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Abstract: A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles 
downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry 
laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is 
investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary 
transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An 
example calculation is given for a 0.1 m diameter pipeline. 

Also consequences for long stretches of pipe line emerged. A so far undiscovered exclusion zone is found in the I-V 
diagram. This exclusion zone is situated adjacent to the deposit limit velocity locus curve. This simplified physical sys-
tem reveals that flow velocities should be taken about 10% greater than the calculated maximum deposit limit velocity 
for stable converging flow. 
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INTRODUCTION 

 
It is good practice in hydraulic laboratories to situate test sec-

tions at a safe distance from upstream bends and inlets. For 
hydraulic transport of solids there are however virtually no 
guidelines on appropriate distance. Colwell and Shook (1988) 
mention a distance of 50D based on measurements in the pseu-
do-homogeneous hydrotransport regime. In the literature, on 
many occasions the distance to the inlet is not mentioned and 
authors assume that equilibrium conditions are being measured, 
i.e. the results are assumed independent of downstream position 
at their measuring section. 

A bend or any other component disturbs the flow, and the 
flow has to revert again to an asymptotic equilibrium situation 
via transient development. This may lead to problems in the 
interpretation of existing data, the risk being that the flow is not 
fully developed, or worse, that it is being measured in the 
trough or at the crest of stationary harmonic waves. Pressure 
gradient measurements over adjacent intervals at a 0.1 meter 
diameter pipe, Matoušek and Krupička (2013), point at a possi-
bility that stationary harmonic waves could be present. Motivat-
ed by the data presented in Matoušek and Krupička (2013), 
longitudinal pressure profile measurements commenced in a 
horizontal 0.04 m diameter pipe at Delft University of Technol-
ogy, Figure 1. A straight pipe section situated downstream of a 
180 degree r/D = 5 bend is equipped with a series of 9 pressure 
taps distributed over a distance of 3 m. The measured pressure 
profile and associated local pressure gradient profile are shown 
in Figure 2. These are 300 s averages, equivalent to about 20 
mixture circulations. It shows that the pressure gradient varies 
harmonically with distance, and that within a distance of 70D 
no asymptotic equilibrium condition is reached. Silica sand is 
employed. The spatial volumetric solids concentration in the 
flow loop is 20%, the median grain size is 0.325 mm. The flow 
velocity is 1.5 m/s, whereas the deposit limit velocity is at about 
1 m/s. For this condition the delivered concentration is 18% by 
volume. 

Talmon (1999) drew attention to the availability of linear 
stability and normal mode analysis to investigate the dynamics 
of stratified slurry flow in pipes. In this case it is no longer 
assumed that the flow is independent of streamwise distance. 

In the current paper the same technique is applied, but now 
transient stationary behaviour is analysed. A macroscopic 
system approach is followed. A simplified schematisation of the 
physics is applied and it is not ventured into detailed 
descriptions of physical processes at the interface or in the 
suspension, such as in for example Matoušek (2009), Krupička 
and Matoušek (2010), Matoušek and Krupička (2014), 
Matoušek et al. (2014), Kaushal et al. (2005) and Kaushal and 
Tomita (2013). In fact the analysis pertains to the very basic 
behaviour of the two-layer structure and is a first step in a 
process to develop theory for longitudinal development of 
stratified sand-water flows in pipes. 

The methodology is to first quantify the asymptotic equilib-
rium condition and next to quantify transient behaviour towards 
this equilibrium. Externally imposed are the flow rate, equilib-
rium bed level and friction coefficients. In this case the veloci-
ties of bed and suspension are calculated explicitly via the solu-
tion of a quadratic equation in the flow velocity of the suspen-
sion Us, a method similar to that described by Jones (2011). 
Transient development is described by the same equations, but 
now including advection and mass acceleration terms. 

 
 

 
 
 
Fig. 1. Line drawing essential components of test set-up. 
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Fig. 2. Measured fluid pressures and associated pressure gradient of slurry as a function of distance from the upstream bend, flow velocity 
1.5 m/s. Whiskers denote standard deviation of time series and are plotted at locations of upstream pressure taps. 

 

⇨ ⇦ 
 

Fig. 3. Definition sketch of a sliding bed layer in a two-layer schematisation, showing bed layer, suspension, flow velocities, shear stresses 
and fluid pressure profile. 

