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Abstract. Time of concentration (TC) of surface flow in watersheds depends on the coupled response of hillslopes and 
stream networks. The important point in this background is to study the effects of the geometry and the shape of complex 
hillslopes on the time of concentration considering the degree of flow convergence (convergent, parallel or divergent) as 
well as the profile curvature (concave, straight or convex). In this research, the shape factor of complex hillslopes as in-
troduced by Agnese et al. (2007) is generalized and linked to the TC. A new model for calculating TC of complex 
hillslopes is presented, which depends on the plan shape, the type and degree of profile curvature, the Manning rough-
ness coefficient, the flow regime, the length, the average slope, and the excess rainfall intensity. The presented model 
was compared to that proposed by Singh and Agiralioglu (1981a,b) and Agiralioglu (1985). Moreover, the results of la-
boratory experiments on the travel time of surface flow of complex hillslopes were used to calibrate the model. The re-
sults showed that TC for convergent hillslopes is nearly double those of parallel and divergent ones. TC in convex 
hillslopes was very close to that in straight and concave hillslopes. While the effect of convergence on TC is consider-
able, the curvature effect confirmed insignificant. Finally, in convergent hillslopes, TC increases with the degree of con-
vergence, but in divergent hillslopes, it decreases as degree of divergence increases.  
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INTRODUCTION 
 

Most rainfall-runoff models require some sort of a parame-
ters describing the response time of watersheds. The most 
common response time parameters used in hydrologic models 
are time of concentration, lag time and time to equilibrium. For 
example, design of urban drainage systems using rational for-
mula requires an estimate of the time of concentration to deter-
mine the critical rainfall intensity (Ben-Zvi, 1984). Snyder, 
Clark and SCS unit hydrograph methods require an estimate of 
the watershed response time. The Muskingum flood routing 
method also makes use of the travel time in river reaches.  
Meynink (1978) showed that varying the time of concentration 
from one half to twice the initial value respectively changed the 
peak discharge by 1.64 to 0.48 times that corresponding to the 
initial value for a typical 5 km2 watershed on the Darling 
Downs in Australia. Since the value of design flood is in re-
verse proportion to the response time, more efficient design 
relies on better estimate of the time of concentration.  

Ben-Zvi (1984) defined the time of concentration as the time 
from the initiation of rainfall, to the time when the catchment 
discharge attains (nearly) 0.8 of the equilibrium discharge. 
Other researchers postulate that time of concentration is the 
same as the time to equilibrium for the kinematic condition 
when the rainfall duration is greater than the time of concentra-
tion (eg., Saghafian and Julien, 1995; Ben-Zvi, 1995). Beven 
(1982) defined the time of concentration as the time at which a 
steady-state flow profile is developed over the entire hillslope, 
assuming a constant input rate for a sufficient length of time. 

Eagleson (1962); Meynink (1978); Overton and Meadows 
(1976); Kirpich (1940), McCuen et al., (1984); Akan (1986); 
Agiralioglu (1985–1988); Singh and Agiralioglu (1981a, 
1981b, 1982); Henderson and Wooding (1964); Saghafian and 
Julien, (1995) among others,  have presented TC relationships 
for simple hillslopes or complex watersheds. Most of these 

relationships are functions of plane length, average slope, Man-
ning or Chezy coefficient, and in some cases, average excess 
rainfall intensity. However, the subject of plan shape and curva-
ture of hillslopes or sub-catchments is not considered in their 
equations accurately. To compute TC of a convergent or diver-
gent sub-catchment, most hydrologists proceed as if in the 
rectangular or parallel case not considering its perfect geome-
try, while in our research, the importance of this issue is inves-
tigated more precisely. 

Morgali and Linsley (1965) studied TC for parallel 
hillslopes. However, the geometry of hillslopes, i.e. profile 
curvature (concave, straight or convex) as well as the hillslopes 
shape (convergent, divergent or parallel) may render direct 
effect on the TC. The profile curvature is related to the varia-
tions of the slope which in turn affects the velocity of water 
along the hillslope. Agiralioglu (1985) studied the lag time of 
convergent hillslopes while Agiralioglu and Singh (1981) pre-
sented equations to calculate the lag time and the time of con-
centration for divergent hillslopes. 

