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Abstract: The study is focused on the analysis and statistical evaluation of the joint probability of the occurrence of hy-
drological variables such as peak discharge (Q), volume (V) and duration (t). In our case study, we focus on the bivariate 
statistical analysis of these hydrological variables of the Danube River in Bratislava gauging station, during the period of 
1876–2013. The study presents the methodology of the bivariate statistical analysis, choice of appropriate marginal dis-
tributions and appropriate copula functions in representing the joint distribution. Finally, the joint return periods and 
conditional return periods for some hydrological pairs (Q-V, V-t, Q-t) were calculated. The approach using copulas can 
reproduce a wide range of correlation (nonlinear) frequently observed in hydrology. Results of this study provide com-
prehensive information about flood where a devastating effect may be increased in the case where its three basic compo-
nents (or at least two of them) Q, V and t have the same significance.  

 
Keywords: The Danube River; Joint distribution; Copula functions; Peak flow; Volume and duration of the wave; 
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INTRODUCTION 
 

The effect of the extreme hydrological event depends on 
many factors such as season, weather conditions, geographical 
location, relief, duration, volume, rainfall and so on. Many 
hydrologists analyzed mutual dependence between these com-
ponents of the hydrological cycle to identify the flood-
generating processes; see e.g. Maca and Torf (2009), Merz and 
Blöschl (2003) and Parajka et al. (2008). Understanding flood 
regime changes in Europe was addressed by Hall et al. (2013). 
The analysis and comparisons of the seasonality of hydrological 
characteristics in Slovakia and Austria or across the Alpine–
Carpathian range can be found in the works of Parajka et al. 
(2009) or Parajka et al. (2010).  

Therefore, for more comprehensive analysis of the flood, it is 
necessary to know and understand the relationship and depend-
ence between the basic characteristics of the flood wave. In 
order to obtain this information, a joint probability density 
function and a joint cumulative distribution function of varia-
bles are needed. In a sense, every joint distribution function 
implicitly contains both: a description of the marginal behavior 
of individual variables and a description of their dependency 
structure. The joint probability distribution analysis is better use 
in some cases of the hydrological events, for example: 

1. Interdependence and mutual correlation of the variables 
that characterized flood wave (discharge, volume, duration). 
Some flood events with a peak of return period of 100-years 
could be less damaging than floods with both peak and volume 
of return period of 10-years.  

2. Mutual influences of extreme events that occur on the 
main river and its tributaries simultaneously. Some examples 
are provided in Favre et al. (2004), Le Clerc and Lang (2002), 
Prohaska et al. (1999). 

In traditional method of bivariate flood frequency analysis, 
the parametric distribution functions of the hydrological varia-
bles such as bivariate normal, exponential, lognormal, gamma, 
Gumbell, etc. were used. Some existing studies which solves 
the bivariate flood frequency analysis considering specific fami-
lies of the parametric distribution functions were by Ashkar and 

Rousselle (1982), Faqir and Shazia (2007), Sackl and Bergmann 
(1987), Todorovic (1978), Yue et al. (1999). A drawback of this 
approach is that the same family of marginal distributions is 
assumed for all flood variables, while analyzed variables shows 
different margins.  

The concept of copula functions relaxes the restriction of the 
traditional multivariate flood frequency analysis and connects 
marginal distribution of random variables with their joint distri-
bution. The main advantage of constructing multivariate distri-
butions via copulas is that univariate marginal distributions can 
be defined independently of their joint behaviour. 

Therefore, copulas appear to be the most suitable tool for 
modeling dependencies between two or more variables. The 
word “copula” was first used in mathematical or statistical sense 
by Sklar (1959), and many of the basic results on copula can be 
traced to the early work of Heofinding (1940). However, a good 
introduction of the theory of copulas can be found in mono-
graphs Joe (1997) and Nelsen (1999). For example, De Michele 
et al. (2005) applied bivariate Archimedean copulas to simulate 
flood pairs of the peak and volume. Salvadori and De Michele 
(2004) studied the relation between univariate and bivariate 
return period in term of Archimedean copula. Zhang and Singh 
(2006) derived bivariate joint distributions of the flood peak and 
volume, and volume and duration by using copula method. 
Grimaldi and Serinaldi (2006) constructed a trivariate joint 
distribution of the flood event variables using the fully nested 
Archimedean copula functions. The dependence between dis-
charge and volume using bivariate copulas was presented by 
Favre et al. (2004) or Genest and Favre (2007). Karmakar and 
Simonovic (2009) present the bivariate flood frequency analysis 
with the copula functions for evaluating joint distributions with 
mixed marginal distributions. There exist a huge number of 
parametric bivariate copulas, but the set of higher-dimensional 
copula is rather limited. Furthermore, there have been some 
attempts to construct multivariate extensions of the Archimede-
an bivariate copula, see e.g. Embrechts et al. (2001) and Savu 
and Trede (2006).  

