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Abstract: River runoff is not only a crucial part of the global water cycle, but it is also an important source for hydro-

power and an essential element of water balance. This study presents a system-theory-based model for river runoff fore-

casting taking the Hailiutu River as a case study. The forecasting model, designed for the Hailiutu watershed, was cali-

brated and verified by long-term precipitation observation data and groundwater exploitation data from the study area. 

Additionally, frequency analysis, taken as an optimization technique, was applied to improve prediction accuracy. Follow-

ing model optimization, the overall relative prediction errors are below 10%. The system-theory-based prediction model 

is applicable to river runoff forecasting, and following optimization by frequency analysis, the prediction error is ac-

ceptable. 
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INTRODUCTION 

 

Global climate change can impose great influence on the wa-

ter cycle, especially with regard to precipitation and river run-

off. River runoff, as an essential element of water balance, is an 

important part of the hydrological cycle. With the increasing 

awareness of the effects of climate change on nature and human 

beings, river runoff and its associated impact on the survival of 

human beings has received much attention from scholars 

around the world. Al-Taiee (2008) forecasted the Tigris River 

(Iraq) levels using a best relevant statistical model developed 

through time series analysis. Kliment et al. (2011) evaluated the 

trend of rainfall-runoff regimes in selected headwater areas 

using statistic testing and a Mann-Kendall seasonal test in the 

Czech Republic. In addition to climate change, human activities 

might also influence the hydrological regime. Jeníček (2009) 

assessed the impact of land cover changes on the hydrological 

regime using different methods. Shahraiyni et al. (2012) carried 

out a long-term simulation of daily streamflow in the Karoon 

River using a novel fuzzy modelling approach, the Active 

Learning Method, and proved its ability for runoff modelling by 

comparing it with a Genetic-Algorithm-optimized Support 

Vector Machine.  

River runoff, directly influenced by precipitation and indi-

rectly influenced by many other factors, is indispensable in 

maintaining the ecological and environmental health of a river 

basin. Its prediction has become a hot topic in recent years and 

many scholars have devoted themselves to the development of 

models for river runoff prediction and related forecasting prac-

tices. At present, models for river runoff prediction are mostly 

based on neural network theory (Atiya et al., 1999; Dibike and 

Solomatine, 2001; Hu et al., 2001; Kişi, 2007; Sahoo and Ray, 

2006; Singh, et al., 2010; Yadav, et al., 2011; Wu et al., 2005). 

Additionally, some other methods have been introduced for 

river runoff prediction, for example, fuzzy model (Janál and 

Starý, 2009, 2012) and regression analysis (Wang, 2009). Siva-

kumar et al. (2001) performed monthly runoff prediction using 

phase space. Abrahart and See (2002) carried out a study on 

river flow forecasting using multi-model data fusion. Mahabir 

et al. (2003) studied seasonal runoff using fuzzy logic theory. 

Hang and Pan (2010) studied the daily flow prediction of the 

Taidong River with a genetic algorithm and least squares sup-

port vector machine (SVM). All these methods are proven 

applicable for river runoff prediction. However, these methods 

require considerable input data, which are sometimes difficult 

to collect, especially in remote arid areas where the long-term 

monitoring of runoff and precipitation is absent. 

System theory was first proposed by Bertalanffy (1950) and 

it was intended to study the general pattern, system structures 

and rules of a system. Nowadays, the system theory has devel-

oped and has been widely adopted and used in various fields 

(An et al., 2005; Wang et al., 1999). Incorporated with fuzzy 

sets, Zhao et al. (2011) established a risk forecasting system 

and forecasted the construction engineering risk using system 

theory. The studied object, under the system theory, is treated 

as a system and then the correlations and variations among the 

system, elements, and environment structures and functions are 

analysed. Gray system theory, as an important branch of system 

theory, is powerful in dealing with unclear inner relationships, 

uncertain mechanisms, and insufficient information. Gray sys-

tem theory was originally introduced by Deng (1982) and since, 

has been applied in various fields, such as hydrology (Trivedi 

and Singh, 2005) and energy engineering (Guo et al., 2011). 

Incorporated with other methods and theories, gray system 

theory has also been used in engineering design, information 

security, and time series prediction, etc. (Kayacan et al., 2011; 

Shen et al., 2009; Wang, 2011). Larsson et al. (2010) and 

Huang (2011) also highlighted the applicability of system theo-

ry for road safety and for the telecare of the elderly, respective-

ly. 