The average slope of the watershed hillslopes is one of the 
parameters present in most TC equations. However, most re-
searchers have assumed straight hillslopes by ignoring the 
effect of profile curvature. Recently, Troch et al., (2002, 2003); 
Hilberts et al., (2004, 2007) and Berne et al., (2005) have 
shown that subsurface flow processes are influenced by plane 
shape, profile curvature and the hydraulic properties of the 
porous medium. Furthermore, Talebi et al., (2008a) investigat-
ed stability of complex hillslopes due to subsurface flow. They 
used Evans (1980) equation for modelling three-dimensional 
shapes of nine complex hillslopes and introduced a width func-
tion for convergent and divergent hillslopes. They also studied 
the stability of the width functions in steady and unsteady con-
ditions. Their results proved that the geometry of hillslopes has 
a direct effect on the stability of hillslopes.  
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O’Loughlin (1981) showed that the size of hillslopes satu-
rated zones depends strongly on the topographic convergence 
or divergence. Aryal et al. (2005) presented equations for com-
puting the travel time of subsurface flows. They showed that 
the hillslope travel time in subsurface flow is dependent on 
hillslope length, hydraulic conductivity, convergence ratio, 
profile factor and recharge rate. Based on their results, the 
divergent hillslopes can exhibit travel times that are double 
those of the convergent hillslopes, and the concave slopes tend 
to have lower travel times than planar or convex slopes.  

Sabzevari et al. (2010) and Sabzevari (2010) studied the rate 
of saturation of complex hillslopes based on the subsurface 
flow. They have also investigated the effects of saturation upon 
the travel times of complex hillslopes and proved that the rates 
of saturation in complex hillslopes are not the same. Based on 
their results, the convergent hillslopes become saturated very 
quickly and they showed longer saturation zone length with 
shorter travel time compared to the parallel and divergent 
slopes.  The saturation capacity, and subsurface travel time of 
compound hillslopes depend on parameters such as soil depth, 
porosity, soil hydraulic conductivity, plane shape (convergent, 
parallel or divergent), hillslope length,  profile curvature (con-
cave, straight or convex) and recharge rate to the groundwater 
table. A new equation was presented for calculating subsurface 
travel time for all complex hillslopes. The role played by the 
geometry of hillslopes in subsurface flows seems to be of great 
importance, yet more work is needed in the case of surface 
flow.  

Agnese et al. (2001) presented an analytical solution of the 
overland flow equations over a rectangular straight hillslope 
using the non-linear storage-based model first introduced in the 
hydrological literature by Horton (1938). This analytical solu-
tion was extended to convergent and divergent surfaces and to 
concave and convex profiles by Agnese et al. (2007). They 
approximated the conical convergent and divergent surfaces by 
a trapezoidal shape, and the overland flow was assumed to be 
always one-dimensional. They also introduced a shape factor, 
synthesizing the combined effect of both plan form geometry 
and profile shape on the hydrologic response at the hillslope 
scale. 

In this study, the three dimensional (3D) shape factor of 
complex hillslopes introduced by Agnese et al. (2007) is gener-
alized and a new equation for TC of all complex hillslopes is 
presented. This work is conducted based on the Evans (1980) 
comprehensive geometry model. This model has been verified 
by Troch et al., (2002, 2003); Hilberts et al., (2004, 2007); 
Berne et al., (2005) and Talebi et al., (2008a, b) in modelling of 
subsurface flow in complex hillslopes.  

Though factors such as drainage surfaces of hillslopes, Man-
ning coefficient, slope, and excess rainfall affect extremely on 
response time of hillslopes- and perhaps even more with respect 
to the geometry of complex hillslopes, the most important goal 
of this research is to study the effects of geometry of complex 
hillslopes on TC. Thus, the specific objectives of this research 
are 1) to present an analytical TC equation for complex 
hillslopes; and 2) to study the effect of the 3D shape of the 
hillslope (plane shape and profile curvature) on the TC. 
 
