vadose Zone J. 4 3573-3586.

  • Cox C.A. Sarangi A. Madramootoo C.A. 2006. Effect of land management on runoff and soil losses from two small watersheds in St Lucia. Land Degrad. Dev. 17 1 55-72.

  • Dahlke H.E. Easton Z.M. Lyon W.L. Walter M.T. Destouni G. Steenhuis T.S. 2011. Dissecting the variable source area concept - subsurface flow pathways and water mixing processes in a hillslope. J. Hydrol. 420-421 125-141.

  • Dorioz J.M. Ferhi A. 1994. Nonpoint pollution and management of agricultural areas - phosphorus and nitrogen transfer in an agricultural watershed. Water Res. 28 2 395-410.

  • Dostál T. Zumr D. Rosendorf P. Strauss P. Říha V. 2013. Experimental assessment of transformation rate of flood wave in trained stream channel of small water course. Vodní hospodářství 11 373-378. (In Czech.)

  • Dušek J. Vogel T. Šanda M. 2012. Hillslope hydrograph analysis using synthetic and natural oxygen-18 signatures. J. Hydrol. 475 415-427.

  • Eder A. Strauss P. Krueger T. Quinton J.N. 2010. Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment Austria). J. Hydrol. 389 1-2 168-176.

  • Eder A. Exner-Kittridge M. Strauss P. Bloeschl G. 2014. Re-suspension of bed sediment in a small stream - results from two flushing experiments. Hydrol. Earth Syst. Sci. 18 3 1043-1052.

  • Grayson R.B. Moore I.D. McMahon T.A. 1992. Physically based hydrologic modeling. 1. A terrain-based model for investigative purposes. Water Resour. Res. 28 10 2639-2658.

  • Holko L. Kostka Z. Šanda M. 2011. Assessment of frequency and areal extent of overland flow generation in a forested mountain catchment. Soil Water Res. 6 1 43-53.

  • Hrnčíř M. Šanda M. Kulasová A. Císlerová M. 2010. Runoff formation in a small catchment at hillslope and catchment scales. Hydrol. Process. 24 16 2248-2256.

  • Janeček M. Květoň V. Kubátová E. Kobzová D. 2012. Differentiation and regionalization of rainfall erosivity factor values in the Czech Republic. Soil Water Res. 7 1-9.

  • Jones J. 1997. Pipeflow contributing areas and runoff response. Hydrol. Process. 11 1 35-41.

  • Klaus J. Zehe E. Elsner M. Kulls C. McDonnell J.J. 2013. Macropore flow of old water revisited: experimental insights from a tile-drained hillslope. Hydrol. Earth Syst. Sci. 17 103-117.

  • Kovats R.S. Valentini R. Bouwer L.M. Georgopoulou E. Jacob D. Martin E. Rounsevell M. Soussana J.F. 2014. Europe. In: Barros V.R. Field C.B. Dokken D.J. Mastrandrea M.D. Mach K.J. Bilir T.E. Chatterjee M. Ebi K.L. Estrada Y.O. Genova R.C. Girma B. Kissel E.S. Levy A.N. MacCracken S. Mastrandrea P.R. White L.L. (Eds.): Climate Change 2014: Impacts Adaptation and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press Cambridge United Kingdom and New York NY USA pp. 1267-1326.

  • Lefrançois J. Grimaldi C. Gascuel-ODoux C. Gilliet N. 2007. Suspended sediment and discharge relationships to identify bank degradation as a main source on small agricultural catchments. Hydrol. Process. 21 2923-2933.

  • McDonnell J.J. Stewart M.K. Owens I.F. 1991. Effect of catchment-scale subsurface mixing on stream isotopic response. Water Resour. Res. 27 12 3065-3073.

  • McGuire K.J. McDonnell J.J. 2010. Hydrological connectivity of hillslopes and streams: characteristic time scales and nonlinearities. Water Resour. Res. 46 W10543. doi: 10.1029/2010wr009341.

