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Abstract: River runoff and sediment transport are two related random hydrologic variables. The traditional statistical 
analysis method usually requires those two variables to be linearly correlated, and also have an identical marginal 
distribution. Therefore, it is difficult to know exactly the characteristics of the runoff and sediment in reality. For this 
reason, copulas are applied to construct the joint probability distribution of runoff and sediment in this article. The risk of 
synchronous-asynchronous encounter probability of annual rich-poor runoff and sediment is also studied. At last, the 
characteristics of annual runoff and sediment with multi-time scales in its joint probability distribution space are 
simulated by empirical mode decomposition method. The results show that the copula function can simulate the joint 
probability distribution of runoff and sediment of Huaxia hydrological station in Weihe River well, and that such joint 
probability distribution has very complex change characteristics at time scales. 
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INTRODUCTION 
 

For the different meteorological factors and underlying 
surface conditions, runoff and sediment transport are not 
independent of each other. Some attempts have been made to 
study the correlations of the random hydrologic variables in the 
field of rainfall (i.e., rainfall density, depth, and duration), flood 
(i.e., flood peak, volume, and duration) and drought (i.e., 
drought severity, magnitude, and duration), etc. For example, 
Correia (1987) studied the joint probability distribution of flood 
peak and volume using bivariate normal distribution. Goel et al. 
(1998) and Yue (2000) achieved this condition by preliminary 
data transformation through Box-Cox’s formulas to represent 
the joint probability distribution of peak rainfall intensity and 
depth. As early as 1985, Hashino (1985) proposed the Freund 
(1961) bivariate exponential distribution to discuss the joint 
probability distribution of rainfall intensity and maximum storm 
surge. Singh and Singh (1991) described the joint probability 
distribution of rainfall intensity and depth with this mathematic 
method by using empirical frequency analysis. Han et al. (2007) 
and Liu and Chen (2009) investigated the risk of synchronous-
asynchronous encounter probability of annual rich-poor 
precipitation in the East and Middle Routes of South-to-North 
Water Transfer Project. Yue (2001), Yue and Rasmussen 
(2002), and Yue et al. (1999) applied the Gumbel’s (1960, 
1967) distribution for flood and rainfall frequency analysis. Yue 
and Wang (2004) constructed the joint risk assessment model to 
study the relationships between inflow runoff and rainfall of 
Nangang reservoir in the Hutuohe River Basin. Zhou et al. 
(2005) verified Gumbel logistic distributions for annual 
maximum wind speed and effective wave height. 

However, the above mentioned works were based on certain 
assumptions, e.g. that all univariates have the same marginal 
distributions, and the correlations between variables must be 
linear. In practice, most of the random hydrologic variables 
cannot meet those assumptions easily. Therefore, copulas which 

are based on nonlinear relationships among variables and do not 
require many assumptions have become prevalent in hydrologic 
research. Copula function can decompose the joint distribution 
function into univariable marginal distribution functions and a 
link function. The flexibility offered by copula for joint 
probability distribution construction is evident from the relevant 
studies on rainfall frequency analysis (Balistrocchi and Bacchi, 
2011; Gyasi-Agyei, 2012; Gyasi-Agyei and Melching, 2012; 
Salvatore and Francesco, 2006), flood frequency analysis 
(Chowdhary et al., 2011; Renard and Lang, 2007; Salarpour et 
al., 2013; Xiao et al., 2008; Xu et al., 2008; Zhang and Singh, 
2007), drought frequency analysis (Kao and Govindaraju, 2010; 
Ma et al., 2013; Yan et al., 2007), and also the risk analysis of 
synchronous-asynchronous encounter probability for annual 
rich-poor rainfall or runoff (Ganguli and Reddy, 2013; Lian et 
al., 2013; Xiong et al., 2005). Although the prior works have 
been done by other researchers, there are still some 
undiscovered aspects of the copula applications in hydrology, 
especially on the joint probability distribution of runoff and 
sediment transport in sandy rivers. 