METHODOLOGY 
Hillslope geometry 
 

To study the effect of hillslope topography on the time of 
concentration, the hillslopes are characterized by a combination 
of curvature in the gradient direction (profile curvature) and the 
direction perpendicular to the gradient (plan curvature). Then, 

three different profile curvatures (concave, straight and convex) 
and three different plane shapes (convergent, parallel and di-
vergent) are identified.  

The profile curvature is important because it affects the ac-
celeration of mass flowing down the slope. The plane curvature 
defines topographic convergence which is an important control 
on the surface flow concentration (Troch et al., 2002).  

The surface of an individual hillslope (Fig. 2) may be repre-
sented by the following function (Evans, 1980): 
 

  z(x, y) =  E +  Η (1− x / L)n +ω y2 , (1) 
 
where z is the elevation, x is the horizontal distance lengthwise 
measured in the downstream direction of the surface, y is the 
horizontal distance from the slope centre in the direction per-
pendicular to the length direction (the width direction), E is the 
minimum elevation of the surface above an arbitrary datum, H 
is the maximum elevation difference on the surface, L is the 
horizontal length of the surface, n is the profile curvature pa-
rameter, and ω  is the plan shape parameter. 

We allow the profile curvature (defined by n) to assume val-
ues less than, equal to, or greater than unity and the plan curva-
ture (defined by ω ) to assume either a positive, zero, or nega-
tive value. In order to reduce the number of free parameters that 
define the topographic surface of the hillslope, we take 

  ω = +H / L2  for convergent hillslopes and   ω = −H / L2  for 
divergent hillslopes (Talebi et al., 2008a, b). Fig. 1 illustrates 
nine basic hillslope types that are formed by combining three 
plan and three profile curvatures. Fig. 2 illustrates the three-
dimensional view of a convergent hillslope with a convex sur-
face profile. 
 

 
 
Fig. 1. 3D view (top) and 2D plan of the contour lines and slope 
divides (bottom) of the nine hillslopes considered in this study 
(after Hilberts et al., 2004). 
 

The width of the hillslope measured in the y direction is giv-
en by (Talebi et al., 2008a):  
 

  

w(x) = cw exp cs 1− x
L

⎛
⎝⎜

⎞
⎠⎟

2−n⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (2) 

 
and 
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cs =

2ωL2

n(2− n)H
, (3) 

 

 
 
Fig. 2. Three-dimensional view of a convergent hillslope with a 
convex surface profile.  
 
where cw defines the width of the hillslope at the outlet (x = L) 
and cs defines the degree of topographic convergence. The 
hillslope drainage area A at a distance x is: 
 

  A(x) = w(u)du0
x∫ . (4) 

 
Surface flow model for complex hillslopes 
 

A stationary rainfall of intensity (i), uniformly distributed 
over the area, is applied to the hillslope (Fig. 2). Soil character-
istics are also spatially uniform. The runoff is generated 
through a fast mechanism, in which the water moves as a thin 
sheet above the soil surface (hillslope flow). The mass continui-
ty equation applied to an infinitesimal element of the hillslope 
of length dx may be expressed by (Agnese et al., 2001): 
 

  

∂hx (t)
∂t

+
∂Qx (t)
∂x

= r  (5) 

 
in which Qx(t) is the discharge per unit width at time t and 
distance x measured from the top of the hillslope, hx(t) is the 
local depth of surface flow at distance x and r = i – f is the 
rainfall excess intensity where i and f are the rainfall intensity 
and the infiltration rate, respectively.  

Agnese et al., (2007) solved Eq. (5) analytically for complex 
hillslopes r – q0 > 0, as follows: 
 

  

1
1+ mjj=0

∞
∑ (q

r
)(1+mj)/m − (

q0
r

)
(1+mj)/m⎡

⎣
⎢

⎤

⎦
⎥ = φs

−1r (m−1)/mk*
1/mt , (6) 

 
where m are parameters that are assumed to be constant (m is 
usually taken to be equal to 5/3 for  turbulent flow and to 3 for 
laminar flow), k* = S0.5/(nhL), S is the average slope (= H/L), nh 
is the hillslope Manning coefficient, q(t) = ∂Qx(t)/∂x is the 
outflow rate per unit area, q0 is the initial condition (for t = t0) 
and sφ is the shape factor (SF) that depends on both the plan 
form geometry and the profile shape of the hillslope. SF is 
given by (Agnese et al., 2007): 
 