Flood risk assessment in Slovakia is defined and determined 
by the Sectorial Technical Norm of the Ministry of Environ-
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ment OTN ŽP 3112-1:03 and Flood Risk directive 2007/60/EC. 
With the strategy of Europe 2020, it is one of the measures to 
meet the partial milestone of the RIS3 "Supporting research and 
innovation in environmental areas, including climate change 
adaptation". Thus, this is the reason the monitoring and evalua-
tion of extreme hydrological phenomena in the form of flood-
ing, flow increase, or dryness is very timely. We preclude that 
the results obtained by the bivariate hydrological analysis pro-
vide more reliable assessment of flood risk. The bivariate anal-
yses treat flood events in a complex way, thus having a poten-
tial to be applied in the praxis of water management and the 
design of flood protective systems.  

The aim of this study is to analyze and statistically evaluate 
the bivariate joint probability of the hydrological variables 
occurrence. The three main hydrological variables: peak dis-
charge, volume and duration of the flood waves of the Danube 
River in Bratislava gauging station, during the period of 1876–
2013 were analyzed. The study consists of two main parts. The 
first part deals with the estimation of the marginal distribution 
of hydrological variables, while the second part concerns itself 
with the estimation of the joint distribution of variables using 
copula function. The section “Methodology” is focused on the 
description, application and comparison of Archimedean copu-
las in bivariate statistical analysis. Finally, the joint return peri-
ods and conditional return periods of the hydrological pairs (Q-
V, V-t, Q-t) were calculated.  
 
METHODOLOGY 
Basic features of copulas 
 

A copula function is a mathematical technique which offers a 
flexible way of describing nonlinear dependence among multi-
variate data in isolation from their marginal probability distribu-
tions, and serves as a powerful tool for modeling as well as 
simulating nonlinearly interrelated multivariate data. A bivariate 
copula can be represented as: 
 
C:[0,1]2 → [0,1]. (1) 
 
It has to fulfill the following conditions: 1) C(u,1)=u, C(1,v)=v, 
C(u,0)=C(0,v)=0, and 2) C(u1,u2)+C(v1,v2)-C(u1,v2)-C(v1,u2) ≥
0, if u1 ≥ v1, u2 ≥ v2 and u1, u1, v1, v1 ∈ [0,1]. The first condition 
defines the copula limits. The second condition ensures that the 
probability corresponding to any rectangle in the unit square is 
non-negative (Karmakar and Simonovic, 2007). As mentioned 
above, we could also define copula as a joint distribution func-
tion of standard uniform random variables. The random varia-
bles may have different properties and thus need to be convert-
ed to variables having an interval of [0,1] by scaling the data.  
 
Sklar’s theorem 
 

Sklar’s theorem (1959) is the foundation of the concept of 
the copula. Sklar showed that every n-dimensional distribution 
function H(x1,…,xd) could be written as:  

 
))(),...,((),...,( 111 ddd xFxFCxxH = . (2) 

 
For two dimensional (bivariate) distribution function H(x,y), 

then we can write: 
 

))(),((),( yFxFCyxH = , (3) 
 
where F(x) = u and F(y) = v are marginal distribution functions. 

If F(x) and F(y) are continuous, then the copula function C is 
unique and has the following representation: 
 

))(),((),( 11 vFuFHvuC −−= ,   0 ≤  u, v ≤  1, (4) 
 
where the F–1(u) and F–1(v) are inverse distribution functions of 
the marginal. Conversely, it can be proven that if C is a copula 
function and F(x) and F(y) are distribution functions, then the 
function H(x,y) defined by Eq. (1) is a bivariate distribution 
function with margins F(x) and F(y) (Nelsen, 2006).  

There exist a large number of the copula classes; thus com-
monly used copulas includes elliptical (normal, Gaussian and 
Student-t, …), Archimedean (Clayton, Gumbel-Hougaard, 
Frank, Joe, and Ali-Mikhail-Haq, …), extreme value (Hüsler-
Reiss, Galambos, Tawn, and t-EV, …) and other families 
(Plackett and Farlie-Gumbel-Morgenstern,…). 