 
The present analysis, which reveals an exclusion zone but 

not the sought harmonic variation, forms a basis for ongoing 
analysis considering more physical processes; suspension 
transport and mass-exchange between the bed layer and the 
suspension. 
 
Governing equations 
 

Assumptions in the present two-layer model (2-LM) for hor-
izontal stratified solids transport are: - sliding bed regime, - 
solids transport by sliding bed only, - uniform velocity distribu-
tion per layer, - vertical accelerations are neglected (1-D equa-
tions), - constant friction coefficients, as for fully developed 
uni-directional flow, - en-bloc sliding of the bed (no shear in 
bed layer), loose porous bed layer (constant porosity), - time-
independent. 

The cross section of the 2-LM configuration is sketched in 
Figure 3. The overriding fluid flow is referred to as suspension 
to comply with past and future nomenclature when suspended 
load transport is considered. The total cross-sectional area (A) 
and the flow rate (Q) are constant with distance x:  

 

b sA A A= + ,         b b s sQ UA A u A u= = +  (1), (2) 

 
Flow rates of bed and suspension do not vary along the 

length of the pipeline in the present analysis because there is no 
mass exchange through the bed-suspension interface:  
 

constantb bA u = ,   constants sA u =  (3), (4) 

 
The bed layer is modelled as a granular layer subject to Cou-

lomb grain friction, pore fluid friction, longitudinal hydraulic 
gradient, shear stresses exerted by the overlain fluid flow, mass 
acceleration and effects from a longitudinal bed level slope. The 
momentum balance of the bed layer is: 
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The last term on the right hand side accounts for a driving 
force which originates from density differences between the 
suspended load layer and the pore water in the bed layer when 
the interface is non-horizontal. In this term the granular charac-
ter of the bed layer is preserved: the grain skeleton transfers 
forces from bed level variations to the pipe wall. The density of 
the bed layer is: ρb = n ρw + (1 – n) ρsand. The momentum bal-
ance of the suspension is: 
 

int
s

s s s s top top
u P

A u A W P
x x

ρ τ τ∂ ∂= − − −
∂ ∂

 (6) 

 
Elimination of the fluid pressure gradient between both mo-

mentum equations gives: 
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The shear stresses are modelled by: 

 

2

8
top

top s su
λ

τ ρ= ,  2int
int ( )

8 s s bu u
λτ ρ= −  (8), (9) 

2
bot bot b buτ α ρ=  (10) 

 
Linearization 
 

Harmonic variations of the variables are substituted in the 
continuity equation (Eq. 2) and the combined momentum bal-
ance of both layers, Eq. (7): 
 

', 'b b b s s su U u u U u= + = +  (11), (12) 

 
where Us and Ub, are the asymptotic mean velocities. The as-
ymptotic mean velocities Us and Ub, are determined first. Bed 
level height zb is inputted and Us and Ub are calculated by a 2-
LM model, see Section A of the Supplementary material. The 
harmonic variations are modelled mathematically by the product 
 
 

of an exponential function and a cosine function: 
 

' ' i, ,s b
s b

u u kxu u e complex conjugate
U U

   = +     
   (13) 

 
This is a short-hand notation for: 

 

i
r

' '
, , cos( )–s b

s b
u u k xu u e k x
U U

    =      
   (14) 

 
where k k k= +r ii  (15) 

 
The real part kr of the wave number k represents the wave 

number of harmonic variations. The imaginary part ki of k indi-
cates whether the perturbations amplify with downstream distance 
(ki < 0), or are damped (ki  > 0). Differences in amplitude and phase 
of the harmonic waves are accommodated in the complex ampli-

tudes ,s bu u  . Fundamental relations for differentiation are: 

 

'/ '
is su U u
k

x U

∂
= −

∂
,    

'/ '
ib bu U u
k

x U

∂
= −

∂
, (16), (17) 

 
The characteristic adaptation length of perturbations is x0 = 1/ki. 

Four typical responses are shown in Figure 4. Linearization of the 
equations and mathematical relations for calculating the wave 
number k are given in Section B and C of the Supplementary 
material. 
 
CALCULATIONS 
Linear stability analysis (normal mode analysis) 

 
A series of calculations is conducted where the bed height is 

fixed and the superficial velocity is varied. For each superficial 
velocity, the velocity of the bed layer and suspension layer for 
the equilibrium of the two-layer configuration are calculated 
first by the 2-LM model (Section A of the Supplementary mate-
rial). Next the transient response according to the normal mode 
analysis is calculated. Parameter values of a typical calculation 
are listed in Table 1. The listed values for wall friction coef-
ficients (λtop, αbot and µs) are more or less established values.  