  

SF = φs =
φpl (ξ )

φpr (ξ )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥0

1∫

1/m

dξ , (7) 

 

where 
  
φpl (ξ )  is called ‘normalized plan form geometry func-

tion’ and 
  
φpr (ξ )  is called the ‘normalized profile shape func-

tion’. The normalized plan form geometry function is given by 
(Agnese et al., 2007):  
 

  
φpl (ξ ) = A(x)

w(x)
1
L

, (8) 

 
where A(x) and w(x) respectively being the drainage area and 
the hillslope width at the distance x (Fig. 2). By normalizing the 
distance (ξ = x/L) and substituting Eq. (2) and Eq. (4) into Eq. 
(8), we obtain:  
 

  

φpl (ζ ) =
exp cs(1−ζ )(2−n)⎡

⎣
⎤
⎦ dζ

0

ζ L
∫

exp cs(1−ζ )(2−n)⎡
⎣

⎤
⎦

. (9) 

 
Note that in convex/concave hillslopes, the drainage area in 
each point should be determined numerically and we cannot 
devise an analytical equation for calculating the plan form 
function in these hillslopes. In straight hillslopes there is no 
slope variations (n = 1) and the width function is as follows 
(Talebi et al., 2008a): 
 

  
w(x) = w0 exp(− 2ωL

H
x) , (10) 

 
where w0 is the hillslope width at the most upstream (x = 0). As 
a consequence, the hillslope drainage area upstream of x be-
comes: 
 

  
A(x) = w(x)du =

w0H
2ωL

1− exp(− 2ωL
H

x)
⎡

⎣
⎢

⎤

⎦
⎥0

x∫ . (11) 

 
The normalized plan form function for the straight hillslopes is 
calculated by: 
 

  
φpl (ζ ) = H

2ωL2

⎛
⎝⎜

⎞
⎠⎟

exp(
2ωζ L2

H
)−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (12) 

 
The normalized profile shape function is obtained by (Agnese 
et al., 2007): 
 

  
φpr (ζ ) = S(x) / S , (13) 
 
where S(x) is the local slope. We can calculate the local slope 
of compound hillslopes by Eq. (1) as:  
 

  
S(x) = dz

dx
= n H

L
(1− x

L
)n−1 = nS(1−ξ )n−1 . (14) 

By substituting Eq. (14) into Eq. (13), the normalized profile 
shape function is obtained: 
 

  
φpr (ζ ) = n(1−ζ )n−1 . (15) 

 
The normalized profile shape for straight hillslopes (n = 1) is 

equal to unity. By inserting the normalized plan shape function 
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from Eq. (9) and the normalized profile shape function from 
Eq. (15) into Eq. (7), we obtain:  
 

  

φs =
1
L

A(x)
w(x)L
S(x) / S

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

o
L∫

1/m

dx =

=
[

exp(cs(1−ζ )(2−n) )dζ
0

ζ L
∫

exp(cs(1−ζ )(2−n) )
]

n(1−ζ )n−1

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

1/m

dζ
0

1
∫ .

 

(16)

 

 
Eq. (16) displays the shape factor function for all complex 

hillslopes. Also, by inserting the plan shape fuction from Eq. 
(12) an unify profile shape into Eq. (7), the shape factor for 
straight hillslopes becomes: 
 

  
φs =

H
2ωL2

⎛
⎝⎜

⎞
⎠⎟

exp(
2ωζ L2

H
)−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/m

dζ
0

1
∫ . (17) 

 
By solving Eq. (16) and Eq. (17) numerically, the shape fac-

tor for complex hillslopes can be determined. Eq. (17) has an 
analytic solution for different values of m. For example, the 
shape factor of parallel-straight hillslope for transition regime 
(m = 2) is 2/3. 
 