River runoff reflects the variations of its recharge and dis-

charge, and in turn, the characteristics of river runoff variation 

depend on the input information of recharge and discharge. 

Furthermore, river runoff time series are stochastic with nu-
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merous uncertainties, and sometimes the information of the 

time series is insufficient. Therefore, the aims of the present 

study are 1) to establish a system-theory-based runoff predic-

tion model by analyzing the relationships among river runoff, 

precipitation, and groundwater abstraction, and 2) to introduce 

an error reduction procedure based on frequency analysis to 

assist in time series analysis and prediction model optimization. 

Error reduction based on frequency analysis enables the model 

to be used in diverse conditions, even if the model calibration 

results are not perfect, and the model never relies solely on the 

model calibration. Numerous uncertainties are involved in 

dealing with stochastic time series. This study will provide an 

easy tool and a novel idea for the treatment of uncertain items. 

 

STUDY AREA 

Location 

 

The Hailiutu River drainage area, a part of the Yellow River 

Watershed, is located in the north of Shaanxi Province, China. 

The Hailiutu River is a second-level tributary of the Yellow 

River. Fig. 1 shows the location and topography of the study 

area, which is high in the north and low in the south, and the 

Hailiutu River runs from northwest to southeast. It is 120.9 km 

in length (40 km within the study area) and intersects the Wud-

ing River (runs from west to east) near Hanjiamiao Village. 

Located in a semiarid area, the annual average temperature 

of the study area is 6.6–8.6°C and decreases from southeast to 

northwest. The lowest temperature is usually observed in Janu-

ary within the range of –9.9 to 11.3°C and is highest in July 

within the range 21.8–23.9°C. The annual mean precipitation of 

the area is 334.0–364.74 mm and shows a decreasing trend 

from east to west. The precipitation is characterized by seasonal 

variation and its distribution is uneven both temporally and 

spatially. In summer and autumn, precipitation is abundant, 

whereas in winter and spring it is sparse. About 65% to 70% of 

the annual precipitation is observed during July, August and 

September. Precipitation also varies greatly inter-annually. The 

total annual precipitation in wet years can reach 654.5–695.4 

mm, whereas in dry years, it could be as low as 159.6–171.8 

mm (Zhang, 2011). 

 

 
 
Fig. 1. Location and topography of the study area. 

 

Main factors influencing river runoff 

 

As an independent hydrogeological unit, Quaternary phreatic 

groundwater is recharged mainly from precipitation, and dis-

charges predominantly as springs into the Hailiutu River, ex-

cept for a very limited amount of artificial abstraction. If artifi-

cial water abstraction increases, groundwater discharge to the 

river will reduce, ultimately decreasing the river runoff. In 

addition, a small amount of surface water is also directly ex-

tracted from the Hailiutu River for domestic and agricultural 

uses, influencing the river runoff. Thus, precipitation and artifi-

cial water extraction are the two most important factors influ-

encing the river runoff of the Hailiutu River. 

 

Precipitation 

 

As in many other areas in China, precipitation is one of the 

factors that affect river runoff. In the study area, the impact of 

precipitation on river runoff can be understood in two ways: (1) 

the precipitation can increase river runoff directly in the form of 

surface water flow, and (2) precipitation may infiltrate into the 

phreatic aquifer, elevating the groundwater level and subse-

quently, increasing the groundwater discharge to the river. The 

impact of the former is direct, and the river runoff will increase 

immediately following the rainfall event. This is evidenced by 

the diagrams of precipitation and river runoff (Fig. 2) in which 

the peak river runoff usually appears a very short time after the 

peak precipitation. However, the impact of the latter is indirect. 

There is a certain lag period before the infiltrated precipitation 

has an impact on the river runoff. 

 

 
Fig. 2. Relationship between precipitation and runoff. 

 

Artificial extraction of groundwater resources 

 

In the study area, the artificial extraction of water is another 

factor that has an impact on the river runoff. Its influence on 

river runoff can also be classified into two aspects: (1) artificial 

extraction directly from the river, and (2) artificial abstraction 

of groundwater. The amount of artificial extraction directly 

from the river is small, but the lag period of its effects on river 

runoff is short. The latter has a longer lag period than the for-

mer. Groundwater extraction will lower the groundwater level, 

reducing the discharge of groundwater to the river. 

