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Abstract: Short term streamflow forecasting is important for operational control and risk management in hydrology. De-

spite a wide range of models available, the impact of long range dependence is often neglected when considering short 

term forecasting. In this paper, the forecasting performance of a new model combining a long range dependent auto-

regressive fractionally integrated moving average (ARFIMA) model with a wavelet transform used as a method of 

deseasonalization is examined. It is analysed, whether applying wavelets in order to model the seasonal component in a 

hydrological time series, is an alternative to moving average deseasonalization in combination with an ARFIMA model. 

The one-to-ten-steps-ahead forecasting performance of this model is compared with two other models, an ARFIMA 

model with moving average deseasonalization, and a multiresolution wavelet based model. All models are applied to a 

time series of mean daily discharge exhibiting long range dependence. For one and two day forecasting horizons, the 

combined wavelet – ARFIMA approach shows a similar performance as the other models tested. However, for longer 

forecasting horizons, the wavelet deseasonalization - ARFIMA combination outperforms the other two models. The re-

sults show that the wavelets provide an attractive alternative to the moving average deseasonalization. 

 
Keywords: Daily streamflow; Wavelets; ARFIMA; Deseasonalization; Long range dependence; Forecasting. 

 

 
INTRODUCTION 

 

Short term forecasting is important in operational hydrology 

for reservoir operations and risk control (Hipel and McLeod, 

1994). There are several approaches for short term modelling of 

daily discharges, including deterministic conceptual rainfall–

runoff models (Blöschl et al.,1997; Reszler et al., 2008) and a 

wide range of stochastic models, such as autoregressive (Bur-

lando et al., 1  3,  uim o, 1 6   or regime s itching models 

( omorn k et al.,  006   omorn ková et al.,  008  or neural 

networks (Maier and Dandy, 2000; Nelson, 1999; Zealand et 

al., 1999).  

Removing systematic components (trend and seasonality) in 

the process of time series modelling is a part of the standard 

time series modelling paradigm (Box and Jenkins, 1976). The 

seasonality of streamflows stems from the earth rotation and 

can be explained by the physical processes in the catchment, 

such as snowmelt and precipitation. Therefore it is often re-

moved in stochastic streamflow modelling ( omorn k et al., 

 006   omorn ková et al.,  008  Prass et al.,  01  . Thus 

deseasonalization simplifies time series modelling and forecast-

ing and possibly widens the model choice. There are numerous 

studies elaborating on the stochastic part of the model; for 

example see Koop et al. (1997), Montanari et al. (1997), Ooms 

and Franses (2001); however studies focusing on deseasonalisa-

tion are lacking.  

Despite the huge range of models available, the impact of 

long range dependence is often neglected in modelling in hy-

drological time series. However, Prass et al. (2012) found that 

long range dependence may have an impact on the performance 

of time series models with short time step. Moreover incorpo-

rating long range dependence into time series modelling is also 

conceptually important, since the model should capture the 

behaviour of the data as realistically as possible. Long range 

dependent processes are characterized by hyperbolic decrease 

of the autocorrelation function and are closely related to self-

similarity (Doukhan et al., 2003). Long range dependence has 

been encountered in various hydrological (Ehsanzadeh and 

Adamowski, 2010; Koscielny-Bunde et al., 2006; Lye and Lin, 

1994; Pelletier and Turcotte, 1997) and other data. Autoregres-

sive fractionally integrated moving average (ARFIMA, (Beran, 

1994)) models are a tool often used for the modelling of long 

range dependent time series (Lohre et al., 2003; Montanari et 

al., 1997; Prass et al., 2012). 

The presence of periodic or seasonal components generally 

has an effect on long range dependence estimation (Montanari 

et al., 1999). However, the possibility of improving the desea-

sonalization step in the modelling process is scarcely discussed, 

even though each deseasonalization method has an effect on the 

covariance structure of the resulting time series, thus influenc-

ing the Hurst coefficient and the following model parameters.  

Wavelet decomposition is a popular tool used to model and 

forecast (Renaud et al., 2003; Starck et al., 1998) periodic be-

haviour of time series. In hydrology, wavelets are scarcely used 

for forecasting (Adamowski, 2008) and wavelet modelling in 

hydrology is done especially in combination with neural net-

works (Renaud et al., 2003; Thuillard, 2002; Wei et al., 2012; 

Yousefi et al., 2005). In general, more attention is paid to fea-

ture extraction and detailed process description (Andreo, 2006; 

Grinsted et al., 2004; Pasquini and Depetris, 2010; Torrence 

and Compo, 1998) rather than to their potential to be employed 

for deseasonalization.  