Time of concentration for basic complex hillslopes 
 

We found no consensus in the literature regarding the terms 
used to describe the time of hillslopes response, or to explain 
their physical significance. For example, Izzard (1946) defined 
the time to equilibrium as the time when the flow is 97% of the 
supply. Similarly, Machmeier and Larson (1968) used a term 
called ‘‘time to virtual equilibrium’’, also the time taken to 
attain 97% of equilibrium flow. In a broader study, Ben-Zvi 
(1984) defined the time of concentration as the time from the 
initiation of rainfall, to the time when the catchment discharge 
attains (nearly) 0.8 of the equilibrium discharge. Agnese et al. 
(2007) defined the time to equilibrium as the time necessary for 
the outflow rate, starting from zero, to attain 95% to the rainfall 
excess.  

In this paper, the characteristic time-scale of the surface run-
off processes is represented by the time of concentration, de-
fined as the time necessary for the outflow rate q(t), starting 
from zero, to attain a value very close to the rainfall excess 

  (χ .r) . χ is called concentration coefficient (CC).  
According to Eq. (6), the time of concentration could be ex-

pressed by (Agnese et al., 2007): 

  

TC = Rs r (1−m)/m( S
nhL

)−1/m

Rs =ϕs
χ (1+mj)/m

1+ mj
,

j=0

∞
∑

 
(18)

 

 
where Rs depends on the geometry of hillslopes, flow regime 
and concentration coefficient. By inserting Eq. (16) into Eq. 
(18), we obtain: 

  

TC = χ (1+mj)/m

(1+mj)j=0

∞
∑ r (1−m)/m(

S
nhL

)(−1/m)

[
exp(cs(1−ζ )(2−n) )dζ

0

ζ L
∫

exp(cs(1−ζ )(2−n) )
]

n(1−ζ )n−1

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

1/m

dζ
0

1
∫ .

 

(19)

 

 
Eq. (19) computes TC for all nine complex hillslopes in diverse 
flow regimes. By solving Eq. (19) numerically, TC can be 
determined. 

All parameters of Eq. (19) except the concentration coeffi-
cient depend on geometric features of the hillslope and rainfall 
attributes. This equation shows great sensitivity to concentra-
tion coefficient so that partial changes in this coefficient lead to 
prominent changes in TC. Accordingly, in this work we are to 
calibrate the concentration coefficient based on the lab results 
in conjunction with the equations suggested by other scientists. 
 
FURTHER COMPARISONS 
 

To investigate the effect of  geometry of complex hillslopes 
on TC of surface flow, the nine basic complex hillslopes are 
further studied in similar conditions that were considered by 
Hilbert et al. (2004) and Talebi et al. (2008a, b). The geomet-
rical parameters for the nine characterized hillslopes are listed 
in Table 1. The total length of all hillslopes is 100 m, maximum 
elevation difference is 26.8 m, average slope is 0.27, maximum 
y is 25 m, Manning coefficient assumed 0.03, and m set to 5/3 
for turbulent flow. The curvature shape factor for hillslopes 
varies between 0.5 and 1.5 and the plan shape factor between ω 
= –H/L2 (for divergent) and ω = +H/L2 (for convergent) (Talebi 
et al., 2008a and Troch et al., 2002). The straight hillslopes 
have a curvature parameter of unity, while the plan shape factor 
for parallel hillslopes is zero.  

The parameters are so chosen that the characteristics of plan 
shape in the convergent hillslopes be opposite to those for the 
divergent ones; also, the curvature aspects of the convex 
hillslopes are taken to be opposite to the concave ones. 
 
Table 1. Geometrical parameters for nine studied hillslopes (Talebi 
et al., 2008a, b). 
 

Hillslope  
Nr. 

Profile  
curvature 

Plan  
shape 

n ω(10–3 m–1) 

1 concave convergent 1.5 +2.7 
2 concave parallel 1.5 0 
3 concave divergent 1.5 –2.7 
4 straight convergent 1 +2.7 
5 straight parallel 1 0 
6 straight divergent 1 –2.7 
7 convex convergent 0.5 +2.7 
8 convex parallel 0.5 0 
9 convex divergent 0.5 –2.7 

 
Calibration of time of concentration equation 
 

Eq. (19) has a strong dependence on the concentration coef-
ficient, so that small alterations of this quantity greatly affects 
the time of concentration. Calibration of this coefficient re-
quires measuring the time of concentration of complex 
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hillslopes in laboratory. Another way of calibration would be to 
compare the results of Eq. (19) with those of other scientists. In 
this research, both calibration and laboratory experiments are 
used such that the laboratory data forms the ultimate basis for 
calibration of the proposed relationship. 