Overall, precipitation can increase river runoff, whereas arti-

ficial extraction of surface water and groundwater will decrease 

it. Therefore, the correlation between river runoff and precipita-

tion can be considered positive and that between river runoff 

and artificial water extraction considered negative. Based on 

the above assumption and analysis, the entire river can be taken 

as a system; the ratio of precipitation to artificial extraction is 

treated as an input, and the river runoff as an output. 
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FORECASTING MODEL BASED ON SYSTEM THEORY 

Model development 

 

A system can be constructed using the ratio of precipitation 

to artificial extraction as the input, the river runoff as the output, 

and the entire watershed as a black box. The three parts consti-

tute a system that can be illustrated as follows (Wei, 2009): 

 

 ( )    ( )    ( )                                                              (1)  

  

    The black box system can be mathematically expressed as a 

mathematical convolution:                                                                 

 
 ( )  ∫  (   ) (   )    ( )   (   ) 

 

  
                   (2) 

 

where I(t) is the excitation function describing the input infor-

mation, W(t) is the characteristic function or weight function 

that depicts the physical characters of the system, and Q(t) is 

the response function that describes the output information of 

the system. 

Practically, precipitation is periodic resulting in the ratio of 

precipitation to artificial extraction being an impulse function 

varying with time. Accordingly, the input data are discontinu-

ous. Generally, river runoff at a given time t, for a specific 

profile, is influenced by precipitation and artificial extraction 

during the period from t to t-n, where n is the furthest limit of 

input data. The furthest limit represents the maximum period 

within which precipitation can have an influence on runoff. 

Precipitation and artificial extraction occurring before t-n or 

after t will have no influence on the river runoff at given time t. 

The input data are discontinuous. By discretization, the dis-

cretized runoff forecasting model can be established as follows 

(Wei, 2009): 

 

   ∑      

 

   

                                                                              ( ) 

 

where Qt is the river runoff of the t
th
 month, Ut-τ is the input 

item representing the ratio of precipitation to artificial extrac-

tion, Wτ is the coefficient of the linear functions and can be 

regarded as the weight of the model, and k and n are the nearest 

and furthest limits of the input data, respectively. 

 

Determination of model parameters 

 

The nearest limit k and the furthest limit n are two key pa-

rameters for the forecasting model. Parameter k can be identi-

fied by the dynamic curves of the precipitation and river runoff, 

whereas the determination of the furthest limit n is much more 

complex. According to the measured data from the Hailiutu 

River, the nearest limit k was assigned a value of 0. This means 

that the precipitation will influence the river runoff immediately 

without lag. In this study, n is determined by iteration. To do 

this, (3) is rewritten in the following form (Song et al., 2011): 
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It can be seen from Eq. (4) that the first item in the right-hand 

part of the equation represents the unaffected river runoff, which 

should have a constant value of 0, and that the third item denotes 

the effect of precipitation before the (n+1)
th
 month on the river 

runoff of the t
th
 month. The third item should be approximately 0 

if the value of n is properly selected. The third item can be re-

garded as residual error of the system. Thus, when the absolute 

value of the third item is smallest, n is optimally selected. In the 

present study, n was initially assigned a value between 1 and 

50, and then the absolute values of the residual errors were 

calculated. If the absolute value of the residual error is smallest, 

n is most appropriate. The process of calculation shows that 

when n is 26, the absolute value of the residual error (0.182 

m
3
/s) is the smallest; therefore, n is assigned a value of 26. This 

means that precipitation that occurred 26 months previously can 

still have an influence on river runoff. 

Actually, W is determined simultaneously with n. It can be 

calculated by the least squares method (Song et al., 2011). 

Namely: 
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where N is the number of measured data, N≥n≥0, Qt is the fore-

casted runoff of the t
th
 month, and Qt′ is the measured runoff of 

the t
th
 month. By solving Eq. (6), the weights can be obtained 

and then the river runoff can be calculated according to Eq. (3). 

The procedures for determining n and W are shown in Fig. 3.  

 
Start

Input Qt ' 

n=1 P=0 

Input initial Wt (n) 

Input initial ΔQt(0) 

Calculating ΔWt (n) 

Wt (n) =Wt (n) + ΔWt (n) 

 ΔWt (n) /Wt (n) <0.0001

Calculating ΔQt (n) 

 ΔQt (n) <ΔQt (p)

P=n

n=n+1

n<50

Print p、ΔQt (p)、Wt (p) 

Stop

No

No

No

Yes

Yes

Yes

 
 

Fig. 3. Procedures for determining n and W. 

 

In Fig. 3, Q′t is the observed river runoff at t time, Wτ(n) is the 

weight function, ΔW
(n)

 denotes the iteration variable and 0.0001 

is the predetermined iteration tolerance, ΔQt
(n) 

denotes the re-
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sidual error of the system with the furthest limit being n and the 

corresponding weight Wt
(n)

, and ΔQ
 (p)

 is the smallest residual 

system error when the furthest limit is p and weight is Wt
(p)

. 