In the study of hydrologic variables with a long time series, 
wavelet analysis is an effective method (Compagnucci et al., 
2000; Gaucherel, 2002; Labat et al., 2004; Wang and Meng, 
2007). But limited by Fourier transform, the signal must be 
stable inside the wavelet window. Although wavelet transform 
can get higher resolution in the frequency domain and time 
domain, there are still some restrictions in wavelet transform, 
which results in many false harmonics. Moreover, the selection 
of different wavelet base functions has significant impact on 
wavelet analysis. In 1998, Huang et al. (1998) proposed a new 
signal analysis method - empirical mode decomposition, and 
later made some improvements (Huang et al., 1999). Empirical 
mode decomposition method can extract fluctuations or trends 
of a signal step by step at different scales (frequency) 
simultaneously, which produces data series with different 
characteristics-intrinsic mode function. Hilbert-Huang 



                                                 The joint probability distribution of runoff and sediment and its change characteristics with multi-time scales 

219 
 

transform, applying Hilbert transform on intrinsic mode 
function, is very suitable for nonlinear and non-stationary time 
series. Although it is similar to wavelet spectrum, Hilbert 
spectrum provides clearer and more detailed partial features. 
The key of Hilbert-Huang transform is to get spectra with 
higher resolution in time domain and frequency domain. At 
present, empirical mode decomposition method has been 
successfully applied in turbulence, earthquake research, 
atmospheric science and ecology, environment, economy and 
other nonlinear areas, but very rarely in hydrology. 

The aims of this paper are to (1) get marginal distribution of 
runoff and sediment with frequency distribution curve of P-III-
type; (2) construct the joint probability distribution model of 
runoff and sediment with copulas; (3) analyze the risk of 
synchronous-asynchronous encounter probability of annual 
rich-poor runoff and sediment; (4) present the characteristics of 
runoff and sediment with multi-time scale in the joint 
probability distribution space by empirical mode decomposition 
method. 
 
COPULAS 
Sklar theorem 
 

Sklar theorem is the basis of copula theory. Suppose there 
are two continuous random variables denoted as X  and Y , let 

( )xFX  and ( )yFY  be the marginal distribution functions of X  
and Y , and ( )yxF ,  be the joint distribution function. If ( )xFX  
and ( )yFY  are continuous, a uniquely determined copula 
function ( )vuC ,θ  exists as b (Nelsen, 1999):  

 
( ) ( ) ( )( )yFxFCyxF YX ,, θ= ， ∀ yx,  (1) 

 
where, ( )vuC ,θ  is called copula function, θ  is parameter to be 
determined. 
 
The properties of copula function 
 

A bivariate copula function is defined as a mapping 
C: [0, 1]2 → [0, 1] with the following properties: 

 
(a) ]1,0[, ∈∀ vu  

 ( ) 00, =uC ; ( ) 0,0 =vC ;  
 ( ) uuC =1, ; ( ) vvC =,1 ; 
(b) ∀ 1u , 2u , 1v , 2v ∈[0,1], 21 uu ≤ , 21 vv ≤ ,  
  
 

 ( ) ( ) ( ) ( ) 0,,,, 11211222 ≥+−− vuCvuCvuCvuC  

(c) ]1,0[, ∈∀ vu 2, 
 ( ) ( ) ),min(,0,1max vuvuCvu ≤≤−+  
 
The correlation of copula function  
 

The most popular three types of copula functions in 
hydrology are shown as Table 1 (Cherubini et al., 2004; 
Grimaldi et al., 2005), which belong to the Archimedean copula 
family. τ is Kendall’s correlation coefficient. It describes the 
nonlinear correlation of variables and can be estimated using the 
equation: 
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Identification and goodness-of-fit evaluation of copula 
function 
 

Using the Kolmogorov-Smirnov test, the appropriate copula 
is identified. The identified statistic is given by: 
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where, kC  is the value of observed ( )kk yx ,  of the copula 

function, km  is the number of observed ( )kk yx , satisfying with 

kxx ≤ and kyy ≤ . The goodness-of-fit of copula function is 
evaluated by the minimum deviation square) with the following 
expression: 
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where, iP  is the calculated frequency of the joint probability 
distribution, eiP  is the empirical frequency of the joint 
probability distribution, OLS  is the minimum deviation square. 

