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Abstract: This paper presents an object-oriented two-dimensional (2-D) overland flow model and its application in 
simulating flood flows over Ulus basin, located in the north of Turkey adjacent to the Black Sea. A new coding 
implementation according to the class environment created in object oriented C++ programming language is carried out 
in structuring and building the solver. The model is based on the Godunov type finite volume scheme on unstructured 
triangular meshes. A mass balance preserving wet/dry boundary solution algorithm is integrated in the numerical scheme 
to satisfy the positive-depth condition and minimize the numerical instability when treating the propagation of wave 
front in regions of dry bed. The balance between bed slope and flux terms is also preserved for still water conditions on 
irregular topography. The 2-D solver is verified by simulating selected dam break cases, where good agreement with 
measured data is achieved. For the simulation of flood flows in the Ulus basin, in general, the simulated outflow 
hydrograph is found to compare well with the recorded data. A selected inundation map that is extracted from the model 
results is also presented to show the water surface level in the Floodplain.  
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INTRODUCTION 
 

The movements of flood waves over watersheds or dam-
break induced shock waves in channels are commonly modeled 
by solving the one-dimensional (1-D) continuity and momen-
tum equations, which form the basis of various hydrological or 
hydraulic routing methods. However, the flood flows in an 
improved representation move along two horizontal directions. 
The extended two-dimensional (2-D) shallow water equations 
(SWE) can then be applied to model more reasonably the fluid 
flows over the land surface. Due to the non-linear character of 
the equations, analytical solutions are limited to only few ideal-
ized simple cases. Therefore, to accomplish the practical appli-
cation, the approach was mostly based on solving the equations 
numerically.  

The finite volume (FV) method can be applied to solve the 
integral form of the SWE on domains with either structured or 
unstructured grids. It is known that the FV method has the com-
bined advantages of finite element (FE) method for geometric 
flexibility and finite difference (FD) method for simple discreti-
zation procedure. Zoppou and Roberts (2003) compared several 
explicit schemes for 1D dam break problems and concluded that 
the Riemann solvers are more accurate and robust than the finite 
difference schemes to handle the flow discontinuity.  

Godunov (1959) presented an upwind type FV method to 
solve a Riemann problem at the interfaces of neighboring con-
trol volumes. Due to the difficulty of solving exactly the Rie-
mann problem, use of the approximate Riemann solvers, like 
the one developed by Roe (1981), has been widely adopted. 
Zhao et al. (1996) mentioned that the 1st order accurate FV 
scheme cannot model the discontinuities accurately and advised 
use of limiters to obtain results with higher order accuracy. 
Anastasiou and Chan (1997) incorporated slope limiters with 
the Roe type Riemann solver to have a higher-order accurate 
scheme for the prevention of spurious oscillations.  

In order to simulate flood flows through non-flat bottom, the 
source terms with bed slope are included in the SWE. For an 

irregular topography, the computation of bed slope within cells 
becomes very important while solving SWE as it is a numerical 
concern to preserve the balance between flux and source terms 
for still water equilibrium conditions. LeVeque (2002) proposed 
a wave propagation method; however, that is only valid for 
quasi-steady cases and cannot be applied on unstructured mesh-
es. Ying and Wang (2008) treated the pressure term as a whole 
without separating hydrostatic and bottom slope terms. Their 
approach adopted the assumption that the water surface level is 
constant and the gradient in surface level is zero at quiescent 
flow conditions. Other methods have also been employed to 
resolve this issue (Audusse and Bristeau, 2005; Bermudez and 
Vazquez, 1994; Bradford and Sanders, 2002; Brufau et al., 
2004; Rogers et al., 2003; Valiani and Begnudelli, 2006). 

