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Abstract: Direct interpolation of daily runoff observations to ungauged sites is an alternative to hydrological model re-
gionalisation. Such estimation is particularly important in small headwater basins characterized by sparse hydrological 
and climate observations, but often large spatial variability. The main objective of this study is to evaluate predictive ac-
curacy of top-kriging interpolation driven by different number of stations (i.e. station densities) in an input dataset. The 
idea is to interpolate daily runoff for different station densities in Austria and to evaluate the minimum number of sta-
tions needed for accurate runoff predictions. Top-kriging efficiency is tested for ten different random samples in ten dif-
ferent stations densities. The predictive accuracy is evaluated by ordinary cross-validation and full-sample cross-
validations. The methodology is tested by using 555 gauges with daily observations in the period 1987–1997. The results 
of the cross-validation indicate that, in Austria, top-kriging interpolation is superior to hydrological model regionalisa-
tion if station density exceeds approximately 2 stations per 1000 km2 (175 stations in Austria). The average median of 
Nash-Sutcliffe cross-validation efficiency is larger than 0.7 for densities above 2.4 stations/1000 km2. For such densities, 
the variability of runoff efficiency is very small over ten random samples. Lower runoff efficiency is found for low sta-
tion densities (less than 1 station/1000 km2) and in some smaller headwater basins.  
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INTRODUCTION 
 
Most of the streams worldwide are ungauged and if daily 

runoff is needed at sites without observations, it has to be esti-
mated from information in similar and/or neighbor basins. Such 
estimation is termed prediction in ungauged basin (PUB) and it 
has been centre of interest particularly during the last decade of 
International Association of Hydrological Sciences (2003–
2013) (Sivapalan et al., 2003). The synthesis of results from this 
initiative (Blöschl et al., 2013) shows that most of the methods 
used for PUB in the past simulate daily runoff by conceptual 
hydrologic models. These models need estimates of climate 
inputs and calibration against observed runoff which is not 
directly possible in ungauged basins. Hence for PUB, different 
methods for spatial interpolation of climate characteristics (e.g. 
Gaál et al., 2008; Szolgay et al., 2009) and transferring model 
parameters from gauged to ungauged basin has been evaluated 
(see e.g. Hrachowitz et al., 2013; Merz and Blöschl, 2004; Pa-
rajka et al., 2005; Zvolenský et al., 2007). The comparison of 
results of different transfer methods in Parajka et al. (2013) 
indicates that all of them show a similar predictive performance 
with considerable scatter within each method. Evaluation of 
studies applying large number of basins and dense stream gauge 
network shows that spatial proximity and geostatistical interpo-
lation of model parameters perform better than other methods 
(see also Merz and Blöschl, 2004 and Parajka et al., 2005). 

An alternative to hydrological modeling is direct 
interpolation of runoff values. The main advantage of direct 
interpolation is that it avoids the use of uncertain input variables 
such as precipitation and potential evaporation. The limitation is 
that this method is data intensive, i.e., it can only be applied in 
medium to densely gauged regions, and it is not applicable 
when one is interested in the causal relationship between 

precipitation and runoff (Blöschl et al., 2013). There are several 
studies testing interpolation of runoff characteristics for PUB. 
Most of them, however, estimate only mean annual and monthly 
runoff values (see e.g. Bishop and Church, 1995; Gottschalk, 
1993; Sauquet et al., 2000, 2008), flow duration curves (e.g., 
Pugliese et al. 2014) or flood statistics (e.g., Archfield et al., 
2013; Salinas et al., 2013). Geostatistical interpolation of daily 
and hourly runoff values is evaluated in Skøien and Blöschl 
(2007) and in Skøien et al. (2008) for flood hydrographs. They 
assess the accuracy of top-kriging interpolation for Innviertel 
region in Austria and report an improved runoff prediction 
compared to estimates of regionalized hydrologic model 
simulations. Such findings are confirmed in a recent study of 
Viglione et al. (2013). This study shows that, in Austria, a direct 
interpolation of daily runoff by top-kriging is superior to 
simulations obtained by hydrologic model driven by transferred 
model parameters. The question is to what extent this finding is 
related to the density of gauging stations. The main objective of 
this study is thus to evaluate predictive accuracy of top-kriging 
interpolation driven by different number of stations (i.e. station 
densities) in an input dataset. The idea is to interpolate daily 
runoff for different station densities and evaluate minimum 
number of stations needed for accurate runoff prediction in 
Austria. 