There exists a close relationship between TC, time to equi-
librium (Te) and/or lag time (tl) of a hillslope or a watershed. Te 
is the moment at which the runoff peak flow equals the rainfall 
excess intensity times the watershed area. If the duration of the 
excess rainfall is greater than or equal to TC, then Te is equal to 
TC. Moreover, TC is 1.67tl (Soil Conservation Service, 1975), 

lt49.1  (Overton and Meadows, 1976 and Sharma, 1985), and 
1.35tl (McCuen et al., 1984). Singh and Agiralioglu (1981a) 
proposed (m + 1)tl/m which is adopted in this research. 
 
Calibration of TC equation for straight-parallel hillslope 
 

In this section, Eq. (19) for the parallel-straight hillslope (ω 
= 0, n = 1) is compared to the relationship proposed by Morgali 
and Linsley (1965) and Eagleson (1970) to determine the time 
of concentration of overland flow. Then, we turn to calibrate 
the concentration time for other types of hillslopes. Morgali and 
Linsley (1965) and Eagleson (1970) used the following equa-
tion to calculate the time of concentration for overland flow 
over a rectangular plane:  
 

  
TC = L1/m

(αrm−1)1/m , (20) 

 

where
  
α = 1

nh
× S0.5.  If we put CC = 0.832 and m = 5/3 in Eq. 

(18), then Rs = 1. Thus, Eqs. (19) and (20) yield the same re-
sults. Fig. 3 illustrates the variations of Rs with respect to the 
parameter CC for different flow regimes in the straight-parallel 
hillslopes. 
 

 
 
Fig. 3. Effect of concentration coefficient on Rs for different flow 
regimes. 

 
In general, the straight-parallel hillslopes give 1∝sR  at CC = 
= 0.832 for different values of m, causing Eq. (19) and Eq. (20) 
to agree. Therefore, one could set the concentration coefficient 
of the parallel-straight hillslopes to 0.832. 
 
Calibration of TC equation for straight-convergent hillslope 
 

In this section, Eq. (19) for the parallel-convergent hillslopes 
is linked to the equations presented by Agiralioglu (1985) for 
convergent surfaces. The lag time for a converging surface can 
be obtained as Agiralioglu, 1985. 
 

  
tl = ( 1

L
)( 1

2α
)1/m(r)(1−m)/m 2xL− (1− c)x2

L− (1− c)x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0
L∫

1/m

dx,  (21) 

 
where c is the ratio of outlet width to the ridge width (degree of 
convergence). The approximate relationship between c and plan 
shape parameter (ω) for straight hillslope (n = 1) is: 
 

  
c =

cw
w(0)

= exp(−2ωL2 / H )  (22) 

 
TC of a convergent-straight hillslope can be obtained by:  
 

  
TC = m+1

m
tl .

 
(23) 

 
Fig. 4 shows TC of straight-convergent hillslopes for m = 

5/3, various plan shape coefficients (ω) and concentration coef-
ficients (CC) according to Eq. (23) proposed by Agiralioglu 
(1985) and Eq. (19) (this study). 

Based on Fig. 4, Eqs. (19) and (23) give the best fitted val-
ues for CC = 0.83. According to the obtained results, the con-
centration coefficient of the straight-convergent hillslopes 
equals 0.83. 

In Agiralioglu's (1985) modeling, the hillslope width is a 
linear function of length (since w(x) = θx, where θ is the arch 
angle), while in our study this relation is exponential (Eq. (2)). 
Since it is easily understood that the less value of ω, the more 
the width relation tends to the linear situation; this, in turn, 
causes that the difference in simulation of flow width in two 
methods (which is an influencing factor on TC) reduces. 
 