Among existing types of copulas, the Archimedean one is the 
very popular class used in hydrological application (De Michele 
et al., 2005; Favre et al., 2004; Genest and Favre, 2007; Zhang 
and Singh, 2006). The Archimedean class of copulas is popular 
in empirical applications for flexibility and easy construction. 
This class of copulas includes a whole suite of closed-form 
copulas that covers a wide range of dependency structures, 
including comprehensive and non-comprehensive copulas, 
radial symmetry and asymmetry, and asymptotic tail depend-
ence and independence. However, a bivariate asymmetrical 
Archimedean copula can be defined as: 
 

)),()((),( 1 vuvuC ϕϕϕ += −  (5) 
 
where φ is the copula generator which is a continuous, strictly 
convex and monotonic decreasing function.  

For each copula, the value of θ (copula parameter) can be ob-
tained by considering the mathematical relationship (Nelsen, 
2006) between Kendall’s coefficient of correlation τ  and the 
generating function φ(t), which is given by: 
 

 ′+=
1
0

)](/)([41 dttt ϕϕτ ,  (6) 

 
where t = u or v. 

Table 1 shows a well-known and most used bivariate one–
parameter copula in hydrology. Some other distributions ex-
pressed as copulas were also listed, e.g., in Balakrishnan and 
Lai (2009).  
 
Dependence measures  
 

Schweizer and Wolff (1981) showed that two standard non 
parametric correlation measures could be expressed solely in 
terms of the copula function. These are Kendall’s correlation 
coefficient and Spearman’s correlation coefficient. Kendall’s 
coefficient of correlation (τ ) is a well-known nonparametric 
measure of dependence or association in multivariate statistics. 
Kendall’s τ  based on observation is estimated as: 
 

 −−= −

ji
jijin yyxxsign

n



)])([()
2

( 1τ , (7) 

 
where sign = 1 if )])([( jiji yyxx −− > 0, sign = –1 if 

)])([( jiji yyxx −−  < 0; i; j = 1; 2;… ; n.  
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Table 1. Probability function, parameter space, generating function and relationship of non-parametric dependence measure with 
association parameter for the most frequently used Archimedean copulas in hydrology. 
 

Copula C (u, v, θ) parameter space 
θ 
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τ 

generator 
φ(t) 
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θ
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1

1 dt
e

tD t
, )log(* θθ −=  

 
Like Kendall’s coefficient, another nonparametric measure 

of dependence is Spearman’s ρ (Spearman, 1904). If two sets of 
data Xi and Yi are converted to rankings xi and yi, and the differ-
ences di between the ranks of each observation of the two varia-
bles are calculated; thus if there are no tied ranks, i.e. 

))((, jijiji YYXXji =∨=∧≠∃ , then Spearman’s ρ is given as 
(Myers and Well, 2003): 

 

)1(

6
1 2

2

−
−= 

nn

diρ , (8) 

 
where di = (xi–yi) is the difference between the ranks of corre-
sponding values Xi and Yi and n is the number of values in each 
data set (same for both sets) (Karmakar and Simonovic, 2009). 

Pearson correlation coefficient r is a measure of linear de-
pendence; that is, if Y depends on X linearly, then the absolute 
value of r is equal to 1. We also know that linear correlation is 
invariant only under strictly increasing linear transformations. 
In addition, linear correlation is the correct dependence measure 
to use for multivariate normal distributions; but for other joint 
distributions, it can give very misleading impressions. There-
fore, the Pearson correlation coefficient r can be expressed as: 

 

)var()var(
),(

yX
yxCovR = , (9) 

 
Pearson correlation coefficient depends not only on the copu-

la but also on the marginal distributions. Thus, this measure is 
affected by nonlinear changes of scale. Moreover, it is not in-
variant to monotonic transformations to Kendall’s and Spear-
man’s measures (Favre et al., 2004). 

Appropriateness of the choice of the distribution function 
was based on the "Gringonten plotting-position", which repre-
sents the empirical probability (Cunnane, 1978; Gringorten, 
1963; Yue et al., 1999; Zhang and Singh 2007). 
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where, N is the total number of the variables, j and i ascending 
ranks of ix  and jy , mln  is the number of occurrence of the 

combinations of ix  and jy . 
 

Return periods of the variables and conditional distribution 
 
In hydrological frequency analysis, the return period of the 

hydrological variable that occurs once in a year can be defined 
as: 

 

))(1(
1

)(
1

xFxXP
T

−
=

≥
= , (11) 

 
where, T is return period in years and F(x) is univariate cumula-
tive distribution function.  

In multivariate statistical analysis, we can determine the re-
turn period of the phenomenon in two ways. The first is a joint 
return period, while the second is a conditional return period. 