Since wavelets are able to capture the changes in a given 

frequency interval over time, they thus make it possible to 
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describe the changes in the annual cycle of the discharge time 

series as a reaction to its driving processes such as precipita-

tion. It seems this would be a process more based approach to 

the deseasonalization of the discharge time series than the mov-

ing averages deseasonalization method.  

The main objective of this study is, therefore, to examine, 

whether applying wavelets in order to model the seasonal com-

ponent in a hydrological time series is an alternative to moving 

average deseasonalization in combination with a long-range 

dependent ARFIMA model. To examine the potential of the 

approach for practical applications, three models will be com-

pared through their actual one to ten steps ahead forecasting 

performance. The following questions will be analysed: What 

are the effects of deseasonalization on the model fit and fore-

casting performance in a daily discharge time series with long 

range dependence? How is the model prediction performance 

affected by the alternative deseasonalization procedure? Is 

wavelet decomposition a suitable method for removing the 

seasonal component of daily discharge series?  

In order to address these questions we adjust the standard 

modelling concept (Box and Jenkins, 1976) by replacing the 

generally used moving average seasonal filter by a wavelet 

filter, thus obtaining a combined wavelet – an ARFIMA model. 

This will be applied to a  series of daily river discharges from 

Lower Austria and a one-to-ten-steps-ahead forecasts will be 

compared with a classical model combining the removal of 

seasonal components via moving averages smoothing and an 

ARFIMA model and a purely wavelet based model. 

 

METHODS 

 

In order to assess the impact of removing the seasonal com-

ponents from a time series on model fit and forecasting, three 

different models will be considered. An overview can be seen 

on Fig. 1.  

 

 
Fig. 1. Analysis overview. 

 

The first model uses a suitable frequency interval to remove 

the most significant seasonal components by wavelet decompo-

sition and fits an ARFIMA model to the residuals. In the second 

model, the standard approach combining a moving average 

deseasonalization with an ARFIMA model is applied. The last 

approach is based on wavelet decomposition and a multiresolu-

tion model according to Renaud et al. (2003). In general, the 

modelling procedure for the first two models is as follows:  

1. Removing trend and seasonality; 

2. Fitting the ARFIMA (p,d,q) model; 

3. One-to-ten steps ahead forecasts construction.  

In the last model, steps 1 and 2 are replaced by wavelet de-

composition and a multiresolution model. A description of the 

applied models follows in the next sections. A description of 

the underlying mathematical background including a definition 

of long range dependent time series and the ARFIMA model 

can be found in Appendix 1. 

 

Discrete wavelet transform and predictions  

 

Using multiresolution wavelet analysis, a signal can be ap-

proximated by  



X t  sJ ,kJ ,k(t) d j,k j,k (t)
k


j1

J


k

  (1) 

where ψj,k = 2
−j/2

ψ(2
−j

t − k) are functions obtained by transla-

tions and dilations of a mother wavelet ψ(t), J,k =2
−J/2

(2
−J

t−k) 

is obtained analogically from a father wavelet φ(t), sj,k,dj,k are 

the wavelet transform coefficients and J is an integer. In general 

it holds 



(t)dt  0

  and



(t)dt 1

 . Furthermore the family of 

functions ψ(2
−j

t−k), j,k  Z form a basis of the L
2
() space. 

The parameters j,k localize the wavelet in frequency and time. 

For further properties of the wavelet functions see e.g. Starck et 

al. (1998). Eq. 1 can be shortly rewritten as  



X t  SJ ,t  D j,t

j1

J

  (2) 

with 



SJ ,t  sJ ,kJ ,k (t)
k

  being the smooth signal and 



Dj,t  d j,k j,k(t)k


 
being the detail signals for the frequency 

interval (2
−j−1

,2
−j

). 

For more details on the properties of the wavelet transform 

see e.g. Mallat (1998), Shensa (1992) or Starck et al. (1998). 

There are several methods in the literature dealing with the 

implementation of discrete wavelet transform (Gencay et al., 

2001; Shensa, 1992; Starck et al., 1998). In model one, forecast-

ing from the resolution level containing the annual periodicity of 

the detail signal Dj,t is needed. On the other hand in model three, 

Dj,t, SJ,t for all j = 1,…, J are necessary for a forecast calculation. 