  • Montenegro A.A.A. Abrantes J.R.C.B. de Lima J.L.M.P Singh V.P. Santos T.E.M. 2013. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. CATENA 109 139-149.

  • Noguchi S. Tsuboyama Y. Sidle R.C. Hosoda I. 1999. Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment. Soil Sci. Soc. Am. J. 63 5 1413-1423.

  • Pare N. Andrieuxa P. Loucharta X. Biarnesb A. Voltza M. 2011. Predicting the spatio-temporal dynamic of soil surface characteristics after tillage. Soil Till. Res. 114 2 135-145.

  • Ries J.B. Iserloh T. Seeger M. Gabriels D. 2013. Rainfall simulations - constraints needs and challenges for a future use in soil erosion research. Zeitschrift für Geomorphologie 57 1 1-10.

  • Roulier S. Angulo-Jaramillo R. Bresson L.M. Auzet A.V. Gaudet J.P. Bariac T. 2002. Water transfer and mobile water content measurement in a cultivated crusted soil. Soil Sci. 167 3 201-210.

  • Šanda M. Vitvar T. Kulasová A. Jankovec J. Císlerová M. 2014. Run-off formation in a humid temperate headwater catchment using a combined hydrological hydrochemical and isotopic approach (Jizera Mountains Czech Republic). Hydrol. Process. 28 8 3217-3229.

  • Schmocker-Fackel P. Naef F. Scherrer S. 2007. Identifying runoff processes on the plot and catchment scale. Hydrol. Earth Syst. Sci. 11 2 891-906.

  • Schneider P. Pool S. Strouhal L. Seibert J. 2014. True colors - experimental identification of hydrological processes at a hillslope prone to slide. Hydrol. Earth Syst. Sci. 18 875-892.

  • Seeger M. Errea M.P. Beguería S. Arnáez J. Martí C. García-Ruíz J.M. 2004. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. J. Hydrol. 288 299-311.

  • Steenhuis T.S. Richard T.J. Parlange M.B. Aburime S.O. Geohring L.D. Parlange J.Y. 1988. Preferential flow influences on drainage of shallow sloping soils. Agr. Water Manage. 14 1-4 137-151.

  • Strouhal L. Zumr D. David V. Kavka P. 2014. Experimental identification and numerical modelling of subsurface runoff on the compacted subsoil. In: Brych K. Tesař M. (Eds.): Hydrology of a Small Catchment 2014. Institute of Hydrodynamics AS CR Prague pp. 441-448. (In Czech.)

  • USDA Soil Conservation Service 1983. Computer Programs for Project Formulation - Hydrology Technical Release 20 Washington DC.

  • Van Asch T. Van Dijck S. Hendriks M.R. 2001. The role of overland flow and subsurface flow on the spatial distribution of soil moisture in the topsoil. Hydrol. Process. 15 12 2325-2340.

  • Verbist K. Cornelis W.M. Schiettecatte W. Oltenfreiter G. Van Meirvenne M. Gabriels D. 2007. The influence of a compacted plow sole on saturation excess runoff. Soil Till. Res. 96 1-2 292-302.

  • Verstraeten G. Poesen J. 2001. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40 1-2 123-144.

  • Whipkey R.Z. 1965. Subsurface stormflow from forested slopes. Bull. Int. Assoc. Sci. Hydrol. 10 2 74-85.

  • Wischmeier W.H. 1976. Use and misuse of universal soil loss equation. J. Soil Water Conserv. 31 1 5-9.

  • Zumr D. Devátý J. Klípa V. Kavka P. Dušek J. Dostál T. 2014. Runoff and soil erosion formation on small arable catchment. In: de Lima M.I.P. de Lima J.L.M.P. (Eds.): Book of Abstracts of the 15th Biennial Conference of Euromediterranean Network of Experimental and Representative Basins. Department of Civil Engineering of the University of Coimbra Coimbra Portugal p. 41.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 2,023
5-year IMPACT FACTOR: 2,048



CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 204 8
PDF Downloads 137 112 9