Joint return period for two variables defined more authors 
(Salvadori, 2004; Salvadori and De Michele, 2006; Shiau, 2003) 
and it can be written in the form of: 

 

)),()()(1(
1

,
yxHyFxF

T yxand
+−−

= , (12) 

or  
 

)),(1(
1

,
yxH

T yxor
−

= . (13) 

 
Equation (12) represents the joint return period of X ≥  x and 

Y ≥  y. Equation (13) represents joint return period of X ≥ x or 
Y ≥  y. These relationships indicate, that different combinations 
of the numbers x and y, can take same return period. ),( yxH  is 
the joint cumulative distribution function (can be expressed as 
copula function – Equation (3)). 

Conditional return period for X, given Y ≥  y may be ex-
pressed as (Shiau, 2003): 

 

)),()()(1))((1(
1

)( yxHyFxFyF
T yYx +−−−

=≥ , (14) 

 
where x and y are random variables and ),( yxH  is the joint 
cumulative distribution function. Conditional cumulative distri-
bution function of X, given Y ≥  y may be expressed as: 
 

)(1
),()(

)( yF
yxHyFF yYx −

−=≥  , (15) 

 
where H(x,y) is the joint cumulative distribution function of the  
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random variables X and Y, and )(yF  is cumulative distribution 
function of the variable Y. An equivalent formula for condition-
al return period of Y ≥  y, given X ≤  x can be obtained. 
 
CASE STUDY 
Hydrological characteristics of the Danube River 

 
To illustrate the bivariate hydrological analysis, 138 years 

(1876–2013) of daily discharge data of the Danube River at 
Bratislava in Slovakia were used.  

The Danube River is the second greatest river in Europe. The 
basin covers an area of 817 000 km2. The river originates from 
the Black Forest in Germany at the confluence of the Briga and 
the Breg streams. The Danube then flows southeast for 
2,872 km (1,785 mi), passing through four Central European 
capitals before emptying into the Black Sea via the Danube 
Delta in Romania and Ukraine (Figure 1). The Slovak part of 
the Danube River is situated from river-km 1708.2 to river-km 
1880.2. The length of around 7.5 km of the river creates a 
natural border to Austria, 22.5 km is in Slovakia and the rest of 
142 km is the state border to Hungary. Between the Vienna and 
the Danube lowland, the Danube flows in concentrated channel 
with relatively high bed slope. After leaving the Small 
Carpathians, it keeps the slope and flows over its alluvial cone 

through a complicated network of branches and meanders 
downstream to the town of Medvedov.  

The different physical features of the river basin affect the 
amount of water runoff in its three sections. In the upper 
Danube, the runoff corresponds to that of the Alpine tributaries, 
where the maximum occurs in June when melting of snow and 
ice in the Alps is very intensive. Runoff drops to its lowest point 
during the winter months. In the middle basin, the phases last up 
to four months, with two runoff peaks in April and June. The 
April peak is local. It is caused by the addition of waters from 
the melting snow in the plains and from the early spring rains of 
the lowland and the low mountains of the area.  

 
Relationship between hydrological characteristics 

 
The number of 138 flood events during the period of 1876–

2013 on the Danube River at Bratislava in Slovakia was ana-
lyzed. The events were based on the annual maximum discharge 
series method. The trend of the annual flood peaks of the select-
ed flood events during the period of 1876–2013 is shown in 
Figure 2 and the decadal averages of annual peak discharges is 
illustrated in Figure 3. The annual peak discharges of the select-
ed floods show a slight upward trend (linear line) since 1876 
and ranging from 3000 m3s–1 to 10 870 m3s–1.  

 

 
 

 
 
Fig. 1. Map of the Danube River basin (red point indicates Bratislava location). 
 
 

 

Fig. 2. Temporal variability of annual peak discharges (square points), their averages through a 7-year moving window, and a linear 
trend line (period of 1876–2013, Danube River: Bratislava). 
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Fig. 3. Decadal averages of the annual peak discharges of selected flood events during the period of 1876–2013 (Danube River: 
Bratislava). 
 

a)  

b)  
 
Fig. 4. Top panel a) volumes and down panel b) durations corresponding to the annual peaks discharges during the period of 1876–
2013 (Danube River: Bratislava) shown in Fig. 2. 
 

 
 

Fig. 5. Relationships between analyzed pairs of the selected flood events during the period of 1876–2013 (Danube River: Bra-
tislava): a) Q-V, b) Q-t and c) V-t. 
 