For this reason, two different methods are applied in the data 

analysis. 

 

Description of the models  

Model one  

 

The maximum overlap discreet wavelet transform (MODWT) 

(Gencay et al., 2001) with the least asymmetric wavelet of order 

eight is be applied for modelling the seasonal component in 

model one. This wavelet cannot be given in a closed form and 

the coefficients are calculated iteratively. For details see 

Daubechies (1992).  

The forecasts XT+s+1,..., XT+s+h, s = 0, ... for the observed time 

series X1,...,XT+s are calculated in following steps  

 A wavelet transform of the time series Xs+1,...,XT+s is 

performed. Starting at Xs+1 implies that the length of the 

transformed time series is always constant, thus the 

annual periodicity is being maintained at each time step. 

In general, a disadvantage of the MODWT algorithm is 

the presence of edge effects due to the circular shift of the 

time series, possibly causing significant inconsistencies in 

the forecasted seasonal component.  

A trigonometric function to the wavelet coefficients is fitted 

followed by the inverse transform in order to obtain the fore-

casts of the seasonal component (Yousefi et al., 2005). A two 

stage linear least squares fit (Dou and Chan, 1998) is used to 

estimate the trigonometric function. In the first step a linear 

problem is solved where the phase shift and amplitude of a 

sinusoidal function are fitted; in the second step the frequency 

of the signal is estimated by 

 



Elena Szolgayová, Josef Arlt, Günter Blöschl, Ján Szolgay 

26 

 



min


{min
A,

J (A,)} (3) 

where 



J (A,)  (X t  Asin(t ))2

t0

T s

 , A is the amplitude, ω 

the frequency and θ the phase shift of the signal. 

 

 The time series is deseasonalized. The h-step-ahead 

forecast from the deseasonalized time series using the 

ARFIMA model is calculated. 

 The forecast of the seasonal component obtained as 

indicated in previous steps is then added to the ARFIMA 

forecast in order to obtain the overall model forecast for 

the days XT+s+1,...XT+s+h. 

 

Model two 

 

Model two is constructed analogically to model one. The 

time series Xt was deseasonalized in model two by subtracting 

the moving average of daily means. Then for t = 1,…, T the 15 

days two - sided moving average is calculated as  

       (4) 

with the series of averages calculated for each day of the year 

(and periodically extended accordingly)  

 
   (5) 

where ny = T/365 is the number of years and leaving out the 

February 29
th
 data. For Ft with t ≤ 7 and t ≥ T − 7 appropriate 

adjustments were made. Optionally, the moving average 

smoothing can be omitted from the deseasonalization process. 

The deseasonalized time series 



X t

d   is then obtained as  



Xt

d  Xt Ft
 

 

(6) 

 
The forecasts XT+s+1,..., XT+s+h are calculated as follows  

 The seasonal filter is recalculated including the newly ob-

tained observation XT+s. The seasonal forecast is then 

F((T+s+1) mod 365), …, F((T+s+h) mod 365). 

 X1,…, XT is deseasonalized using the updated seasonal 

filter.  

 The ARFIMA forecast is calculated. 

 The overall forecast is calculated by adding the ARFIMA 

forecast and the forecast of the seasonal component. 

 

Model three 

 

In the model three the non-decimated  aar   trous algorithm 

is used (Shensa, 1992). Applying a convolution filter h = (0.5, 

0.5) yields                                                      



s j1,t 
1

2
(s

j,t2 j  s j,t ) (7) 



d j1,t  s j,t  s j1,t
 (8) 

From Eqs. (7)–(8) can be seen that the end of the signal is 

not being shifted during the wavelet transform, thus the already 

calculated wavelet coefficients remain unchanged when new 

observations XT+1

 

, XT+2

 

, … are included into the transform 

(Renaud et al., 2003). This makes this method especially suita-

ble for forecasts, since the edge effects due to the usually per-

formed circular shift of the time series applied during the wave-

let transform do not occur.  

In this particular case   holds, 



X t  sJ ,t  d j,tj1

J

  thus the 

wavelet coefficients are used directly to construct the forecasts. 

A linear multiscale autoregressive concept suggested in Renaud 

et al. (2003) is used for the forecasting (model three): 

 
 (9) 

where Aj are the orders of the autoregressive model for each 

frequency interval. In this paper, Aj = 2 was used for all resolu-

tion levels.  