 
Table 1. Three Archimedean copula families in the field of hydrology research. 
 

Archimedean 

copula 
( )vuC ,θ  θ ’s range Relation between τ and θ  

Clayton θθθ 1)1( −−− −+ vu  0>θ  
2+

=
θ

θτ  

Frank 
( )( )













−
−−+− −

−−

1
111ln1

θ

θθ

θ e
ee vu

R∈θ  ( ) 







−

−
−−= 

0
1

1exp
141

θθθ
τ dt

t
t

Gumbel-Hougaard ( ) 



 −+−−

θθθ 1
)ln()ln(exp vu 1≥θ  

θ
τ 11−=  

 



Jinping Zhang, Zhihong Ding, Jinjun You 

220 
 

 

EMPIRICAL MODE DECOMPOSITION METHOD 
 

Intrinsic mode function proposed by Huang must satisfy two 
following conditions: (1) In the whole data range, the number of 
local extremes and the number of zero-crossings must be equal 
or at most have a difference of 1; (2) At any point, the mean 
value of the upper envelope formed by all local maxima and the 
lower envelope formed by all local minima is zero. 

The key step of empirical mode decomposition method is to 
extract intrinsic mode function from the given time series )(tx . 
First, the upper envelope and the lower envelope are 
constructed by identified local maxima points and local minima 
points with a cubic spline interpolation application. Then, the 
mean value of the two envelopes is calculated as 1m , and a new 
time series removing lower frequency is achieved by: 
 

11 )()( mtxth −=  (5) 
 
usually, )(1 th  is not an expected intrinsic mode function, so we 
need to repeat this shifting process k  times until the obtained 
mean envelopes are zero. At this moment, the final time series 
can be shown as: 
 

kkk mhh 1)1(11 −= −  (6) 
 
where, kh1  is the series of shifting process k  times, )1(1 −kh  is 

the series of shifting process 1−k  times. Intrinsic mode 
function is evaluated to stop the shifting process by the criterion 
of standard deviation value between 0.2~0.3. The criterion of 
standard deviation is defined as: 
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where, SD is the criterion of standard deviation, T is the 
length of the time series. When kh1  arrives at the stopping 
criterion of standard deviation, we have the first intrinsic mode 
function component khc 11 =  from the data )(tx  which 
represents the highest frequency component of the original time 
series. The residue 11 )( ctxr −=  will be decomposed further 
until nr  becomes a monotonic function or at most has one local 
extreme point. Thus, we get intrinsic mode function modes with 
one residue nr . The original series )(tx  is then rewritten as: 
 

n
n

i
i rctx +=

=1
)(  (8) 

 
Now, each intrinsic mode function component represents a 

data series of a characteristic scale (or frequency). In fact, the 
empirical mode decomposition method decomposes original 
data series into various fluctuations owning different features, 
and then superimposes them. Each intrinsic mode function may 
be either linear or non-linear, and all decomposed intrinsic 
mode function components have the actual corresponding 
physical significances. 
 
APPLICATION 
Data series 
 

The Weihe River is the largest tributary of the Yellow River 
in China. About 55% of runoff comes from the area above the 
Xianyang hydrologic station on the mainstream of the Weihe 
River, while 80% of sediment is from the Jinghe River, a 
tributary of the Weihe River. Huaxian hydrological station, 
located 73 km from the river mouth at Goujiabao village (Hua 
County, Shaanxi Province), is the main control station of the 
lower reaches of the Weihe River. Catchment area is 
106,500 km2 (shown as in Fig.1). 