The method using the upwind scheme to the source terms 
and the eigenvector projection has also been applied to solve the 
equilibrium condition problem (Bermudez and Vazquez, 1994; 
Brufau et al., 2004; Hubbard and Garcia-Navarro; 2000). This 
method allows the total slope terms to be calculated by sum-
ming the bed slope source terms at each edge in terms of the 
projected eigenvectors. This is done with the first-order accura-
cy. When extended to higher order schemes, e.g. second-order 
scheme (Cea et al., 2006; Hubbard and Garcia-Navarro, 2000), 
the higher order corrections should be included to satisfy the 
balanced condition. A hybrid scheme that uses first order in 
water depth and second order in discharge with the upwind 
forms of the bed slope source terms was applied by Cea et al. 
(2006). According to their findings, similar results to those from 
fully second-order scheme were obtained. While modeling the 
flow traveling into dry riverbeds or floodplains, the cells chang-
ing from dry to wet or vice versa may cause numerical errors in 
the velocity calculations. To prevent these numerical problems, 
a wet/dry tracking and treating algorithm or a so-called check 
program is needed in the flow solvers. Considering the process-
es of rainfall interception, evapotranspiration, moisture dynam-
ics, and runoff routing, Ivanov et al. (2004) proposed a physics-
based, distributed hydrological model to simulate overland 
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flows of mid- to large-sized watersheds. Kim et al. (2013) in-
vestigated rainfall and overland flow induced soil erosions at 
selected watersheds by solving the combined 2-D SWE and 
sediment bed evolution and transport equations. 

Most of the numerical codes were developed using procedur-
al type languages such as FORTRAN or C programming lan-
guage (Malan and Lewis, 2004). However, the powerful and 
rich class libraries and object-oriented (OO) framework from 
C++ language may provide the coding advantage for numerical 
programs applied in irregular domains with large number of 
grid points. Also, a well-managed object-oriented framework 
with inheritance, polymorphism and automatic memory alloca-
tion was found to be able to improve the productivity and soft-
ware flexibility according to Kettani and Ouazar (1994). Solu-
tions of SWE on unstructured elements require the formation of 
the topology and spatial relationship between each cell. This 
task can be achieved by creating class environment involving 
data structure for the components of a mesh element such as 
nodes, lines, centers and the triangles. The object-oriented 
framework used in FE meshing is given in the studies by Mack-
ie (1992) and Simphson (2003). Also, in those studies, it was 
stated that efficient implementation of object-oriented frame-
work assures code reusability. In the meantime, the use of the 
C++ programming language in Microsoft Net environment with 
assigned object-oriented components, the development of effec-
tive and user friendly numerical codes can be achieved.  

In this study, a new cell-centered FV overland flow model 
coded with an improved approach of using object-oriented C++ 
language and integrated wet/dry tracking algorithm is developed 
to simulate the movement of dam-break induced wave fronts 
and real time flood flows over a watershed. Unstructured trian-
gular meshes are used to represent the spatial domain in the 
model. Under the object-oriented framework, one can increase 
the functionality of the program and easily overcome the pro-
gramming difficulty caused by the unstructured triangular ele-
ments. The present model with defined topological relationships 
for elements and associated variables has the advantage of im-
proving the effectiveness of the computational procedure. Both 
the second-order and hybrid type finite volume schemes are 
adopted for spatial integration while a second-order Runge-
Kutta procedure is used for time integration. To limit the spuri-
ous oscillations in the solution, slope limiters are also coded in 
the solver. The verification of the model is performed by testing 
two different dam break cases. A practical application of the 
model is also carried out by simulating a flood event occurred in 
Ulus basin, Turkey. The data of irregular topography are availa-
ble to define the bottom elevations for the numerical simula-
tions. The computed outflow hydrograph from the present 2-D 
model is compared with the measured data for the flood event at 
the outlet of the Ulus basin. Flood maps showing the maximum 
extent of the water level are important for flood risk assessment. 
For the Ulus basin study, selected flood maps are generated 
from extracted model results using GIS software and presented 
in this paper.  
 
GOVERNING EQUATIONS AND FINITE VOLUME 
FORMULATIONS 
 

The usual 2-D shallow water equations in conservative form 
can be written as follows 
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, U = vector of conserved variables, F = 

vector of flux functions = (Fx, Fy), and S = vector of source 
terms. The variables of U, Fx, Fy, and S can be expressed as  
ࢁ  = ൥ ℎℎݑℎݒ൩ , ࢞ࡲ  = ൥ ℎݑℎݑଶ + 0.5݃ℎଶℎݒݑ ൩ , ࢟ࡲ  = ൥ ℎݒℎݒݑℎݒଶ + 0.5݃ℎଶ൩,  
ࡿ  = ቎ 0݃ℎ൫ܵ଴௫ − ௙ܵ௫൯݃ℎ(ܵ଴௬ − ௙ܵ௬)቏ (2) 

 
where u = vertically-averaged velocity in x direction, v = verti-
cally-averaged velocity in y direction, h = water depth, g = 
gravitational acceleration, Sox = bed slope in x direction, Soy = 
bed slope in y direction, Sfx = friction slope in x direction 