 

 

Forecasts comparison  

 

The forecasting performance is evaluated using the modified 

Diebold Mariano test (Diebold and Mariano, 1995; Harvey et 

al., 1997), the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 

1 70  and the Theil’s inequality coefficient (Theil, 1 58 . The 

model outputs are furthermore visually compared using scatter 

plots of measured and forecasted runoffs. For a detailed de-

scription of the tests see Appendix 2. 

 

RESULTS  

 

The described models are applied to a time series of mean 

daily runoffs of the Danube River at the gauge Kienstock near 

the city of Krems an der Donau in Lower Austria. The catch-

ment area corresponding to the Kienstock gauge is 95,970km
2
. 

The time series displays periodic behavior due to the seasonal 

components in the weather over the year typical of the conti-

nental climate. No trend was found in the time series. The three 

models were fitted for the period January 1982–December 2006 

and verified for the consecutive two years.  

Fig. 2 shows the series of daily mean runoffs from the 

Kienstock gauge used in the analyses and the periodogram of 

the data. The highest peak in the periodogram represents the 

annual periodicity in the time series.  

 

 
Fig. 2. Danube daily discharge at the Kienstock gauge, period 

1.1.1992–31.12.2006 (left) and the periodogram of the time series 

(right). 

 

Since discharge takes only positive values, the natural loga-

rithm of the original series was used in the analysis (let us 

denote



X t

'  ln X t
) (Lohre et al., 2003) (thus the forecast was 

obtained as 



ˆ X T s(h)  exp(XT s

' (h))). This transformation also 

brings the distribution of the data closer to the normal distribu-

tion which is assumed by the ARFIMA model.  

 

 

 

 

 



Ft 1 15 X ti

i7

7





X t 
1

ny

X(t mo d3 6 5)3 6 5i

i0

ny 1





 ̂X T 1  a j,kd j,T 2 j (k1)
k1

A j


j1

J

  aJ 1,ksJ ,T 2 j (k1)
k1

A j 1


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Model fit  

 

For the wavelet deseasonalized series (model one), the sub-

series D8,t was subtracted from the series 



X t

' . D8,t corresponds 

to the frequency interval (2
− 

,2
−8

 which includes the annual 

periodicity of 365 days. A comparison of the seasonal compo-

nents removed by subtracting D8,t (wavelet deseasonalization) 

and the smoothed daily averages (moving average deseasonali-

zation) can be seen in Fig. 3. The resulting seasonal filters are 

rather similar for both methods. This is expected since the 

seasonal behavior of the discharge process is assumed to be 

similar every year. However, it can be seen that unlike the MA 

filter, the wavelet filter is changing over the years, thus reacting 

to changes in the driving processes in the catchment. The wave-

let spectrum of the time series for the corresponding time peri-

od is depicted under the deseasonalization filters. This explains 

the irregularities in the wavelet deseasonalization method (for 

example in the year 2002) where the annual frequency is not as 

significant as in the rest of the time series. The wavelet spec-

trum and the wavelet deseasonalization, thus reflect the actual 

behavior of the runoff in that periods - the floods in august 

2002 (counting among the most significant of 20
th
 century 

(Pekárová et al., 2013) and the drought in the year 1997 (Patas-

siová et al., 2002). Unlike the wavelet deseasonalization, the 

moving average deseasonalization does not capture such irregu-

lar changes in the seasonal components which might be present 

in the time series.  
 

 
Fig. 3. The image on the top shows the series used for deseasonali-

zation; the moving average of daily means and the wavelet filter, 

both for the period 1992–2006. The bottom image is the wavelet 

spectrum of the time series for the corresponding period. The white 

band in the lower part of the figure corresponds to the annual peri-

odicity, as indicated on the vertical axis of the figure. 

 

The change in the ACF of the time series after removing the 

seasonal components is shown in Fig. 4. A difference in the two 

deseasonalization approaches is especially visible from the 

periodogram figures. The wavelet deseasonalization is more 

”thorough” - the frequency band around the annual periodicity 

of 365 days is mostly filtered out. A closer observation of the 

ACFs at the lags around one year shows, however, that the 

moving average deseasonalization was able to remove the 

autocorrelation better than the wavelet method for this particu-

lar area.  

For the ARFIMA models various p, q combinations were fit-

ted, based on the ACF and the partial autocorrelation function. 