 

 
 

Fig. 1. The location of the study site in China. 
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The observed runoff and sediment data series of Huaxian 
hydrological station used in this article are from 1935 to 2008 
(shown as in Fig. 2). These data series are all obtained from the 
hydrology bureau of the Yellow River Conservancy 
Commission. The hydrology bureau of the Yellow River 
Conservancy Commission is the hydrologic authority in the 
Yellow River Basin, so the monitoring, collection and disposal 
of the hydrological and meteorological information in the whole 
Yellow River Basin is one of its main activities. Meanwhile, 
because the hydrology bureau of the Yellow River Conservancy 
Commission is a pilot unit for the establishment of scientific 
data sharing platform in the field of hydrology and water 
resources, the hydrological database structure and the data have 
passed the national acceptance. Thus, the quality of the 
observed runoff and sediment data series of Huaxian 
hydrological station used in this paper is well guaranteed. 
 

 
 
Fig. 2. The annual runoff and sediment data series at Huaxian 
hydrological station. 
 
P-III-type frequency distribution curve of runoff and 
sediment 
 

Hydrologic analysis in China generally assumes the 
hydrologic variable subjects to P-III-type distribution. In this 
paper, the statistical parameters of runoff frequency distribution 
shown in Fig. 3 and sediment frequency distribution shown in 
Fig. 4 are obtained by optimal fitting method. We can see that 
the mean value x , coefficient of variation vC  and the skewness 

coefficient sC  in runoff series are 74.7×108m3/s, 0.48 and 0.79 
separately, while in the sediment series they are 3.47×108m3/s, 
0.68 and 1.51. 

 
 

 
 

                Frequency (%) 
 

 

Fig. 3. Frequency distribution curve of annual runoff. 
 

 
 

                  Frequency (%) 
 

Fig. 4. Frequency distribution curve of annual sediment. 
 
Joint probability distribution of runoff and sediment based 
on copulas 
 

According to the above mentioned formulas, Kendall’s 
correlation coefficient τ , parameter θ  of copula function, 
identified statistic D and the minimum deviation square OLS 
can be achieved (shown as in Table 2). 
 
Table 2. Calculation and evaluation of copula functions. 

 

Kendall’s
τ  

Parameter 
or index 

Copula functions  

Clayton Frank Gumbel-
Hougaard 

0.5969 

θ  1.3467 4.1942 1.6734 

D  0.0636  0.0577  0.0701  
 

OLS  0.02445 0.02246 0.02829 

 
Taking the significance level 05.0=α , when 74=n , the 

corresponding fractile value of K-S test is 0.15549, it must not 
be less than identified statistic D of undetermined copula 
functions. From Table 2, we know that these three copula 
functions are all checked by Kolmogorov-Smirnov test with a 
small difference of their minimum deviation square values. For 
its minimum value of deviation square, Frank copula function is 
selected to describe the joint probability distribution of the 
runoff and sediment in the lower reaches of the Weihe River. 
The selected Frank copula function is expressed as: 
 

( ) ( )( )
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where, )(xF  and )(yF  are cumulative distribution functions of 
runoff and sediment separately. 

The goodness-of-fit evaluation of selected Frank copula 
function is shown in Fig. 5. The correlation coefficient of Frank 
copula-based calculation probability distribution and empirical 
probability distribution attains to above 0.99, and all points fall 
near the 45° diagonal. It reveals that Frank copula is reasonable. 