In the present study, the calculation processes were imple-

mented with joint application of Matlab, Visual Basic pro-

gramming and Microsoft Excel. The calculated Wj is shown in 

Fig. 4, which shows the weights as an approximate unimodal 

distribution, which indicates that the output item is not sensitive 

to the groundwater discharge and the feedback is hysteretic. 

 

 
Fig. 4. Distribution of weight function. 

 
Model calibration 

 

The precipitation time series and river runoff time series are 

available from January 1978 to December 2006, but the artifi-

cial water extraction time series are only available from No-

vember 1983 to December 2006. In the study, the predicted 

runoff series are from November 1985 to December 2006. The 

time series of the precipitation and river runoff are longer than 

that of the artificial exploitation. In order to maintain consisten-

cy in the length of the time series, only the data from November 

1985 to December 2006 were used in the model calibration and 

verification. The data from November 1985 to November 1999 

were used for model calibration and those from December 1999 

to December 2006 were used for model verification. The curves 

of the measured and forecasted runoff are shown in Fig. 5. 

As shown in Fig. 5, the curves of the observed and forecast-

ed data fit fairly well in the calibration period. The relative 

prediction errors of most periods are under 20%, except for 

some extreme events that reflect the pulsing characteristics of 

the direct recharge to the river from precipitation. The relative 

prediction errors in the period 1992 to 1998 are somewhat 

larger than in other periods because of many uncertain factors 

during this period, such as manual interference to the land 

cover, reservoir control of the upstream and probable mistakes 

in runoff records. However, the variation trend of the predicted 

curve is generally consistent with the observed one. Simulation 

is a rather complex task which involves many uncertain factors. 

It is difficult and even impossible to make an exact prediction 

based on the available observed data. All we need to do and all 

we can do is to simulate the variation trend by defining the 

prediction error within an acceptable limit. It is the variation 

trend, not the extreme value itself, which is actually of im-

portance to the decision makers. Despite the bigger prediction 

errors in some extreme values, the simulation can still be of use 

to decision makers if the trend of the predicted runoff is in 

accordance with that observed. Actually, it is rather difficult to 

obtain a perfect prediction by simple model calibration. Certain 

optimization techniques should be implemented to improve 

prediction accuracy, which will be introduced and discussed 

later in the section of model optimization. 

 

Model verification 

 
For verifying the general acceptability of the model for river 

runoff forecasting, runoffs from December 1999 to December 

2006 were forecasted with the model. The forecasted and 

measured runoffs are presented in Fig. 6. It can be seen from 

Fig. 6 that the variation trend of the forecasted runoff is in good 

agreement with that of the measured runoff. In the verification 

period, the mean value of the measured runoff from December 

1999 to December 2006 is 2.42 m
3
/s and the value of the fore-

casted runoff is 2.27 m
3
/s. The mean prediction error is 0.15 

m
3
/d. The relative error between the observed and forecasted 

values was calculated as per the following formula: 

'
100%

'

Q Q

Q



   ,                                                  (7) 

where   denotes the relative prediction error, and Q and Q′ 

represent the forecasted and measured runoffs, respectively. 

The relative prediction error is 6.20% during the period of 

model verification, which indicates that the forecasted results in 

the verification period are in good agreement with the measured 

data, and that the model with the calibrated parameters, is gen-

erally acceptable for river runoff forecasting. However, the 

model performance can be further optimized. In the present 

study, the model before optimization is called the original mod-

el, and the model after optimization is named the optimized 

model. 

 

 
Fig. 5. Calibration of the model. 

 

 
Fig. 6. Verification results of the model. 

 

Model optimization by frequency analysis 

 

During the calibration period, some extreme flow conditions 

are not forecasted well by the model, and during the verifica-

tion period, although the forecasted results are much better, the 

relative errors for some points are still unsatisfactory. Theoreti-

cally, the prediction errors can be reduced further by introduc-

ing frequency analysis as a method for model optimization. 

In hydrology, frequency is defined as the number of occur-

rences of an event or a phenomenon during a given period 

(Adrien, 2004). It is a statistical concept that denotes the proba-

bility of the occurrence of an event. To determine the frequency, 
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the time series should be first arranged in descending order, and 

then it is calculated by the following formula (Wei and Wang, 

2005): 

100%
1

m
p

N
 


 ,                                                  (8) 

 

where m is the serial number of the arrangement, N is the total 

number of samples, and p is the frequency or the probability of 

occurrence. In the present study, this means the frequency of 

the monthly river runoff.  