 

 

 
 
Fig. 4. Comparison of TC determined by Agiralioglu (1985) and this study for the straight-convergent hillslopes. 
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Calibration of TC equation for straight-divergent hillslopes 
 

Agiralioglu and Singh (1981) reported the following equa-
tion for lag time of divergent hillslopes: 
 

  
tl =

1
L(1− c)

( r1−m

2α
)1/m (x2 − c2L2 )dx

x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

cL
L∫

1/m

,  (24) 

 
where c is the divergence factor of the hillslope. If the diver-
gence factor is small (c > 0), lag time for divergent hillslopes 
may be obtained by:  
 

  
tl = 1.147(

L0.6nh
0.6

S0.3r0.4 ) , (25) 

 
where r is excess rainfall intensity (cm/hr) and lt  is in minute. 
Since TC is 1.6 times the lag time (m = 5/3), then TC for a 
divergent hillslope becomes: 
 

  
TC = 0.66(

L0.6nh
0.6

S0.3r0.4 ) , (26) 

 
where r is the excess rainfall intensity (m/s) and TC is in se-
conds. 

By putting m = 5/3, n = 1 (the straight hillslope), ω = –H/L2 
and CC = 0.83 in Eq. (19), we get:  
 

  
TC = 0.73

L0.6nh
0.6

r0.4S0.3 . (27) 

 
This is close to Eq. (26). Thus, the concentration coefficient 

for the straight-divergent hillslopes is 0.83. To calibrate the 
presented model, Eq. (19) is applied only for straight hillslopes 
with different plan shapes, setting the concentration coefficient 
for parallel, divergent and convergent hillslopes to 0.83. 
 
CALIBRATION OF THE PROPOSED EQUATION 
BASED ON LABORATORY EXPERIMENTS 
 

As it was seen before, the equation for TC in this research 
was compared to those of other scientists only for the case of 
straight hillslopes with no consideration of curvature effect on 
concentration coefficient, so we need to use a laboratory model 
to calibrate the coefficient for the nine complex hillslopes. 

Parallel to this work, Geranian et al. (2010) studied the re-
sponse of surface flow in complex hillslopes through laboratory 
experiments. They set the length of the hillslopes to 2 m and the 
maximum width to 1 m. The upstream width and the down-

stream width were 1 m and 0.2 m in convergent hillslopes, 
respectively, while the reserves was true for divergent 
hillslopes. The profile curvature parameters were 1.5 and 0.5 
for concave and convex hillslopes, respectively. The rainfall 
intensity over the hillslopes varied between 5 to 10 litters per 
minute. Manning coefficient of hillslopes was 0.016 and bed 
slopes ranged between 5% to 20%. The geometrical parameters 
for the nine hillslopes are listed in Table 2. TC was measured as 
the time that outlet discharge reached its maximum value at 
steady state. Fig. (5) shows the rainfall simulator used by Gera-
nian et al. (2010). 
 
Table 2. Geometrical parameters for nine studied hillslopes (Gera-
nian et al., 2010). 
 

ω  n Hillslope 
 Nr. 

0.014 1.5 1 
0 1.5 2 

–0.014 1.5 3 
0.018 1 4 

0 1 5 
–0.018 1 6 
0.014 0.5 7 

0 0.5 8 
–0.014 0.5 9 

  L = 2m,  S = 5%  
 

 
 
Fig. 5. Rainfall simulator used by Geranian et al. (2010). 
 

Concentration coefficients for concave, straight, and con-
cave hillslopes were calibrated as 0.98, 0.94, and 0.94, respec-
tively, against the experimental data. Fig. 6 and Table 3 shows 
the comparison between the TC as determined by the equation 
proposed in this study with the observed data in the laboratory.  
 