3/4222 /ˆ hvuun += (in SI unit), Sfy = friction slope in y direc-

tion 3/4222 /ˆ hvuvn += (in SI unit), and n̂  = Manning’s 
roughness coefficient. Integration of Eq. (1) over a triangular 
element i (see Fig. 1) yields  
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where i is the index of a triangular cell that is calculated, Ai is 
the area of the cell i, and B i is the boundary of cell i. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Topology of a triangular cell with the neighboring cells. 
 
Time scheme 
 

Applying the second-order Runge-Kutta scheme for time 
marching, Eq. (3) can be solved by the following formulations 
∗௜ࢁ  = ௜௞ࢁ + ଴.ହ୼௧஺೔ ൫− ∑ ௜௝௞ଷ௝ୀଵࡲ) ∙ ௜௝)Δ݈௜௝࢔ + ೔௞࢈ࡿ + ೔௞ࢌࡿ௜ܣ ൯ (4) 
௜௞ାଵࢁ  = ௜௞ࢁ + ୼௧஺೔ ൫− ∑ ௜௝∗ଷ௝ୀଵࡲ) ∙ ௜௝)Δ݈௜௝࢔ + ∗೔࢈ࡿ + ∗೔ࢌࡿ௜ܣ ൯  (5) 
 
where Ui = cell averaged values at the center of element i, 
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Δt = time step, superscript k , *, and k+1 represent the current 
time level, the intermediate time level, and the next time level, 
respectively, and ࢌࡿ = ൣ0, −݃ℎത ௙ܵ௫, −݃ℎത ௙ܵ௬൧்

. It should be 
noted that the above described Runge-Kutta scheme is an ex-
plicit scheme. Therefore, the well-known Courant-Fredrichs-
Lewy (CFL) criterion is used to choose the time step. 
 
Space scheme 
 

For the terms related to the spatial variations in (4) and (5), 
especially the boundary integral terms, the up to second-order 
scheme is described in this section. Adopting the formulations 
of Roe type approximate Riemann solver (Roe, 1981) the 

boundary integral term  ⋅
iB

dlnF  can be determined as 

 

ijj
m

mijmijmijijLijijRij

ijj ijij
B

leUU

ldl
i

Δλα

Δ

 



=
=

=












−⋅+⋅=

⋅=⋅

3
1

3

1

3
1

)()()()()(
2
1

)(

nFnF

nFnF

  
where j is the index for the neighboring cells; ijn and ijlΔ  
(j = 1,2,3) are respectively the outward unit normal vectors and 
the edge length of cell i for edge j. LU and RU are respectively 
the vectors of physical variables constructed at the left and right 
sides of the edge. As shown in Fig. 1, the ith cell with variables 
calculated is called the Left cell while the neighboring cells are 
called the Right cells for that cell. mij )(λ  and mije )(  
(m = 1,2,3) are respectively the eigenvalues and eigenvectors of 
the Jacobian matrix after applying the Roe’s average method. 

mij )(α  (m = 1, 2, 3) given in Brufau et al. (2004) are the coeffi-

cients calculated at the jth edge for cell i. 
The average eigenvalues for cell i, representing the charac-

teristic wave speeds, can be expressed as 
௜ଵߣ̅  = ഥ ݑ  ݊௫ + ഥ ݒ ݊௬ + ܿ̅ (7) 
௜ଶߣ̅  = ഥ ݑ  ݊௫ + ഥ ݒ ݊௬ (8) 
௜ଷߣ̅  = ഥ ݑ  ݊௫ + ഥ ݒ ݊௬ − ܿ̅ (9) 
 