 
DATA 

 
The study region for the analysis is Austria. This region has 

an area of about 84000 km2 and is characterized by diverse 
physiographic and landscape characteristics. Topography varies 
from 115 m a.s.l. in the eastern lowlands to more than 3000 m 
a.s.l. in the Alps (Figure 1). Top-kriging interpolation is tested 
for daily runoff data in the period 1987–1997. The complete 
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dataset includes measurements of daily runoff at 555 gauging 
stations. The topography and spatial location of stations with 
runoff observations are shown in Figure 1. The size of the ba-
sins varies from 5 km² to more than 130000 km² and the median 
basin size is 141 km². The majority of the basins (222 stations) 
range in area between 5 and 100 km², 167 basins between 100 
and 300 km², 93 basins between 300 and 1000 km² and 73 ba-
sins have areas of more than 1000 km². The runoff observations 
and selected meta-data about the basins are accessible through 
the webportal of the Austrian Federal Ministry of Agriculture, 
Forestry, Environment and Water Management 
(http://ehyd.gv.at/). 
 
METHODS 
Top-kriging interpolation method 
 

Top-kriging is a geostatistical interpolation method that al-
lows interpolation of runoff characteristics along the stream 
network. It was developed by Skøien et al. (2006) and in com-
parison to traditional deterministic or geostatistical interpolation 
approaches, it accounts for the river network hierarchy (see also 
Gottschalk, 1993; Sauquet et al., 2000). Top-kriging combines 
two processes: local runoff generation, which is continuous in 
space, and runoff aggregation and routing along the stream 
network (Viglione et al., 2013). For interpolation, a point vario-
gram, i.e. what can be seen as the expected variance of local 
runoff generation as a function of separation distance, is needed. 
The point variogram is integrated over the upstream contrib-
uting area for pairs of basin sizes associated with each river 
cross section. This integrated variogram then depends both on  
 

the sizes and the relative positions of basins along the stream 
river network. Previous studies (Lark, 2000; Skøien et al., 2014) 
show that the quality of the predictions is relatively insensitive 
to the choice of the variogram, at least as long as there are sev-
eral observations within its range. In order to eliminate the 
uncertainties from variogram fitting in different time periods 
and from using different number of stations, we apply only one 
integrated variogram in each computation. The variogram ap-
plied here has been fitted, tested and applied for Austrian river 
network in previous studies of Skøien et al. (2006) and Merz et 
al. (2008). More details about the theoretical background, math-
ematical assumptions, description of an implementation of top-
kriging in the rtop package (Skøien, 2014) in the statistical 
environment R (R Development Team, 2014) and an example 
of daily runoff interpolation in the upper Austria are presented 
in Skøien et al. (2006 and 2014).  
 
Evaluation of daily runoff accuracy of top-kriging 
interpolation 
 

Top-kriging interpolation is tested for different number of 
stations (i.e. station densities) in the input dataset. The input 
dataset is randomly selected from the complete dataset by using 
predefined number of stations with runoff observations. We 
tested ten variants of station densities (Table 1) and in each 
variant ten different random samples. Ten variants of station 
density and random samples are selected to cover typical range 
of station densities in different regions of Europe and to allow 
an evaluation of uncertainty of the runoff predictions. Figure 2 
shows an example of one sample of three different station densities. 
 

 
 
Fig. 1. Topography of Austria and location of 555 stations with daily runoff observations in the period 1987–1997. 
 
 
 

 
 
Fig. 2. Example of 3 different station densities (25, 175 and 250 stations). 
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Table 1. Ten different variants of station densities. Station density 
is estimated by dividing number of stations by the area of Austria 
(84000 km2). 
 

Number of 
stations 

Station density 
 (stations/1000 km2) 

25 0.3 
50 0.6 
75 0.9 
100 1.2 
125 1.5 
150 1.8 
175 2.1 
200 2.4 
225 2.7 
250 3.0 

 
The predictive accuracy of interpolation is then evaluated by 

two methods. The first is ordinary cross-validation, treating 
each gauged station in turn as ungauged and interpolating daily 
runoff from the other gauged stations in the input dataset. The 
interpolated runoff is then compared with the observed daily 
runoff for each station of the input dataset. The second method 
is termed full sample cross-validation here and we use the input 
data set to interpolate the runoff for all stations of the complete 
dataset and then compare these results with the observations. 
For example, if the input dataset consists of 25 randomly select-
ed stations from the complete dataset (i.e. 555 stations) then the 
first method compares the interpolated runoff only at those 25 
stations (in turn considered as ungauged), while the second 
method compares runoff interpolation at each station of the 
complete dataset, including stations with observations. We 
decided not to remove stations with observations in the full-
sample cross-validation to assure identical datasets in different 
variants as well as to show the total performance of the interpo-
lation (important e.g. in regional water quality modeling). 