0

20

40

60

80

100

120

140

160

180

200

1
9
3
5

1
9
3
8

1
9
4
1

1
9
4
4

1
9
4
7

1
9
5
0

1
9
5
3

1
9
5
6

1
9
5
9

1
9
6
2

1
9
6
5

1
9
6
8

1
9
7
1

1
9
7
4

1
9
7
7

1
9
8
0

1
9
8
3

1
9
8
6

1
9
8
9

1
9
9
2

1
9
9
5

1
9
9
8

2
0
0
1

2
0
0
4

2
0
0
7

year

R
un

of
f（

10
8 m

3 ）

0

20

40

60

80

100

120

Se
di

m
en

t(1
07 t)

Runoff
Sediment

Ru
no

ff 
(1

08 m
3 ) 

Se
di

m
en

t (
/1

08 t) 



Jinping Zhang, Zhihong Ding, Jinjun You 

222 
 

 
 

Frank copula-based calculation probability 
 
Fig. 5. The comparison of Frank copula-based calculation 
probability with empirical probability. 
 
The frequency analysis of synchronous-asynchronous 
encounter situation of annual runoff and sediment 
 

According to the frequency of pf = 37.5％ and pk  = 62.5％, 
the rich or poor situation of runoff and sediment are classified. 
The synchronous-asynchronous encounter situation of annual 
rich-poor runoff and sediment are expressed as follows: 
 

Rich-rich encounter frequency: 
( )pfpf yYxXPp ≥≥= ,1 ;  

 

Rich-normal encounter frequency:
( )pfpkpf yYyxXPp <<≥= ,2 ; 

 

Rich-poor encounter frequency: 
( )pkpf yYxXPp ≤≥= ,3 ; 

 

Normal-rich encounter frequency:
( )pfpfpk yYxXxPp ≥<<= ,4 ; 

 

Normal-normal encounter frequency:
( )pfpkpfpk yYyxXxPp <<<<= ,5 ; 

 

Normal-poor encounter frequency:
( )pkpfpk yYxXxPp ≤<<= ,6 ; 

 

Poor-rich encounter frequency: 
( )pfpk yYxXPp ≥≤= ,7 ; 

 

Poor-normal encounter frequency:
( )pfpkpk yYyxXPp <<≤= ,8 ; 

 

Poor-poor encounter frequency: 
( )pkpk yYxXPp ≤≤= ,9 . 

The frequency analysis of synchronous-asynchronous 
encounter situation of annual rich-poor runoff and sediment is 
displayed in Table 3. 

It can be seen that: (1) Synchronous encounter frequency of 
annual rich runoff and rich sediment is 24.21%, which is equal 
to synchronous encounter frequency of annual poor runoff and 
poor sediment. Synchronous encounter frequency of annual 
normal runoff and normal sediment is the minimum value of 
8.04%; (2) Asynchronous encounter frequency of rich (or poor) 
runoff and poor (or rich) sediment is only 4.81% while others 
are all 8.48%; (3) The total synchronous encounter frequency is 
56.46%.It is larger than that of asynchronous encounter 
frequency with the value of 43.54%. 

The return period and risk analysis of synchronous-
asynchronous encounter probability of annual runoff and 
sediment 
 

Let )(xF  and )(yF  be the marginal cumulative distribution 
function of runoff ( x ) and sediment ( y ), and ),( yxF be their 
joint distribution function. The synchronous-asynchronous 
encounter risk of annual runoff and sediment is denoted as the 
return period T . Here, two kinds of return periods are 
considered: 
 

( )

( ) ( ) ( )
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where, yxT , is joint return period, indicating that the exceeded 

risk of any design variable; yxT ,*  is simultaneous return period, 
indicating the exceeded risk of all design variables.  

With the constructed joint probability distribution, the 
encounter return periods of runoff and sediment are shown in 
Fig. 6 and Fig. 7.  

 
 
Fig. 6. Isopleths map for runoff and sediment of the joint return 
periods. 

 
 
 

Fig. 7. Isopleths map for runoff and sediment of simultaneous 
recurrence periods. 
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Table 3. The frequency analysis of synchronous-asynchronous encounter situation of annual rich-poor runoff and sediment (%). 
 