From the flood hydrograph of the each wave, the correspond-
ing volume and duration values were determined. Theoretically, 
the determination of the flood duration involves the identifica-
tion of the time of occurrence of the start and the end of flood 
runoff. Generally, the start and the end of a flood event is de-
termined by: (1) fixing some threshold discharge and consider-
ing the upper part of the hydrograph as a flood event, and the 
corresponding duration value as the flood duration (Ashkar and  

Rousselle, 1982; Grimaldi and Serinaldi, 2006; Todorovic and 
Zelenhasic, 1970), and (2) by finding the time boundaries 
marked by a rise in discharge from the base flow denoting the 
start of a flood runoff, and a return to base flow, denoting the 
end of the flood runoff (Linsley et al., 1975; Yue et al., 1999). 

In our study, the duration of the each flood wave is deter-
mined as the difference between time t0 (start - increasing of the 
discharge from level aQ  - long-term average annual discharge) 
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and time tn (end - decreasing of the discharge on level aQ ). 
Corresponding volume V for the particular flood wave was 
calculated for derived flood wave duration.  

 
Table 2. Basic statistic characteristics of the analyzed hydrolog-
ical variables during the period of 1876–2013 (Danube River: 
Bratislava). 
 

 Q  V t 

Mean 5972.14 7670.05 23.69 
Standard Deviation 1690.77 3826.03 8.83 
Coefficient of skewness 0.79 1.55 0.86 
Minimum 3000 2722 10 
Maximum 10870 25879 52 
Coefficient of variation 0.28 0.50 0.37 
Count 138 138 138 

 
Table 3. Correlation matrix of the analyzed pairs during the 
period of 1876–2013 (Danube River: Bratislava). 
 

Correlation matrix Q-V Q-t V-t 
Spearman ρ 0.48 0.12 0.82 
Kendall τ 0.34 0.07 0.65 
Pearson 0.49 0.13 0.83 

 
The corresponding volume and duration values of selected 

flood waves are illustrated in Figure 4 a) and b). Figure 4 
reveals the downward trends in the corresponding volume and 
duration of the selected flood waves (linear line). Volume 
values range is from 2 722 to 25 789 mil.m3 and duration values 
range is from 10 to 52 days. Some basic statistical 
characteristics of these variables are presented in Table 2. The 
correlations between analyzed pairs Q-V, Q-t, V-t are shown in 
Figure 5a–c. Correlation coefficients of pairs are presented in 
Table 3. Analyzed pairs Q-V and V-t show an intermediate 
dependence or higher dependence. Analyzed pairs Q-t show 
very low dependence.  
 

RESULTS 
Univariate analysis 

 
The first step of bivariate analysis is to identify marginal dis-

tributions for three main hydrological variables. The random 
variables may have different properties and thus need to be 
converted to variables having interval of [0,1] by scaling the 
data. Knowing the marginal distribution, we are able to separate 
marginal behavior and dependence structure. The dependence 
structure is fully described by the joint distribution of uniform 
variables obtained from marginal distribution.  

In order to determine univariate parametrical distribution 
functions (marginal distributions), standard MLM (maximum 
likelihood method) method was used.  

The two-parameter Gumbel distribution was used to describe 
the peak discharges Q and duration t. This distribution is one of 
the most frequently used and well suited for modeling extreme 
hydrologic events in hydrology. The three-parameter LogGam-
ma distribution was used for volume V modeling. The Log-
Gamma distribution is a very important model in statistical 
hydrology. It is a flexible three-parameter family capable of 
taking many different shapes and has been widely used in many 
countries for flood series modeling. 
According to the goodness of fit tests (Kolmogorov-Smirnov 
and χ2), we cannot reject the hypothesis that both selected dis-
tributions fit well to the observed data at a 5% significance 
level. Parameters of these marginal distributions are illustrated 
in Table 4. 

Therefore, the empiric distribution evaluated with Cunnane 
(1988) formula have been fitted with selected parametrical 
cumulative distribution functions (Fig. 6 a) –c)).  
 
Table 4. Parameters of univariate cumulative distribution func-
tions and Pvalue of the Kolmogorov-Smirnov test (K-S) and Chi 
square test (χ2) (Danube River: Bratislava). 
 