Positive correlation between the prediction errors and ob-

served river runoff was observed and this is shown in Fig. 7. It 

can be seen from Fig. 7 that the prediction error shows a de-

creasing trend with the observed river runoff. Thus, when the 

frequency or probability of the observed runoff decreases, the 

prediction error reduces accordingly. The fitting equation is 

written in a general form as Eq. (9): 

b
Y a

X
   ,                                                            (9) 

 

where Y represents the prediction error, X is the observed river 

runoff, and a and b are two constants. For the time series of 

April, a is –94.36 and b is 200.12 and the correlation coefficient 

for the time series of April is 0.9304. 

 

 
Fig. 7. Relation between prediction errors and the observed river 

runoff. 

 

The relation of prediction error with observed runoff is help-

ful in model optimization. As indicated by Eq. (9), the predic-

tion error can be corrected according to the magnitude of the 

error. However, forecasted values at different frequencies usu-

ally have different prediction errors. It is illogical to correct all 

forecasted runoffs with a single error. Therefore, frequency 

analysis was used to determine the prediction errors of predict-

ed runoffs at different frequencies. Generally, four steps should 

be followed using frequency analysis for model optimization, 

and these procedures, taking the time series of April as an ex-

ample, are summarized as follows: 

 

Step 1: River runoff prediction by original model 

 

To determine prediction error, the river runoff should be 

forecasted primarily by using the original model. Through 

model calibration and verification, the appropriate model pa-

rameters can be determined. Although prediction errors during 

these periods are within acceptable limits, the model can be 

further optimized by using frequency analysis to enhance the 

model performance. 

 

Step 2: Calculating the theoretical error 

 

The measured runoffs and those forecasted by the original 

model for April from 1986 to 2006 are arranged in a descend-

ing order. In hydrology, a Pearson type III distribution (P-III 

distribution, it is also known as a Weibull distribution) is com-

monly used for depicting the distribution of a time series. The 

P-III distributions of the two series are shown in Fig. 8. In this 

figure, Ex denotes the mathematical expectation of the time 

series, CV is the coefficient of variation, and CS is the coeffi-

cient of skewness. 

 

 
 
Fig. 8. P-III distributions of observed and forecasted river runoffs 

of April. 

 

The prediction errors between the two curves are called the 

theoretical prediction errors. As shown in Fig. 8, the theoretical 

prediction errors have different values under different frequen-

cies. A theoretical prediction error under a specific frequency 

can be read from the two curves. For instance, the theoretical 

prediction error is 26.67% under a frequency of 80%. 

 

Step 3: Determining the error of the forecasted results 

 

As new data, the forecasted river runoff of a specific period 

is added into the time series of the measured runoff and then a 

new time series can be constructed. The frequency of the added 

data in the new time series can be calculated as per Eq. (8), 

after which the theoretical prediction error of the forecasted 

runoff under the calculated frequency can be determined by Fig. 

8. For example, the river runoff forecasted by the original mod-

el in April 2003 is 2.23 m
3
/s. The forecasted runoff is added 

into the time series of the measured runoff, and the new time 

series is arranged in descending order. Then the frequency of 

the forecasted runoff can be calculated by Eq. (8), which is 

27.27% in the present study. The theoretical prediction error 

under a frequency of 27.27% is approximately 3.85%, as read 

from Fig. 8. Thus, this error is taken as the forecasted error of 

runoff in April 2003 and will be used for the error reduction in 

step 4. Only one runoff datum can be forecasted each time and 

therefore, one frequency can be determined each time. By loop 

computation, the frequencies of all forecasted data can be 

achieved. 
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Step 4: Error correction and model optimization 

 

The prediction error of the forecasted runoffs in April 2003 

is substituted into Eq. (9) and then the optimized runoffs can be 

achieved. The optimized runoff in April 2003 is 2.06 m
3
/s, 

which is very close to the observed runoff of the same period, 

and the prediction error after optimization is –2.83% which is 

lower than that before optimization. The observed, forecasted 

and optimized runoffs of Aprils from 1986 to 2006 are shown 

in Table 1. The prediction errors before and after optimization 

are also listed in Table 1. 

 
Table 1. Comparison of measured, forecasted and optimized 

results of April from 1986 to 2006. 