where ݑ ഥ and c ,ݒ̅ ,  are the Roe’s (Roe, 1981) averaged values 
evaluated at the edge between cell i and a neighboring cell.  For 
the computation of the bed slope term, Sb , in Eqs. (4) and (5), 
this study utilizes the source term discretization method pro-
posed by Brufau et al. (2004), which gives 
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where 
 ௜ܵ௝ = ∑ ௠(݁̅௜௝)௠ଷ௠ୀଵ(௜௝ߚ)  (11) 
ଵ,ଷ(௜௝ߚ)  = ± ቄ ଵସ௖̅ ቀ1 − ଵ,ଷ൯ቁߣ൫̅݊݃݅ݏ [ܵ଴మ݊௫ + ܵ଴య݊௬]݈௖ቅ௜௝ (12a) 
ଶ(௜௝ߚ)  = ቄ ଵଶ௖̅ ቀ1 − ଶ൯ቁߣ൫̅݊݃݅ݏ [−ܵ଴మ݊௬ + ܵ଴య݊௫]݈௖ቅ௜௝ (12b) 
 

and 

ܵ଴ = ൣܵ଴భ, ܵ଴మ, ܵ଴య൧் = ൣ0, −݃ℎത∆ݖ௫, −݃ℎത∆ݖ௬൧்
 (13) 

 
In Eqs. (12) and (13), xij

n and yij
n are the outward unit normal 

vectors for the element i and  the jth edge along x and y direc-
tions, respectively (Fig. 1), Δzx and Δzy are defined for each 
edge as ∆ݖ௫ = ோݖ] − ௬ݖ∆ ௅)݊௫/݈௖]௜௝ andݖ = ோݖ] −  ,௅)݊௬/݈௖]௜௝ݖ
and lcij is the distance between the centers of the left cell (i) and 
right cell (j = 1,2,3). Here,  ݖ௅ and ݖோ are the bottom elevation 
values at the Left and Right cell centers.  

To have more accurate solutions, the second-order schemes 
can be utilized. Different from the first-order scheme using 
directly the values at cell centers, the conserved variables are 
first reconstructed at the left and right sides of cell edges using 
the cell gradient method. For example, the variables at the left 
or right side of the edge can be computed following 
௘ௗ௚௘ (௅ ୭୰ ோ)ࢁ  = ௖ (௅ ୭୰ ோ)ࢁ + ௖ (௅ ୭୰ ோ)ࢁ∇߶ ∙  (14) ࢘
 
where Uc (L or R) is the matrix of variables at the left or right cell 
(i or j) center, r is the distance vector from left (or right) cell 
center to the midpoint of the edge of the left (or right) cell, ∇ࢁ 
is the gradient of variable vector U, and ߶ is the slope limiter. 
Without including the effect of slope limiter (e.g. let = 0), Eq. 
(14) is recovered as a first-order accurate reconstruction. Ac-
cording to Pan and Cheng (1993), ΩΩΩΩ ⋅=∇ dlA nUU

d
)/1( , 

where ܣஐ is the area of a triangle (Ω) that is formed by connect-
ing the three neighboring centers, dΩ is the boundary of triangle 
(Ω), and ࢔ஐ and ݈݀ஐ are respectively the outward unit normal 
vector and length of any of the edges of triangle (Ω). Those 
reconstructed values from Eq. (14) are then input to compute  ݑ ഥ and c ,ݒ̅ , using Roe average formula for the calculation of 
the flux functions at the cell faces.  

When modeling flows, reconstructed variables at the cell 
edges using the second-order scheme have been suggested to be 
limited with slope type limiters to preserve monotonicity and 
limit oscillations. Here, the limiter as proposed by Barth and 
Jespersen (1989) is incorporated in the model development. The 
approach using the first-order scheme in water depth and the 
second-order scheme in discharges (hu and hv terms) is named 
as a hybrid approach. In this study, full second-order and hybrid 
FV computations are applied to the dam-break problems. Re-
sults from selected cases are compared. The hybrid approach, 
considering the accuracy of the numerical method and computa-
tional efficiency, however, is used for simulating flood flows 
over Ulus basin in Turkey. 
 
WET-DRY ANALYSIS 
 

Numerical modeling of flow over regions with dry lands or 
small depths may create high velocities and mass errors. 
Wet/dry boundaries in the computational meshes should be 
treated carefully to avoid numerical errors and instabilities. 
Propagation of flow at a wet/dry interface with a downward 
gradient can be handled straightforwardly by setting a tolerance 
value for water depth and solving it as the Riemann problem. 
However, flooding and drying process over an adverse slope 
can cause spontaneous movement of water to adjacent dry cells 
and damage the balance between flux and source terms (Brufau 
et al., 2002, 2004; Cea et al., 2006).  