  

 
Fig. 4. Schematisation of typical responses to a perturbation: course of bed level height with distance.  
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Table 1. Parameters in linear stability analysis.  
 

Model parameters Value 

diameter pipe, D [m] 0.1 

density sand [kg/m3] 2650 

density suspension [kg/m3] 1000 

density water [kg/m3] 1000 

porosity bed, n [–] 0.45 

friction factor Darcy-Weisbach pipe wall, λtop [–] 0.015 

friction factor Darcy-Weisbach bed shear stress, λint [–] 0.07 

Coulomb friction coefficient, μs [–] 0.4 

friction pore fluid against pipe wall, αbot [–] 0.004 

 
The selected value for interface friction coefficient yields 
realistic deposit limit velocities in the 0.1 m diameter pipe. The 
calculated complex component of the wavenumber k is 
graphically displayed as a function of flow velocity in Figure 5. 
For the real part it is calculated kr = 0 for all circumstances, 
indicating no harmonic sinusoidal wave development. The 
equilibrium calculation, also shown in Figure 5, gives a bed 
velocity Ub which increases approximately linearly with 
superficial flow velocity. The calculated deposit limit velocity is 
1.9 m/s (at z/D = 0.2). The calculations show that the imaginary 
part of the complex wave number kiD changes sign at about 2.1 
m/s. For lower velocities, downstream amplifying perturbations 
are found (divergence). For higher velocities, downstream 
decaying perturbations are found (convergence). 
 
I-V diagram  
 

Wilson (1979) created an I-V diagram showing a deposit 
limit velocity locus curve (= a curve describing the edge of the 
stationary bed layer regime: Ub = 0). Hydraulic gradients are 
again calculated with the 2-LM equilibrium calculation method 
given in Section A of the Supplementary material, and the de-
posit limit velocity is reached when a bed velocity of Ub = 0 is 
calculated. Figure 6 shows the I-V diagram (bed layer only 
configuration, parameters according to Table 1). The hydraulic  
 

gradient I is calculated by considering the momentum balance 
of the upper layer: 
 

2 22
int4

8 8
top tops s s b

s w

P U U UA U W
I

A gD D U D U U

λρ λ
π ρ

     = + −        
 (18) 

 

The linear stability analysis shows that there exists a region 
of amplifying diverging solutions, see Figure 6. This region is 
bounded by a marginal stability curve (ki = 0) and the deposit 
limit curve. Curves of iso-decay rates are inscribed in this I-V 
diagram. Indicated are conditions with characteristic lengths 
quantifying 63% decay at x0 = 20D and 50D (kiD = 0.05, 0.02). 
A graphical representation of these transient responses is shown 
in Figure 7. The type of analysis earlier depicted in Figure 5 is 
along one curve of z/D = constant. From Figure 6 it is conclud-
ed that for example at U = 2.25 m/s and z/D = 0.2, 63% adapta-
tion of the two-layer configuration is reached at a distance of 20 
pipe diameters downstream of the bend (20D). An adaptation of 
95% is than reached at x = 40D.  
 
Multi-valued delivered concentration near deposit limit 
velocity  
 

A common approach is to quantify the hydraulic gradient as 
a function of flow velocity and delivered concentration. Figure 
8 shows that close to the deposit limit velocity, multiple bed 
heights are possible at a given delivered solids concentration. 
The ones that are situated in the amplification region (ki < 0) are 
unattainable, and the solution will diverge with respect to the 
calculated asymptotic equilibrium.  

Without resorting to linear stability analysis, the presence of 
the exclusion zone can also be inferred in hindsight from a 
series of equilibrium calculations with a standard 2-LM model. 
The boundary condition is the delivered concentration entering 
the pipe. If the sliding bed conditions are outside the exclusion 
zone, an increase in bed level leads to an increase in solids 
transport rate (greater Cvd, see Figure 8). In that case more 
solids are discharged from the pipe than are entering, and as a 
consequence the bed level will drop again. This is a self-stabilising

 
Fig. 5. Outcome of stability calculations at a relative bed level of z/D = 0.2: flow velocity of the bed layer Ub at asymptotic equilibrium and 
calculated complex wave number ki of perturbations indicating amplification, resonance or damping.  
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Fig. 6. Curves of iso-adaptation lengths inscribed in an I-V diagram quantifying the hydraulic gradient and deposit limit velocity as a func-
tion of flow velocity for a pipe line diameter of 0.1 m (for further parameters: Table 1). 
 