These models were compared using the Akaike information 

criterion. In both cases, an ARFIMA(1,d,1) model was chosen 

as the most suitable one. The model parameters are shown in 

Table 1. The difference in the constant term c occurs since the 

moving average deseasonalization centers the time series, but 

the wavelet component has zero mean, and thus has no impact 

on the time series from this point of view and has to be re-

moved later in the modelling process.  

The Hurst coefficient estimates following from the model fit 

are derived from the respective differencing parameters of the 

model, obtaining Hmodel 1 

 

= 0.76 and Hmodel 2

 

= 0.83. Since both 

estimates are higher than 0.5, the respective processes display 

long range dependence, justifying the choice of the ARFIMA 

model.  

An inverse wavelet transform of the log daily discharges us-

ing the Haar wavelet can be seen in Fig. 5. For model 3 both  

J = 5 and J = 10 models were constructed, their forecasting 

performance was equivalent, thus the simpler model was cho-

sen for the final comparison. 

The autocorrelation functions of the residuals of all three 

models are in Fig. 6. In each case, the models are able to re-

move almost all significant autocorrelation structure.  

 
Table 1. Parameters of the fitted ARFIMA models (see Appendix 1). 

 
Model d 1 1 c 

1 0.26 0.73 0.28 7.44 

2 0.33 0.68 0.25 0 

     

 

Forecasting comparison  

 

Based on the fitted models, one-to-ten-days ahead forecasts 

were constructed for the two years (730 days) following the 

fitting period. The comparison of the forecasting performance 

for all considered forecast horizons is in Table 2. In general, for 

a fixed horizon h the forecasts are of comparable quality when 

com aring the Theil’s coefficient and Nash-Sutcliffe coeffi-

cients, especially for h < 4. For 1 and 2 steps ahead forecasts all 

the three models deliver statistically equivalent forecasts as can 

be seen from the results of the modified Diebold - Mariano test. 

However, the forecasting performance changes with the in-

crease of the forecasting horizon. For h = {3,... 5} the wavelet - 

ARFIMA (model one) outperforms the MA - ARFIMA model 

(model two) and for higher forecasting horizons the wavelet 

model (model three) as well. Furthermore for h = 10, the wave-

let model performs worse than the other two considered mod-

els. As can be seen from the Nash-Sutcliffe coefficient E, with 

increasing forecasting horizon, the deterioration of the quality 

of the forecasts of the multiresolution wavelet model (model 

three) is faster compared to the other 2 models for h > 5. For h 

= 10 we have Em.3 = 0.03 which indicates forecasting with the 

mean of the time series is almost equivalent as the wavelet 

forecast. For the other two models we have Em.1 = 0.12 and Em.2 

= 0.07. However, the forecasting performance is decreasing 

dramatically with the increase of the forecasting horizon (com-

pare the Nash-Sutcliffe and Theil’s coefficients in Table 2). for 

all three models, which is not unexpected.  
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Fig. 4. Autocorrelation function of the time series. The left pictures show the (logarithm) of the original runoff time series and its autocorre-

lation function. The figures on the right depict the autocorrelation function after deseasonalization (using wavelets in the middle and using 

the moving average subtraction on the right) and the respective residual series. In the bottom of the Figure there are the periodograms cal-

culated after the application of the respective deseasonalization method. 

 

 

Both the Nash-Sutcliffe coefficient (for all models approxi-

mately 0.84  and the Theil’s inequality coefficient (a  roxi-

mately 0.07 in all cases) indicate good forecasting performance 

for one-day-ahead forecasting horizon. 

Scatter plots of observed versus predicted runoffs for h = {1, 

3, 6, 10} can be seen in Fig. 7. These particular horizons were 

chosen since here the comparative forecasting performance of 

the respective models changes (see the MDM test in Table 2). 

The deterioration of the forecasting quality can be seen from 

the scatterplots. All scatter plots indicate a problem of the re-

spective model when extreme runoff values (i.e. potential 

floods) appear in the time series.  

 

DISCUSSION AND CONCLUSIONS  

 

The main objective of this study was to examine, whether 

applying wavelets in order to model the seasonal component in 

a hydrological time series, is an alternative to moving average 

deseasonalization in combination with a long-range dependent 

ARFIMA model. A comparison of the forecasting performance 

in term of one-to-ten-steps-ahead forecasts of these two models 

was conducted. An additional comparison with a simple linear 

purely wavelet based model was provided. The models were  

 

 

 

applied to a time series of daily mean discharge of the River 

Danube measured at gauge Krems.  