A tolerance constraint (10–4 m) is defined for the water depth 
in this study to separate the wet cells from dry cells. The tolerance 

(6) 
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value is sensitive on surfaces with friction, as in the Manning 
equation the friction slope is obtained by dividing terms as 
functions of water depth. The following four checking 
procedures similar to those given by Brufau et al. (2004) are 
applied at wet/dry interfaces for Roe scheme with upwind slope 
terms.  
(1) Calculate Lh  and Rh  at the edge.  
(2) If Lh  or Rh  at an edge is smaller than the tolerance value, 
10–4 m, then that edge is assumed as dry with ݑ௅  or ݑோ and ݒ௅ or ݒோ values being set to equal to zero at left or right cell. The 
values of h , u , and v  at the edges are estimated by using the 
formulations given below.  
 
If ℎோ ≥ 10ିସ݉    and    ℎ௅ < 10ିସ݉, then ݑത = ,ோݑ ݒ̅ = ,ோݒ ℎത = 0.5(ℎ௅ + ℎோ) (15) 
 
If ℎோ < 10ିସ݉   and   ℎ௅ ≥ 10ିସ݉, then ݑത = ,௅ݑ ݒ̅ = ,௅ݒ ℎത = 0.5(ℎ௅ + ℎோ) (16) 
 
(3) If two cells sharing the same edge are both dry, the equa-
tions are not solved for that edge.  
(4) The bed elevation has to be redefined to preserve the flux 
and source term balance at wet/dry interfaces (Brufau et al., 
2004). If the cell (A) indicated in Fig. 2 is a left and wet cell and 
the cell (B) is a right and dry cell, the unit discharge at that edge 
is assumed to be zero and ∆ݖ௜௝ between these cells can be calcu-
lated using the following equation to preserve the balance with 
the flux term by assuming stationary flow condition.  
 
If  ݖ௅ + ℎ௅ < ௘ௗ௚௘ݍ ோ,   thenݖ = 0   and    ∆ݖ௜௝ =  ℎ௅ − ℎோ,  (17) 
 
where ݍ௘ௗ௚௘ is the unit discharge at the edge and ∆ݖ௜௝ = the bed 
elevation change between right and left cells. 
 

 
Fig. 2. Wet/dry boundary check for adverse slope condition. 
 
DATA STRUCTURE 
 

Although the unstructured meshes can best represent the ge-
ometrically complicated domain, coding the 2-D overland flow 
model using unstructured elements can be rather challenging as 
the cells are not following a defined pattern. With the integra-
tion of the object-oriented framework, one can increase the 
functionality of the program. In addition, using the geometric 
elements of the mesh as objects can overcome the programming 
difficulty. Forming a topology with element mapping in a pre-
processing level provides fast, convenient and user-friendly way 
to complete the numerical code.  

Data structure library and capability of C++ is well-known 
among the researchers. In this study, the computational domain 
is divided into triangular elements. The object-oriented pro-
gramming, which uses the geometric elements of the mesh as 
objects, is utilized to integrate the spatial information with the 
code and solve the SWE between an element and its surround-
ing three neighbors to calculate the conserved variables at the 
midpoints of the edges, three corner points and centers of the 
cells.  

The classes created in C++ are the triangle, center, line and 
point. Each triangle is composed of three corner nodes, three 
lines (edges) and three neighboring triangles. The nodes are 
numbered in counterclockwise direction as 1, 2 and 3. The 
edges and neighboring triangles are numbered with the same 
index as the node opposite to them (Fig. 1). A node can be a 
common element of numerous triangle cells while line segment 
is an element of two neighboring triangles at the interior regions 
and one triangle at the boundaries. By indexing the elements of 
the unstructured cells, the topological relationship is created and 
managed for each cell entity and any component easily.  

The SWE are solved to compute the conserved variables wa-
ter depth (h) and velocities in x and y directions (u and v), re-
spectively, either at the nodes or cell centers. To access the 
variables stored at any entity inside the domain, pointers which 
are called handles are defined to be used with the topological 
relationship. Each class has a handle on the other classes so that 
the other classes’ methods and objects can also be used by that 
class.  