 
Fig. 7. Exponential adaptation length profiles of overdamped system. Characteristic 63% and 95% adaptation lengths for kiD = 0.02 and 
0.05 are indicated. 
 

 
Fig. 8. Calculated volumetric delivered concentration Cvd for sliding bed layer transport mode. Down sloping branches (divergence) are 
situated in the exclusion zone of Figure 6.  
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mechanism. If on the other hand, the conditions are in the ex-
clusion zone, an increase in bed level at the exit of the pipe 
leads to a lowering of the exiting solids transport rate. The 
amount of solids in the pipe increases, increasing the bed level 
further. This is an unstable situation. 

The delivered concentrations shown in Figure 8 are low be-
cause bed velocities are small under these conditions. In reality 
there will be a sheet flow layer at the bed surface providing the 
majority of solids transport, and the delivered concentration will 
be significantly higher. 

As a consequence of the presence of this exclusion zone, it is 
not unreasonable to design transportation systems at a velocity 
about 10% higher than the calculated maximum Vdl. This cor-
roborates with a 10% safety margin for deposit velocity which 
is applied in case studies presented in Matoušek (2004). This 
stems from experience with laboratory tests; the specific energy 
consumption is low and the flow is stable at velocities slightly 
above the deposition-limit velocity, Matoušek (2014). 

 
CONCLUSION 

 
In a quest to quantify adaption lengths of two-layer fully 

stratified flow, an exclusion zone is discovered where no down-
stream converging 2-LM solution can develop. This zone is 
situated adjacent to the deposit limit velocity locus curve. 

For stable conditions outside this exclusion zone, adaptation 
lengths for the two-layer structure are quantified. Adaptation 
lengths shorten with increasing superficial flow velocity. 

As a consequence of the presence of this exclusion zone, it is 
not unreasonable to design transportation systems at a velocity 
about 10% higher than the calculated maximum Vdl. 

Similar analyses including more physical processes are being 
conducted to capture the mechanism of wave development. 
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Nomenclature 
 
A = cross-sectional area of pipe, 
Ab = cross-sectional area of bed layer, 
As = cross-sectional area of suspension, 
Cvd = volumetric delivered solids concentration, 
D = pipe diameter, 
Frb = densimetric Froude number of bed layer, 
Fn = normal granular force of bed on pipe wall, 
Fw  = immersed weight of bed layer, 
g = gravity, 
I = hydraulic gradient, 
i = √–1, 
k = kr+i ki = complex wave number, 
n = porosity of bed layer, 
P = pressure at the crest of the pipe line’s cross-section, 
Pbot = circumferential contact length of bed layer and pipe,  
Ptop = circumferential contact length of suspension and pipe, 
Q = flow rate, 
r = bend radius 
U = superficial flow velocity, 
Ub = asymptotic velocity of bed layer, 
Us = asymptotic velocity of the suspension, 
ub = velocity of bed layer, 
us = velocity of the suspension, 
W = width of bed surface, 
x = length-coordinate, 
x0 = 63% adaptation length, 
zb = bed surface level, 
us’, ub’ = perturbations of the velocities of suspension and bed 
layer, 

,s bu u   = complex dimensionless amplitudes, 

αbot = friction coefficient of pore fluid with pipe, 
λtop = Darcy-Weisbach friction factor of pipe wall - suspension, 
λint = Darcy-Weisbach friction factor of bed-layer - suspension,  
μs = Coulomb friction coefficient of solids bed against pipe, 
ρb = density of the bed-layer (including pore fluid), 
ρs = average density of suspension, 
ρsand = sand density, 
ρw = density of pore fluid (water), 
τbot = hydrodynamic shear stress at bottom of pipeline, 
τint = shear stress at interface between both layers, 
τtop = shear stress at top section of pipeline. 
 



Arnold M. Talmon 

178 

SUPPLEMENTARY MATERIAL 
 
Supplementary nomenclature 

aij, bij  = linearisation coefficients, 
c0  = volumetric solids concentration of the suspension, 
α1, α2  = transfer coefficients, 
β1, β2, β3 = varying shape parameters, 
η  = shape coefficient, 
ζ  = varying shape parameter. 
 