Variables (cdf) Location Scale Shape Pvalue K-S Pvalue χ2

Q (Gumbel) 5195.67 1341.26  0.97 0.99

t (Gumbel) 19.65 6.94  0.95 0.81

V (LogGamma (3P)) 273.8 0.0318 741.32 0.84 0.76

 

 
 
Fig. 6. Comparison between Cunnane empirical distribution and a) theoretical Gumbel cumulative distribution function for Q, b) 
theoretical LogGamma cumulative distribution function for V, and c) theoretical Gumbel cumulative distribution function for t 
(point- empirical data, line- theoretical distribution). 
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Bivariate analysis 
 
Copula functions were used as mathematical tool for deter-

mining a joint cumulative distribution of two dependent varia-
bles. The copulas considered in the study are included into the 
class of Archimedean copulas. The Clayton, Gumbel-Hougaard 
and Frank copulas were selected for this case study. The copula 
parameters (Table 5) were estimated using a mathematical 
relationship between the Kendall`s coefficient of rank correla-
tion and the generating function.  

 
Table 5. Copula parameters. 
 

Pairs Clayton Gumbel-Hougaard Frank 
Q-V 1.01 1.51 3.34 
Q-t 0.114 1.057 0.486 
V-t 3.333 2.67 8.63 

 
Table 6. Information criterions of the model. 
 
Pairs  Clayton Gumbel-Hougaard Frank 

 SIC 15.63 24.76 26.47 
Q-V AIC 21.4 30.35 32.23 

 HQIC 19.11 28.24 29.94 
 SIC –9.68 –9.45 –8.53 

Q-t AIC –3.92 –3.69 –2.77 
 HQIC –6.21 –5.98 –5.08 
 SIC 124.68 107.9 140.34 

V-t AIC 130.44 113.72 146.11 
 HQIC 128.15 111.43 143.82 

 
For the goodness-of-fit-test, three criterions: SIC - Schwarz 

information criterion, AIC - Akaike information criterion, and 
HQIC- Hannan-Quinn information criterion were used. These 
information criteria are based on the methods MSE (mean 
squared error); and the basic principle of the criterions is to 
minimize the mean rate variations between the filter output 
values and input values (Table 6). Clayton copula shows the  

lowest values of calculated criterions for pairs Q-V and Q-t, and 
Gumbel-Hoguaard copula shows the lowest values of calculated 
criterions for pairs V-t. Testing of the goodness of fit of the 
copulas is still discussed as a topic in literature. Kojadinovic 
and Yan (2011) compared the empirical copula with a paramet-
ric estimate of the copula derived under the null hypothesis. 
They extended the multiplier approach to multivariate multi-
parameter copulas and study the finite-sample performance of 
the resulting goodness of fit test. For example, Chowdhary et al. 
(2011), Karmakar and Simonovic (2009), Shiau et al. (2010) 
used some of these criterions for testing the goodness of fit of 
the copulas. Chen and Fan (2005) introduced the so called 
“pseudo-likelihood ratio test”, inspired by a semi-parametric 
adaptation of the criterion AIC. 

Secondly, the Gringorten plotting-position formula (Eq. 10) 
was used for the assessment of copula function fitting (Karmak-
ar and Simonovic, 2007; Yue et.al., 1999; Zhang and Singh, 
2007). Comparison of empirical joint distribution for observed 
pairs Q-V, Q-t, V-t and the corresponding probability values 
derived by copulas are presented in Fig. 7. Based on the 
information criteria and visual comparison, the next copulas 
were selected as the most suitable to illustrate the joint distribu-
tion of the variables: Q-V – Clayton copula, Q-t – Clayton copu-
la, V-t – Gumbel-Hougaard copula.  

Then, the simulations of 3000 pairs using the selected copu-
las were done (Fig. 8). The main purpose of simulations using 
copulas is to describe and to illustrate the interdependences of 
two hydrological variables. Correlation coefficients of the simu-
lated pairs from appropriate copulas are summarized in Table 7. 
Also, Figure 9a–c illustrates contour maps of analyzed pairs 
with same joint cumulative distribution.  
 
Table 7. Correlation matrix of the 3000 simulated pairs Q-V,  
Q-t, V-t (Danube River: Bratislava). 
 
Correlation matrix Q-V 

(Clayton)
Q-t 

(Clayton) 
V-t 

(Gumbel-Hougaard)
Spearman ρ 0.477 0.101 0.82 
Kendall τ 0.342 0.071 0.621 
Pearson 0.472 0.102 0.819 

 
 
 

 
 
Fig. 7. Comparison of the empirical joint distribution for observed pairs and selected copulas (Danube River: Bratislava): a) Q-V, b) 
Q-t and c) V-t. 
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Fig. 8. Scatter plot of 3000 pair simulations according copula and measured data during the period of 1876–2013 (Danube River: 
Bratislava): a) Q-V: Clayton copula, b) Q-t: Clayton copula, c) V-t: Gumbel-Hougaard copula. 
 