 

 
Fig. 5. The smooth and detail time series components calculated 

using the (inverse) Haar wavelet transform (model three). 
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Fig. 6. Autocorrelation function of the residuals for each of the three applied models. The dashed lines depict the significance bounds. 

 

 
 

Fig. 7. Scatterplots of measured daily discharges versus the forecasted discharges using all three models. Forecasting horizons of 1, 3, 6 and 

10 days are shown. 
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It would seem plausible that wavelets, since localized both 

in time and frequency thus able to capture the irregularities in 

the seasonal cycle better than the traditional moving average 

method, would provide an improvement to the traditional mod-

el. Unlike the rather generic moving average filter which re-

flects the average behavior of the time series on a daily basis, 

the wavelet deseasonalization is based on a more detailed de-

scription of the time series in the respective frequency interval, 

thus more reflecting on the physical behavior of the discharge. 

Indeed, the wavelet deseasonalization was able to capture atyp-

ical behavior, such as the floods in the year 2002. 

Both of the models using the two different deseasonalization 

methods delivered statistically equivalent forecasts for one-and-

two-days-ahead forecasts. The fact that the wavelet – an 

ARFIMA model did not outperform the other model for h = 1, 

2 may be due to several reasons. Firstly, the wavelet transform 

(repeated in each day of the forecasting period) suffers from 

edge effects (Torrence and Compo, 1998). This has a negative 

impact on the forecasting performance. Secondly, a trigonomet-

ric function was fitted to the wavelet coefficients in order to 

model the seasonal component. The trigonometric function is 

periodic, thus the ability of the wavelets to capture the temporal 

irregularities could not be exploited in full. This effect was, 

however, dampened by the use of the inverse transform follow-

ing the trigonometric fit. The good comparable performance of 

an autoregressive model compared to an ARFIMA model, even 

in case of long range dependence, was pointed out already by 

Crato and Ray (1998).  

 
Table 2. Forecasting performance comparison - outputs from the 

Nash-Sutcliffe coefficient (E  and the Theil’s coefficient (U  and 

the modified Diebold Mariano test (MDM). For the MDM test, the 

comparison model is given in parentheses. 

 

  

  

Forecasting horizon 

1 2 3 4 5 6 7 8 9 10 

W-ARFIMA           

E 0.84 0.60 0.43 0.33 0.27 0.23 0.20 0.17 0.14 0.12 

U 0.07 0.12 0.14 0.15 0.16 0.16 0.17 0.17 0.17 0.18 

MDM (m. 2) 0 0 1 1 1 1 1 1 1 1 

MDM (m. 3) 0 0 0 0 0 1 1 1 1 1 

           

MA-RFIMA           

E 0.84 0.60 0.42 0.31 0.24 0.20 0.17 0.13 0.10 0.07 

U 0.07 0.12 0.14 0.15 0.16 0.17 0.17 0.17 0.18 0.18 

MDM (m. 1) 0 0 –1 –1 –1 –1 –1 –1 –1 –1 

MDM (m. 3) 0 0 0 0 0 0 0 0 0 1 

           

Wavelets           

E 0.84 0.60 0.42 0.31 0.24 0.19 0.15 0.11 0.06 0.03 

U 0.07 0.12 0.14 0.15 0.16 0.17 0.17 0.18 0.18 0.18 

MDM (m. 1) 0 0 0 0 0 –1 –1 –1 –1 –1 

MDM (m. 2) 0 0 0 0 0 0 0 0 0 –1 

 

 

The linear wavelet based model performed well (as indicated 

by both Nash-Sutcliffe coefficient and Theil’s one) for short 

forecasting horizon which is in general accordance with the 

literature (Renaud et al., 2003). The quicker deterioration of the 

wavelet based model compared with the other two ARFIMA 

models might indicate that incorporating long range depend-

ence even if considering daily time steps could be profitable. 

Similarly, Prass et al. (2012) showed improvement in short 

term forecasting when incorporating long range dependence 

into a model on data with monthly time step.  

For longer forecasting horizons (h > 2) the combined wave-

let – an ARFIMA model outperformed the other two models. 