In Fig. 3, the dashed arrows represent the class that has a 
handle and arrows are pointing towards the class that the handle 
works on. The two sided arrows are between classes that have 
handle on each other. Triangle class has a handle on point class 
to know the three corner points and use their methods and at-
tributes while point has a handle on triangle class to identify the 
triangles that are surrounding that point and reach objects of 
triangle class. Triangle class also holds a pointer to line class to 
access the three edges. To access the three neighboring trian-
gles, pointer is used where each of the array elements represent 
one of the three neighbors. Line class uses a handle to point 
class to locate the endpoints and use the coordinates of them to 
build the vectors. Line class also holds a pointer to triangle class 
to identify the neighboring triangles to the left and right of an 
edge.  

 

 
 

Fig. 3. Classes and their relationship in the data structure model. 
 
BOUNDARY CONDITIONS  
 

Boundary cells are the cells at the interior side of the bound-
ary domain and have at least one of their edges on the boundary. 
The boundary conditions are assigned at the ghost cells created 
as neighbors to the boundary cells. In this study, two different 
boundary conditions are defined, closed boundary (wall bound-
ary) and open boundary at which depth or discharge could be 
imposed.  
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At wall boundary condition, the water depths (h) at the ghost 
cells are kept the same while the velocities (u and v) are taken 
as the negative values of those at boundary cells to ensure zero 
velocities on the wall surface. The open boundary at the outlet 
regions of all test cases are used as transmissive boundaries in 
this study. It is important that the waves leaving the domain are 
not reflected back. The third type is the inlet boundary which is 
used for the flood simulation in Ulus basin, Turkey. Riemann 
invariants and characteristic curves are used to compute the 
corresponding values of the velocity and water depth at the inlet 
cells.  
 
EXAMPLE CALCULATIONS AND MODEL TESTING  
Dam-break wave propagating on downward sloping bottom 
with dry bed 

 
To examine the performance the developed 2-D overland 

flow model and its capability of handling flows on sloping 
surface with wet and dry interface, a case related to Bellos et al. 
(1992) dam break experiments is simulated. The experimental 
domain with an asymmetric setup of converging-diverging 
channel and gauging stations are shown in Fig. 4. A dam face is 
located at x = 0 m. A series of dam-break conditions were tested 
during the experiments (Bellos et al., 1992). The case with an 
upstream water depth of 0.3 m and downstream river bed dry 
was selected to be simulated in this study. The downward bot-
tom slope is 0.006 and the Manning’s roughness coefficient n = 
0.012. The domain was discretized into 10,500 triangular ele-
ments. 

The time variation of water depth computed at gauging sta-
tions D1 (x = –8.5 m), D2 (x = –4 m), and D3 (x = 2.5 m) are 
compared with the experimental observations (Bellos et al., 
1992) in Figs. 5(a)–5(c). The results with the second-order 
scheme and hybrid scheme are presented for comparison. Bellos 
et al. (1991) simulated this case with their finite difference (FD) 
numerical model. Their numerical results at station D3 are also 
shown in Fig. 5(c) to compare to the present model solutions 
and experimental data. As indicated in Figs. 5(a) to 5(c), the 
results obtained from the present model agree well with the 
observed data. The model reproduces the experimental observa-
tions with high accuracy at stations D1 and D2. The compari-
sons of water depth at station D3 (Fig. 5(c)) also reveal that the 
present model improves the predictions on the peak of the dam-
break wave and time to peak when comparing to those obtained 
from the FD numerical model. It should be noted that both the 
hybrid and second-order schemes perform equally well in pre-
dicting the water depth. The difference is nearly indistinguisha-
ble. The factor of converging-diverging channel geometry tends 
to smooth out the propagation of downstream wave front and 
the upstream depression wave and results in the better predic-
tions provided by the present FV models. 

 
 
 

 

 
 
 
 

 
Fig. 4. Geometry of the experimental setup for dam-break wave 
propagation in a converging-diverging channel given in Bellos 
et al. (1992). 
 