 
 
Fig. 9. Contour map of the pairs with same joint cumulative distribution using selected copula functions (Danube River: Bratislava): 
a) Clayton copula, b) Clayton copula and c) Gumbel-Hougaard copula (point- empirical data, line- same joint distribution). 

 
 
Fig. 10. Univariate return period of the hydrological variables during the period of 1876–2013 (Danube River: Bratislava): a) Gum-
bel distribution for peak discharge Q, b) LogGamma distribution for duration t and c) Gumbel distribution for volume V (point- 
empirical data, line- theoretical distribution). 
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Table 8. Joint and conditional return periods for pairs Q-V (Danube River: Bratislava). 
 

T [year] Fx Fy Q [m3s–1] V [mil.m3] Cc Tand
xy [year] Tor

xy [year] TQ/V [year]
2 0.5 0.5 5687 6720.7 0.334 3 2 6 
5 0.8 0.8 7207 10120.2 0.667 15 3 8 
10 0.9 0.9 8214 12680.1 0.818 55 6 12 
20 0.95 0.95 9179 15358.9 0.905 209 11 22 
50 0.98 0.98 10429 19162.3 0.961 1268 26 52 

100 0.99 0.99 11366 22276.7 0.980 5020 51 102 
  CC - Clayton copula, CG – Gumbel-Hougard copula 

 
Table 9. Joint and conditional return periods for pairs Q-t (Danube River: Bratislava). 

 
T [year] Fx Fy Q [m3s–1] t [day] Cc Tand

xy [years] Tor
xy [year] TQ/t [year]

2 0.5 0.5 5687.26 22 0.263 4 1 4 
5 0.8 0.8 7207.49 30 0.644 23 3 6 
10 0.9 0.9 8214.01 35 0.811 91 5 11 
20 0.95 0.95 9179.49 40 0.903 361 10 21 
50 0.98 0.98 10429.20 47 0.960 2250 25 51 

100 0.99 0.99 11365.69 52 0.980 8988 50 101 
  CC - Clayton copula, CG – Gumbel-Hougard copula 
 

Table 10. Joint and conditional return periods for pairs V-t (Danube River: Bratislava). 
 

T [year] Fx Fy V [mil.m3] t [day] CG Tand
xy [years] Tor

xy [year] TV/t [year]
2 0.5 0.5 6720.72 22 0.4070 2 2 11 
5 0.8 0.8 10120.19 30 0.7487 7 4 19 

10 0.9 0.9 12680.01 35 0.8723 14 8 36 
20 0.95 0.95 15358.87 40 0.9356 28 16 70 
50 0.98 0.98 19162.31 47 0.9741 71 39 171 
100 0.99 0.99 22276.68 52 0.9870 142 77 339 

 
Table 11. Joint and conditional return periods for the maximum hydrological variables during period of 1876–2013 on the Danube 
River in Bratislava 
 

Tx Ty Fx Fy Q [m3s–1] V [mil.m3] Cc Tand
xy [years] Tor

xy [years] TQ/V [years] 

69 210 0.985 0.995 10870 25879 0.981 7272 52 216 

    Q [m3s–1] t [day] Cc   TQ/t [years] 

69 105 0.986 0.990 10870 52 0.976 6514 42 107 

    V [mil.m3] t [day] CG   TV/t [years] 

210 105 0995 0.990 25879 52 0.989 236 99 189 
       CC - Clayton copula, CG – Gumbel-Hougard copula 
 
Joint and conditional return periods 

 
Traditionally, a univariate return period is used to describe 

the hydrological extreme. The univariate return periods for 
hydrological variables estimated from selected distributions for 
this case study are illustrated in Fig. 10a–c. This approach is 
useful when only one extreme random variable is a significant 
design criterion. It means that, if the correlation between ran-
dom variables is insignificant in the design criterion, the return 
periods for the extreme events can be defined rather than using 
only one random variable. 

However, in many cases for hydrologic engineering, a flood 
may be considered as dangerous if its discharge is large either 
its volume or duration is also large. Therefore, in this present 

case study, few particular joint and conditional return periods 
are evaluated via the Clayton and Gumbel-Hougaard copulas. 
The joint return periods for pairs Q-V, Q-t, V-t were calculated 
according to the equations (12) and (13). Conditional return 
periods were calculated according to equation (14). The joint 
and conditional return periods for some specific hydrological 
variables, which can occur simultaneously with univariate re-
turn periods (and univariate probability of exceedence) of 2 
(50%), 5 (20%), 10 (10%), 20 (2%), 50 (5%) and 100 (1%) 
years were investigated from Tables 8–10. The result shows the 
following inequality:  
 