The quality of the forecasts decreased significantly with the 

increase of the forecasting horizons for all three models, how-

ever, this was especially pronounced in the case of the linear 

wavelet model for h > 5. This is in accordance with general 

properties of time series forecasting (Brockwell and Davis, 

2002). It can be concluded that for longer forecasting horizons, 

the quality of the forecasts of the new wavelet, an ARFIMA 

model is statistically better than the traditional combination of 

moving average deseasonalization with ARFIMA. For higher 

forecasting horizons the wavelet, an ARFIMA model outper-

forms the multiresolution wavelet model as well (according to 

the Diebold Mariano test). Thus the wavelet deseasonalization 

offers improvement in time series forecasting for time series 

with long range dependence for higher forecasting horizons. 

Finally, it should be noted than none of the three models was 

able to fully remove autocorrelation from the squared residuals 

after the model fit. This autocorrelation usually indicates heter-

oscedasticity in the time series, thus the concept of the wavelet 

deseasonalization may be explored further in combination of 

other possibly suitable model, such as a fractionally integrated 

generalized autoregressive conditional heteroscedasticity 

(Engle, 1982; Modarres and Ouarda, 2012) model type. 
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APPENDIX  1 

Long range dependence and ARFIMA(p,d,q) model  

 

A time series Xt, t = 1,...T with long range dependence can 

be characterized by a hyperbolic decrease with the time lag τ of 

the autocorrelation function ρτ = Corr[Xt, Xt+τ ]  

 



C2H2  



  (10) 

where C is a constant and H is the Hurst coefficient. In case of 

long range dependence (or long term persistence, long memory) 

H > 0.5 (in general H  [0,1]). There are numerous methods 

for estimating the Hurst coefficient (Teverovsky et al., 1995). 

In this paper we will estimate the Hurst coefficient as a part of 

the later described ARFIMA model (Beran, 1994).  

In order to capture long range dependence in the modelling 

process, an autoregressive fractionally integrated moving aver-

age model ARFIMA(p,d,q) may be used:  



(1 iB
i

i1

p

 ) (1B)d X t  (1  jB
j

j1

q

 ) t  c 
(11) 

where B is the backshift operator, i and j are the parameters 

of the autoregressive and moving average components of the 

model, c is a constant and d is the rational fractional parameter 

and H = d + 0.5. Thus in case of long term persistent processes 

holds d  (0,0.5).  

 

APPENDIX  2 

The modified Diebold Mariano Test 

Consider two competing models A and B. The modified 

Diebold Mariano test tests the null hypothesis H0: A, B produce 

equally accurate h-steps-ahead forecasts. The test statistics is 

given by  

 

 

M DM (
m12h  h(h 1)/m

m
)1/2 d  

(mV(d  ) )1/ 2
              (12) 

 

where m is the length of the interval, on which the (out-of sam-

ple) h-steps-ahead forecasts are made (h is the forecasting hori-

zon) and 



d  1/ (m1) dss0

m

 1/ (m1) (ˆ  e  Ts

A

s0

m

 (h)ˆ  e  Ts

B (h) )2  are 

the model errors, forecasts being denoted as 



ˆ X T s

A (h)  for s = 

0, ..., m (i.e. 



ˆ X T s(h)  is the forecasted runoff for the day T + s 

+ h with h days forecasting horizon and the forecasting thresh-

old T + s).  



V (d )  is the estimate of the variance of ds. The test 

output has three possible entry values: 0 (statistically equivalent 

performance), –1 or 1 representing significantly worse or better 

performance of model A compared to B respectively. 

 

The Nash-Sutcliffe coefficient 

 

The Nash-Sutcliffe coefficient E is widely used in hydrology 

to assess the forecasting performance (Jain and Sudheer, 2012; 

Nash and Sutcliffe, 1970) and it is defined as 

 

E 1
ˆ e T s

2 (h)
s0

m



(XT sh  X  )2

s0

m


                                         (13) 

where 



X 1/T X tt1

T

 . In general E  (−∞, 1], higher values 

indicating better performance, E = 1 meaning a perfect fore-

cast.  

 

The Theil coefficient 

 

The Theil inequality coefficient U is defined as  



U 

1

m 1
ˆ  e T s

2

s0

m

 (h)

1

m 1
ˆ  X T s

2

s0

m

 (h) 
1

m 1
XT sh

2

s0

m



                  (14) 

 

for the Theil coefficient holds U  [0,1], the quality of the 

forecast increasing with the decreasing U. 
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