         Synchronous frequency                                                                                            Asynchronous frequency 

Rich 
-rich 

Normal 
-

normal 

Poor 
-poor Total 

Rich 
runoff-normal 

sediment 

Rich 
runoff-poor 

sediment 

Normal 
runoff-poor 

sediment 

Normal 
runoff-rich 
sediment 

Poor 
runoff-rich 
sediment 

Poor 
runoff-normal 

sediment 
Total 

24.21 8.04 24.21 56.46 8.48 4.81 8.48 8.48 4.81 8.48 43.54 

 

The characteristics of annual runoff and sediment with 
multi-time scale in its joint probability distribution space 
 

In the long time series, the hydrologic variables change at 
various time scales (or periods) and the partial fluctuations. 
These changes and fluctuation can be decomposed by certain 
mathematical method. 

The joint probability distribution based on copulas of runoff 
and sediment in the lower reaches of the Weihe River is shown 
in Fig. 8. Under the assumption that the evaluated criterion of 
standard deviation value is 0.25, the probability series is 
decomposed by empirical mode decomposition method, and the 
border issues are addressed by the boundary extension method. 
The decomposed results (shown in Fig. 9–Fig. 13) include four 
intrinsic mode function components and one residue. We can 
see that: (1) The joint probability distribution of runoff and 
sediment can be decomposed into four oscillation components 
with various fluctuation periods and a trend component. 

 

 
      Year 

Fig. 8. The copula-based joint probability distribution of runoff 
and sediment. 
 

 
 

Fig. 9. The first intrinsic mode function component. 
 

 
 
Fig. 10. The second intrinsic mode function component. 

 
 
Fig. 11. The third intrinsic mode function component.  
 

 
 
Fig. 12. The fourth intrinsic mode function component. 
 

 
 

Fig. 13. The residual component. 
 

It indicates that there has been a complex movement of 
runoff and sediment in the lower reaches of the Weihe River. 
(2)A quasi-periodic fluctuation of 2 to 4 years is presented in 
the first intrinsic mode function component. Larger fluctuations 
appeared in the 1930s, then they slowed down from the late 
1950s to the early 1990s; (3) A quasi-periodic fluctuation of 4 
to 8 years is exhibited in the second intrinsic mode function 
component. Larger fluctuations existed in early 1980s, then they 
gradually slowed down and began to rise in the beginning of 
21st. (4) A quasi-periodic fluctuation of 9 to 11 years is revealed 
in the third intrinsic mode function component. The period of 
23 years started from the mid-1960s to the late 1980s, and 15 
years was found in late 1980s. However, the fluctuation is not 
remarkable; (5) In the fourth intrinsic mode function, a quasi-
periodic fluctuation of 26 years is in the whole study time scale 
with remarkable changes; (6) The residue component indicates 
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the overall varying trend of the joint probability distribution of 
runoff and sediment. The peak value of 0.5244 appears in 1947 
and has been decreasing since then. 
 
CONCLUSIONS 
 

The joint probability distribution based on the copulas can 
match the runoff and sediment well in the Weihe River, and the 
selected Frank copula function is better than others in three 
kinds of Archimedean copula functions. In applications with the 
constructed joint probability distribution, we can know the 
encounter frequencies of runoff and sediment in different state. 
The studied results show that the total frequencies of the 
synchronous encounter case of annual rich-poor runoff and 
sediment are larger than that of the asynchronous encounter 
case. Moreover, various recurrence periods’ isopleth maps of 
the runoff and sediment encounter case can be obtained 
according to the joint probability distribution. If we have an 
appropriate distribution process of runoff and sediment of a 
typical year, we can implement the same frequency 
amplification method to obtain several groups of runoff and 
sediment with the same return period. This will provide a 
technical support for the planning and regulation of the Weihe 
River. The decomposed results by empirical mode 
decomposition method reveal that a sophisticated random 
motion exists in the lower reaches of the Weihe River, and the 
overall trend of joint probability distribution of runoff and 
sediment had increased in previous 12 years and then it was 
attenuated. 
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