The predictive accuracy is quantified by the volume error 
(VE) and Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 
1970) between interpolated and observed daily runoff time 
series in each basin. These criteria represent typical accuracy 
measures used in hydrologic modeling (including water quality 
simulations) and PUB assessment studies (Parajka et al., 2013). 
The volume error and Nash-Sutcliffe efficiency are defined as: 
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where ,sim iQ  is the interpolated runoff on day i, ,obs iQ  is the 
observed runoff and obsQ  is the average of the observed runoff 
over the complete period of 4018 days (1987–1997). 

The NSE and VE efficiencies are calculated separately for 
both cross-validation strategies.  
 
RESULTS 
 

The results of jack-knife cross-validation are presented in 
Figure 3. For each random sample a median of NSE and VE is 
estimated and its variability over ten random samples is summa-
rized in the box-whiskers plots. Left panel (Fig. 3) shows that 
the variability of NSE medians decreases with increasing station 
density. The average median NSE efficiency over ten random 
samples is smaller than 0.5 and larger than 0.69 for station 
densities less than 1 and more than 2.1 stations/1000 km2, re-
spectively. The evaluation of VE (right panel, Fig.3) indicates 
that top-kriging tends to overestimate the long-term annual 
sums of daily runoff (bias). The overestimation and also its 
variability is larger for lower station densities (less than 0.6 
station/ 1000km2). While the average bias is larger than 7.5% 
for lower densities, it is less than 2.8% for densities above 1.8 
station/1000 km2. 

The full sample cross-validation is presented in Figure 4. 
Similarly as in Figure 3, the left and right panels show the 
variability of NSE and VE medians, respectively. It is clear that 
evaluation of predictive accuracy over the complete dataset 
results in a significantly lower variability between medians of 
10 samples of NSE and VE. The average of median NSE is 
below 0.45 for station densities less than 0.6, which is similar to  
 

 
 
Fig. 3. Medians of Nash Sutcliffe (NSE) and runoff volume error (VE) efficiencies obtained by ordinary cross-validation for different sta-
tion densities. Box (25%, 50% and 75% quantiles) and whiskers (10% and 90% quantiles) show the variability of NSE (left panel) and VE 
(right panel) medians over ten random samples. 
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ordinary cross-validation efficiencies. For larger densities are, 
however, the average NSE significantly larger. The average 
median of NSE for densities above 1.8 is larger than 0.82 and 
exceeds even 0.9 for densities larger than 2.7 station/1000 km2. 
The assessment of VE medians indicates that top-kriging tends 
to overestimate daily runoff only for lower station densities. For 
densities above 1.2, top-kriging predictions are essentially 
unbiased. 

 
 

While Figure 3 presents only the scatter between medians of 
random samples, Figure 5 shows the entire distributions of 
ordinary cross-validation efficiencies (NSE and VE) for selected 
station densities (0.3, 2.1 and 3 stations/1000 km2). The bold 
lines represent random samples presented in Figure 2. Figure 5 
indicates that for larger densities (i.e. above 2) the predictive 
accuracy of top-kriging is indeed very similar not only in terms 
of medians but also in entire cumulative distributions.  
 

 
 
Fig. 4. Medians of Nash Sutcliffe (NSE) and runoff volume error (VE) efficiencies obtained by full sample cross-validation for different 
station densities. Box (25%, 50% and 75% quantiles) and whiskers (10% and 90% quantiles) show the variability of NSE (left panel) and 
VE (right panel) medians over ten random samples. 

 

 
 
Fig. 5. Distribution of Nash Sutcliffe (NSE, top panels) and runoff volume error (VE, bottom panels) efficiencies obtained by ordinary 
cross-validation for ten random samples and selected station densities. Bold lines represent random samples presented in Figure 2. 
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Noticeable differences between random samples are observed 
only for densities below 0.6 stations/1000 km2. 

The comparison of full-sample cross-validation efficiencies 
(Figure 6) confirms a stable performance of top-kriging for 
different random samples and larger station densities. Figure 6 
evaluates the NSE and VE efficiencies for the complete dataset, 
so for different input densities, there is different number of  
 

stations with perfect (identical) predictions to observations 
(straight lines representing VE = 0 and NSE = 1). Obviously, the 
best runoff performance is obtained for the largest station 
density where more than 60% of stations have NSE efficiency 
larger than 0.7 and absolute volume error less than 10%. 
Interestingly, the loss in top-kriging runoff efficiency is very 
small for densities larger than 2.1. 
 

 
 
Fig. 6. Distribution of Nash Sutcliffe (NSE, top panels) and runoff volume error (VE, bottom panels) efficiencies obtained by full sample 
cross-validation for ten random samples and selected station densities. Bold lines represent random samples presented in Figure 2. 
 