Year Month 

Measured 

runoff 

(m3/s) 

Forecasted 

runoff 

(m3/s) 

Optimized 

runoff 

(m3/s) 

Prediction 

error before 

optimization 

(%) 

Prediction 

error after 

optimization 

(%) 

1986 April 2.3 1.89 2.1 –17.86 –12.61 

1987 April 1.97 2.4 2.00 3.84 1.52 

1988 April 2.4 2.14 2.6 4.86 0.98 

1989 April 2.6 2.6 2.53 0.09 –2.69 

1990 April 1.94 2.15 2.6 10.57 6.19 

1991 April 2.2 2.13 2.6 5.47 1.98 

1992 April 1.59 2.15 1.76 35.26 10.69 

1993 April 1.27 2.35 1.58 85.62 24.41 

1994 April 1.94 2.35 2.9 21.43 7.73 

1995 April 1.19 2.9 1.23 75.99 3.36 

1996 April 1.61 1.84 1.83 14.48 13.66 

1997 April 0.86 1.92 0.92 121.85 6.98 

1998 April 1.69 2.9 2.3 24.9 20.12 

1999 April 2.67 1.94 2.35 –27.30 –11.99 

2000 April 2.2 1.86 1.86 –7.92 –7.92 

2001 April 2.72 1.55 2.38 –42.82 –12.50 

2002 April 2.1 1.76 1.80 –12.22 –10.45 

2003 April 2.12 2.23 2.6 5.28 –2.83 

2004 April 1.78 2.72 1.96 52.98 10.11 

2005 April 1.83 2.33 2.9 27.47 14.21 

2006 April 1.64 1.96 1.89 19.17 15.24 

 

As can be seen from Table 1, the prediction accuracy of 

most Aprils has been improved, and the prediction errors after 

optimization by frequency analysis are lowered which reveals 

that the optimization by frequency analysis is helpful and appli-

cable in prediction error reduction. By this method, the predic-

tion accuracy of the model will no longer rely merely on model 

calibration. Thus, when the model calibration is not as satisfac-

tory as we would wish, the model can still be used for predic-

tion, which will reduce dramatically the time and energy con-

sumed in the model calibration phase. 

 

 
Fig. 9. Comparison of the measured, forecasted and optimized 

river runoffs. 

 

In a similar way, the forecasted time series of other months 

can be optimized. The model optimization can be implemented 

with Visual Basic programming. The comparison among the 

optimized runoffs, measured runoffs and the forecasted runoffs 

using the original model from November 1985 to December 

2006 is shown in Fig. 9. 

Compared with the forecasted results before optimization, 

the prediction accuracy of the entire time series has been im-

proved following model optimization by frequency analysis. 

The prediction of the extreme flow is also improved, although 

some error still exists. The mean observed and optimized run-

offs in each month are listed in Table 2. As shown in Table 2, 

the overall prediction error of each month is within the range of 

–13.615% to 6.071% which is acceptable in hydrological pre-

diction. The comparison also indicates that the system-based 

model, incorporating frequency analysis, is a useful tool for 

hydrologists and decision makers to study and manage river 

water resources in the study area. 
 

Table 2. Comparison of observed and optimized runoffs of each 

month. 

Month 
Observed 

runoff (m3/s) 

Optimized 

runoff (m3/s) 

Prediction error after 

optimization (%) 

January 2.74 2.75 –8.124 

February 2.11 2.54 –13.615 

March 2.78 2.1095 –5.134 

April 1.51 1.23 4.399 

May 1.75 1.14 6.071 

June 1.44 1.58 2.740 

July 1.86 1.51 0.848 

August 2.00 2.46 –4.781 

September 2.12 2.85 –10.489 

October 2.1103 2.1785 3.131 

November 2.76 2.37 1.534 

December 2.07 2.41 –4.240 

 

 

CONCLUSIONS 

 

A system-theory-based model for river runoff forecasting 

was established in the study and the frequency analysis method 

was used to optimize the model to reduce prediction errors. The 

calibration and verification shows that the forecasted results of 

the monthly river runoff are generally in good agreement with 

the observed data. Some bigger prediction errors can be ob-

served in some of the extreme flows, which reflect the pulsing 

characteristics of the direct recharge to the river from precipita-

tion. The model was optimized by frequency analysis to reduce 

the prediction error. The prediction accuracy was improved 

significantly following optimization and the prediction error of 

mean monthly runoff following optimization is usually below 

10%. The system-based model, incorporating frequency analy-

sis, is feasible and applicable to river runoff prediction and it 

provides an effective tool for river water management. 
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