Fig. 5. Comparisons of simulated water depth from the present 
models (Hybrid and Second-order schemes) with measured data 
given in Bellos et al. (1992) at gauging stations: (a) D1, (b) D2, 
and (c) D3, for dam-break wave propagating in a converging-
diverging channel. 
 
Wave propagating onto a triangular obstacle 
 

In this test case, the experiments performed by the J.M. Hiv-
er at the Laboratoire de Recherches Hydrauliques, Universit´e 
de Bruxelles, was simulated to demonstrate the present solver’s 
capability of preserving stability when modeling wetting and 
drying on adverse sloping bottom. The sketch of the problem 
statement is shown in Fig. 6 (Brufau et al., 2002). The locations 
of gauging station with G4 at x = 4 m, G10 at 10 m, G11 at 11 
m, G13 at 13 m, and G20 at x = 20 m are also illustrated in Fig. 
6. The length of the entire domain is 38 m and the dam face is 
located at x = 15.5 m. The triangular obstacle (6-m long and 
0.4-m high) is situated at x = 28.5 m. The initial water depth is 
h0 = 0.75 m in the reservoir and dry bed is assumed at the down-
stream of the dam. Manning roughness coefficient is 0.0125 for 
the bed and 0.011 for the walls.   

      x= 0 

Flow direction 
 

    x= –8.5m 

8.5m 

D2 D1 D3 

Dam Face 
    x=0   

4m 
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Fig. 6. Sketch of the domain and gauging stations for experimental study as described by Brufau et al. (2002) of dam-break flows 
over a triangular obstacle. 
 

 

 

 
Fig. 7. Comparisons of present simulated water depth with 
Brufau et al. (2002) numerical results and reported experimental 
data at gauging stations: (a) G4, (b) G10, (c) G11, (d) G13, and 
(e) G20. 

 

 
 

The present simulated results at selected gauging stations of 
G4, G10, G11, G13, and G20 are shown in Fig. 7 to compare to 
the experimental observations and numerical solutions reported 
by Brufau et al. (2002). Generally, the present numerical 
predictions fit well with measured data, although both the 
present and Brufau et al. (2002) models underestimate water 
depths when comparing to the experimental observations in the 
dry-wet transition region (or region near the tip of the triangular 
obstacle). The discrepancy is considered to be partly caused by 
the errors of measuring the splashed flow profile at the vertex of 
the obstacle (G13) and partly due to the initially smoothed 
water depth at the wet/dry interface approaching the pointed 
bottom obstacle. Overall, the present 2-D FV solver 
successfully models the process of wave run-up, wave 
overtopping, and formation of reflected wave without any 
deformation and instability. 
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Fig. 8. Geographic location of Ulus basin, its river network, and the locations of inflow hydrographs inputted for flood flow simulation. 

 
Fig. 9. Triangular mesh system of the rivers and floodplain located on Ulus Basin. 
 
Flood flow modeling on Ulus basin, Turkey 
 

To extend the model’s capability of simulating flows on a 
more complicated topography and catching wet/dry front with 
conserving mass, the present 2-D overland flow model was 
applied to a case study of watershed flood flow modeling. The 
study is to simulate a 1991 flood event on Ulus basin located in 
the north of Turkey adjacent to the Black Sea (Fig. 8), where 
floods have been the major threat to the region. The Ulus basin 
is a sub-basin of Bartin basin, which receives relatively high-

er rainfall amount than the mean rainfall of Turkey (Usul 
and Turan, 2006). Two major rivers, namely Ulus River and 
Ovacuma River, flow through the basin and join together to 
form the Gokirmak River (Fig. 8). The region has some steep 
sloped mountains and scattered agricultural lands that narrow 
the riverbed and the flood plains. The flow modeling domain of 
the Ulus basin as indicated in Fig. 8 includes the inflow and 
outflow sections and the downstream gauge location. The Man-
ning’s roughness coefficients were obtained through the cali-
bration procedure. The values for the river beds of Ulus and 

 http://en.wikipedia.org 

    Turkey 

Black Sea 
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Ovacuma Rivers are respectively 0.03 and 0.04 and for the 
floodplain the values are 0.04 and 0.065. The recorded outflow 
hydrograph is available for comparison with computed flow 
rates at the outflow location. 