 
 
Fig. 7. Relation between the NSE full-sample cross-validation efficiency (color and size of symbols) and mean basin elevation, basin area 
and number of upstream stations for top-kriging interpolation with 250 stations (Figure 2). 
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The factors that control the accuracy of top-kriging are eval-
uated in Figure 7. Figure 7 shows an example of the relation 
between full-sample cross-validation efficiency of NSE and 
basin size, mean basin elevation and number of upstream sta-
tions for one random sample size (top-kriging interpolation by 
250 stations, Figure 2). Please note that, in order to highlight 
basins with poor performance, small NSE are plotted in large 
red circles, while larger NSE values are plotted in small circles. 
Our investigation (not shown here) indicates that even if there 
are some small differences between different random samples, 
this example shows a typical case for larger station densities, 
i.e. more than 2 stations/1000 km2. Left panel of Figure 7 indi-
cates that the lowest top-kriging efficiency is found for some 
headwater basins. These basins do not have upstream basins 
with daily runoff observations. They are typically smaller than 
200 km2 (right panel, Figure 7) and are situated at different 
elevation zones. Mean basin elevation is not found to be a ro-
bust factor for discrimination between poor and accurate runoff 
predictions. On the other hand, the river network hierarchy 
seems to be important. The largest top-kriging accuracy is ob-
served for basins with at least 4 upstream basins. 
 
DISCUSSION AND CONCLUSIONS 

 
This study evaluates the predictive accuracy of daily runoff 

interpolated by top-kriging as a function of different station 
density. Previous studies by Skøien and Blöschl (2007) and 
Viglione et al. (2013) have already shown that top-kriging can 
perform better than conceptual hydrologic models with region-
alized model parameters. Skøien and Blöschl (2007) even 
showed that the interpolation method can perform better than a 
conceptual hydrologic model calibrated at site.  

Parajka et al. (2005) analyzed several methods for transfer-
ring model parameters, and found that similarity and kriging 
based approaches, have been the most accurate for PUB in 
Austria. They found the median NSE from cross-validation to 
be 0.67 for both methods in 330 stations, which corresponds to 
density almost 4 stations/1000 km2. Similar top-kriging effi-
ciency is, in this study, found for a density of less than 2.1 sta-
tions/1000 km2. Larger densities thus allow more accurate pre-
dictions of daily runoff with top-kriging if the causal relation-
ship between precipitation and runoff is not of interest. A sta-
tion density of 3 stations/1000 km2 (250 stations) allows even 
more accurate runoff predictions than what was obtained by at 
site model calibration in previous studies. While Viglione et al. 
(2013) found the median NSE from hydrologic model calibra-
tion to be 0.72, the average median NSE top-kriging exceeds 
0.74. Such efficiency is one of the largest found in any of the 
PUB assessments (Parajka et al., 2013) for larger datasets.  

On the other hand, our study also shows that the predictabil-
ity deteriorates rather quickly when the station density drops 
below 1 and particularly below 0.5 stations/1000 km2. It would 
not be advisable to use top-kriging in Austria or similar regions 
for such low station densities. The exact limits for low perfor-
mance of geostatistical interpolation will depend mainly on the 
hydrological gradient of the study area. For Austria, we assume 
that this is mainly controlled by the large differences in runoff 
seasonality (Parajka et al., 2009). 

The territory of Austria covers regions with large physio-
graphic and landscape variability and thus represents a wide 
range of geographical variability in Europe. We believe that our 
results applies and can be transposed to regions with similar 
conditions. This study evaluates top-kriging performance in a 
selected decade and focuses mainly on the runoff bias and NSE 

model efficiency. In our next study, we plan to extend this as-
sessment to evaluation of top-kriging accuracy for seasonal and 
extreme runoff predictions, as well as to compare the perfor-
mance in different hydro-climate regions of Austria. We thus 
plan to evaluate the effects of seasonally or even daily varying 
spatial correlations of runoff by testing temporally variable 
fittings of top-kriging variogram. Our results also indicate that 
one of the top-kriging challenges is prediction of runoff in 
headwater basins. We plan to find methods to identify basins 
with poor predictability in advance, and look into alternative or 
possible hybrid methods for these. Patil and Stieglitz (2012) 
used a simple approach with inverse distance weighting for 
runoff data from the entire USA, and identified some general 
characteristics for basins with high predictability, such as runoff 
ratio, baseflow runoff ratio and slope. These might also be 
helpful indicators on a smaller spatial scale, in addition to the 
basin area and the number of upstream gauges.  
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