A. Solution of 2-LM equilibrium model 
 

Asymptotic equilibrium of forces, from Eq. (7), is described by: 
 

int
2 2 2
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 (S1) 

 
Relations for shear stresses, Eq. (8), (9) and (10), are substi-

tuted. The velocity of the bed layer is next eliminated between 
Eq. (S1) and Eq. (2). For fixed zb/D the solution is given by: 
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Geometrical dimensions of the 2-LM configuration are quan-

tified as a function of bed height: 
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D
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B. Linearisation of equations and calculation of wave  
number k 
 
The continuity equation, Eq. (2), is written as: 
 

    and             (S12), (S13) 

 
Subsequent linearisation gives: 
 

 (S14) 

 
where Ab’ and As’ are fluctuations of the cross-sectional area, and: 

 

,    (S15), (S16) 

 

and  
 

(S17) 

 
The suspension layer flows faster, therefore: α1 = positive and 

α2 = negative. At small bed velocities: α1 = O(1). Linearisation of 
the continuity equation of the bottom layer, Eq. (3), gives: 

 
' '

0b b b bU A A u

U A A U
+ =    (S18) 

 
Linearisation of the combined momentum equation, Eq. (7), is 

accomplished by multiplication of Eq. (7) with D/(ρsU
2) and sub-

stitution of decomposed velocities Eq. (11) and Eq. (12). 
The x-derivatives of the asymptotic velocities Ub and Us are ze-

ro. The derivatives of the fluctuating velocities are given by Eq. 
(16) and Eq. (17). The internal two-layer geometry varies and 
shear stresses vary. For these variables similar decompositions are 
substituted as for the other variables. This produces contributions 
consisting only of asymptotic mean values of geometry, shear 
stress and Coulomb bed friction plus contributions containing 
fluctuating variables. The former collection of terms defines the 
asymptotic solution, Eq. (S1), and is by definition zero. These 
terms are therefore removed from the equation. Products of two or 
more fluctuating variables are discarded because only linear terms 
are retained in the linearisation process. The resulting linearised 
combined momentum equation is: 
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The geometrical dimensions Ab, W, Pbot and Ptop are a function 
of bed level height zb and pipe diameter D. Analytical expressions 
for these are given in Section A. The velocities Ub and Us in the 
stratified asymptotic configuration are calculated with the 2-LM 
model given in Section A. 
 
Solving the linearised equation for complex wave number 
 

The linearised equations are represented in a matrix, Eq. (S21). 
The first row represents the continuity equation of the bed layer, 
which is a linearisation of Eq. (3). The second row represents the 
momentum balance of both layers, which is a linearisation of Eq. 
(7). The aij components represent the mass and momentum equa-
tions without variation of frictional forces. The bij components 
represent the variation of these.  
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in which: 
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where:   (S28) 

and:  
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The parameter ζ follows from the last four terms in Eq. 
(S19). These terms represent the influence of variations of the 

shape of the two-layer geometry (i.e. variation of combinations 
of Pbot, Ptop, W, Ab, As and Fn/Fw with variation in bed level zb). 
Expressions for the βi-coefficients in Eq. (S29) are given in 
Section C. To solve for kD the determinant is set to zero: 
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The products aij.aij exclusively lead to a ikD term represent-
ing stream wise influences, being: accelerations and variations 
in bed level. The products aij.bij represent the influence of fric-
tion forces. The determinant reads: 
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This equation gives kr = 0 (= no harmonic waves) and ki as 
representative for the damping length. Considering the sign of 
α1 and α2, the coefficient of the ikD-term is always negative. 
The sign of the sum of the last six terms determines whether 
perturbations amplify or are damped in downstream direction. 

 
C. Quantification of geometrical variations 

 
The linearised expression for the friction force terms in the 

combined momentum equation is, see Eq. (S19): 
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Elimination of τint between Eq. (S13) and Eq. (S32) and ex-

pressing geometric fluctuations into the fluctuation of the bed 
area Ab gives: 
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where:  
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The coefficients β1, β2, β3 basically depend on the relative bed level. Their functional dependency is depicted in Figure S1. 
 

 
Fig. S1. Graphical depiction of the coefficients β1, β2, β3 which quantify the influence of bed-level variations on the momentum 
balance through geometric variation of the cross-sectional area. 
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