[ ] [ ] ),(),( ,max,min yx
and

yxyxyx
or TTTTTT ≤≤≤ . 
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For example, for Q = 10 429 m3s–1 and V = 19 162.3 mil.m3 is 
Tor

Q,V = 26 years and Tand
Q,V = 1 262 years (bolt in Table 8). It 

seems that these two magnitudes are also the lower limits for a 
50-year flood defined by Tor and the upper limits for a 50-year 
flood defined by Tand. The same inequality may also be applied 
for other analyzed hydrological pairs. Next, the joint distribu-
tion functions and appropriate return periods (joint and condi-
tional) for maximum values of discharge, volume and duration 
measured and derived on flood waves during the period of 
1876–2013 are presented in Table 11. 
 
CONCLUSIONS AND DISCUSSION 
 

In this present case study, the bivariate flood frequency anal-
ysis of the peak discharges, volumes and durations via copula 
function was done. The time period of 1876–2013 daily dis-
charges data from the Danube River at Bratislava were ana-
lyzed. The first maximum annual discharges (Q) were selected 
and the flood waves on these maximum annual discharges were 
determined. Then, the time duration (t) and volume (V) for each 
selected wave was computed.  

Marginal distribution functions of the data were selected 
first. Observed and derived hydrological data Q, V, t were fitted 
by the two-parameter Gumbel (discharge, duration) and three-
parameter LogGamma (volume) distributions. The Kolmogo-
rov-Smirnov and χ2 tests were used to test the goodness-of-fit of 
the observed data and the data obtained by theoretical distribu-
tion functions. Based on these tests and graphical comparison 
between measurements and derived data, selected parametrical 
distribution functions were used as the marginal distribution 
functions for bivariate frequency analysis.  

Three most popular Archimedean copulas in hydrology 
(Clayton, Gumbel-Hougaard and Frank) were employed to 
construct the joint distribution of hydrological pairs of Q-V, Q-t 
and V-t. The joint CDFs (Cumulative Distribution Functions) 
evaluated from copula method were compared with their empir-
ical probabilities (Eq. 10) and AIC, MSE and HQIC information 
criteria were used to test the goodness of fit of the model. The 
result shows that Clayton copula function has best fit for pairs 
Q-V and Q-t and Gumbel copula has the best fit for pair V-t in 
our case study. Clayton copula is a suitable model for simula-
tion pairs of Q-V reported in Chowdhary et al. (2011). In 
Karmakar and Simonovic (2007), the Gumbel-Hougaard copula 
has the best fit for joint distribution of the pairs Q-V and V-t. 
Genest and Favre (2007) tested some extreme-value copulas 
and they suggested that these copulas (including Gumbel-
Hougard copula) are good tools for bivariate modeling of the 
hydrological extreme pairs of Q-V. Also, Requena et al. (2012) 
suggests that Frank copula function has the best fit for pairs Q-V 
in dams. However, we can assume that the choice of a particular 
copula might depend on the nature of the particular data set. 
This would be useful for further studying for more cases of 
selected data set and other copula functions. 

This case study also presents basic relations to define a joint 
return period and conditional period for hydrological bivariate 
analysis. As mentioned above, the flood is an extreme hydrolog-
ical event, where a devastating effect may be increased in the 
case where its three basic components (or at least two of them) 
Q, V and t have the same significance. Therefore, it is appropri-
ate to describe the extreme hydrological events jointly using 
two random variables. Return periods in a bivariate flood fre-
quency analysis can be defined in two ways. The first one de-
fines joint return periods as: the return periods using one ran-
dom variable equaling or exceeding a certain magnitude and/or 
using another random variable equaling or exceeding another 

certain magnitude. The second one is conditional return periods 
for one random variable, given that another random variable 
equals or exceeds a specific magnitude. The results of these 
return periods for specific values of Q, V and t (univariate return 
period of 2, 5, 10, 20, 50 and 100 years) are summarized in 
Tables 8–10. 

The applications of the copula functions in hydrology for ex-
treme frequency analysis are still growing. In recent years, a 
large number of applications, besides the already mentioned in 
present case study have been done (see: Reddy and Ganguli 
(2012), Serinaldi and Kilsby (2013), Xiao et al (2013), Yan et 
al. (2013)). The results obtained from the multidimensional 
analysis of the variables, which characterize the hydrological 
waves (flow, volume, time) can contribute to more reliable 
assessment of flood risks. Hence, they give an overview of the 
flood event as a whole and might be practically used in water 
management and in the design of flood protective systems. 
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