The hydrographs from the 227 km2 upstream subbasin of the 
Ulus River and 422 km2 of the Ovacuma River can be found in 
Usul and Turan (2006) for the upstream inflow boundary condi-
tions. In addition, inputs of side flow hydrographs (entering to 
the Ulus and Gokirmak rivers) for the subbasins with the areas 
145km2 and 143 km2 are also included in the simulation. The 
peak flow of the upstream hydrograph entering the Ulus River 
is 152  m3/s whereas it is 265 m3/s for the inflows entering the 
Ovacuma River. The peak flows for the hydrographs entering as 
the side flows to the Ulus and Gokirmak Rivers are 92 m3/s and 
90 m3/s, respectively. As shown in Fig. 9, the computational 
domain covering the two-river system is divided into 10,000 
triangular cells. The bottom elevations at the cell centers and 
corner points were interpolated from topographic data in a Geo-
graphic Information System (GIS). 

 

 
Fig. 10. Comparisons of simulated and observed flood hy-
drgraphs at the outlet of Ulus Basin for 1991 flood event. 
 

The present solver was run for the whole flood duration 
which is 144 hours (6 days) from July 4, 1991 to July 10, 1991. 
The comparisons between simulated and observed flood hydro-
graphs at the outlet of the basin are presented in Fig. 10. Simu-
lated peak discharge is 585 m3/s whereas the observed one is 
596 m3/s. As seen from Fig. 10, reasonable match between the 
simulated and observed hydrographs can be noticed. Defining 
the L1-norm error as 
 

 
= =

−=
N

i

N

i
iiinumL

1 1
exp,exp,, /1 ααα , 

 
where numα  is a value of physical variable generated from 
numerical simulation, expα  is a measured value of the physical 
variable, and N represents the total number of data points. For 
the error analysis of the two most important characteristics of 
the flow hydrograph; peak flow rate and time to peak, the L1-
norm errors of the predicted values equal to 0.018 and 0.012, 
respectively.  

The time variation of the rising and decreasing stage of the 
simulated flow rates is similar to those indicated by the ob-
served hydrograph, while at the later stage of the flow recession 
the simulated outflows tend to decrease at a fast rate than those 
of the observed data. This is a result potentially caused by the 

concentrated side inflows entering the river system and small 
amount of groundwater flows that gradually enter the outlet at 
the time close to the end of the storm event, while this effect is 
not included in the model simulation. With the computed time 
variation of water depth in the floodplain, 3-D perspective view 
plots of the free-surface elevation and inundation maps can be 
generated. As an example, an inundation map at t = 94 hour for 
this flood event is extracted using GIS software and shown on 
TIN (Triangulated Irregular Network), an elevation model, in 
Fig. 11. The present model can serve as an engineering tool to 
combine the computed flow depths with velocity vectors into 
flood risk maps, especially considering the events of different 
return periods, for detailed flood analysis and enhancement of 
flood warning.  

 

 
 
Fig. 11. Example plot showing an inundation map on TIN for 
1991 flood event occurred on Ulus Basin at t = 94 hour. 
 
CONCLUSIONS 
 

A new coding implementation for the development of a cell-
centered 2D flow solver with hybrid finite volume scheme on 
unstructured meshes is presented in this paper. Detailed descrip-
tion on self-structured class environment is provided to show 
the methodology of constructing a flow model. The developed 
solver with the use of triangular meshes and inclusion of 
wet/dry and shock wave capturing algorithm is capable of mod-
eling complicated flow problems on domains with regular or 
irregular topography. Certainly, the present model is limited to 
the horizontally dominated two-dimensional flow problems. 
Also, the effects of vertical flow component and turbulence are 
considered to be negligible. In this study, selected test cases are 
simulated to verify and validate the developed flow model. The 
solver achieves good agreement with measured data for the 
cases of modeling propagation of dam-break waves on dry bed 
or over a triangular obstacle. The stability and convergence of 
the hybrid scheme are found to be satisfactory. A unique set of 
geographical and hydrological data is integrated in the solver to 
model a flood event which occurred in 1991 in Ulus basin lo-
cated in the north of Turkey. The predicted outflow hydrograph, 
in general, agrees well with recorded data. Moreover, flood 
maps were extracted using GIS software to show the water 
surface level in the floodplain.  
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