 
Table. 3. TC observed in lab, and results of Eq. (19) (in seconds) 
 

Hillslope Number 1 2 3 4 5 6 7 8 9 
Obseverd TC 12.5 9.5 7.0 10.0 8.5 5.5 11.5 9.0 6.0 
Model(CC = 0.83) 6.7 5.2 4.1 7.1 5.3 4.4 8.2 5.9 5.0 
Model(CC = 0.96) 10.5 8.2 6.4 11.1 8.3 6.9 12.9 9.3 7.8 
Model(optimized) 12.3 9.6 7.5 10.0 7.5 6.2 11.6 8.3 7.0 
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Fig. 6. TC of complex hillslopes with calibrated concentration coefficient (slope = 5%). 
 

In average, the concentration coefficient of 0.96 for nine 
complex hillslopes provided the smallest error for all hillslopes, 
that is very close to the value of 0.95 proposed by Agnese et al. 
(2007). Assuming laboratory data to form the benchmark, Eq. 
(19) is an appropriate relationship to estimate the travel time of 
complex hillslopes. The data collected by Geranian et al. (2010) 
indicated that the travel time of convergent hillslopes is approx-
imately twice that of divergent slopes. Furthermore, the travel 
time of concave hillslopes is slightly more than that of the 
convex hillslopes. The plan shapes of complex hillslopes were 
more effective on the surface flow travel time than the profile 
curvature. 
 
TIME OF CONCENTRATION OF COMPLEX 
HILLSLOPES 
 

Considering the fact that the time of concentration is directly 
related to the shape factor, the variation of TC for complex 
hillslopes follows the variation of shape factor. Fig. 7) com-
pares TC of complex hillslopes for an excess rainfall intensity 
of 10 mm/hr. 
 

 
 
Fig. 7. Time of concentration of complex hillslopes (r = 10 
mm/hr). 
 

Based on the obtained results, divergent hillslopes have 
smaller TC than those of parallel and convergent slopes. How-
ever, convex hillslopes have similar TC to the straight and 
concave hillslopes. The TC in convergent hillslopes is approx-
imately double those of divergent hillslopes. Smallest TC cor-
responds to the convex-divergent hillslopes (8.6 min) and the 
greatest TC to the convex-convergent slopes (23.9 min).  

On average, TC for convergent hillslopes is 2.4 and 1.7 
times of the divergent and parallel hillslopes, respectively. The 
effect of convergence coefficient on TC of complex hillslopes 
was much higher than the effect of curvature coefficient. The m 
parameter affects time of concentration of the complex 
hillslopes as shown in Fig. 8 and Table 4 for different flow 
regimes. 
 

 
 
Fig. 8. Effect of surface flow regime on TC for complex hillslopes 
(m = 5/3 for turbulent flow, m = 2 for transition flow and m = 3 for 
laminar flow, r = 10 mm/hr). 
 

Flow regime strongly influences TC especially in laminar 
flow regime. The flow regime in hillslopes is generally turbu-
lent and m = 5/3 is normally adopted. 
 

Table. 4. Effect of flow regime on TC (in minutes) 
 
H.N 1 2 3 4 5 6 7 8 9 
m = 3 21.7 13.5 9.5 19.0 12.5 9.1 23.9 12.8 8.6 
m = 2 56.7 38.9 29.5 51.7 36.7 28.5 62.7 37.8 27.3 
m = 5/3 280.5 223.4 188.0 268.9 216.9 184.2 307.1 222.2 179.6 
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Fig. 9. Effect of profile curvature and plan shape parameters of complex hillslopes on TC (r = 10 mm/hr). 
 
The effect of geometry of complex hillslopes on TC 
 

Now, the effects of geometric parameters of nine hillslopes 
upon TC are studied. Parameter n in Eq. (1) stands for the pro-
file curvature and ω (the plan shape) describes convergence or 
divergence of the hillslope. Fig. (9a, b, c) shows the influence 
of the profile curvature of complex hillslopes for different 
values of n and for different plan shapes according to Table (1) 
values. 

Thus, the effect of profile curvature in parallel and divergent 
hillslopes is much smaller than that in convergent slopes.  

The changes of TC in Fig. 9a were due to the convergence of 
hillslope rather than curvature. Fig. (9d, e, f, g, h, i) demon-
strates the effect of plan shapes (ω) of convergent and divergent 
hillslopes on TC. The values of (ω) is assigned to vary from      
–H/L2 to +H/L2. For example, TC of convex-convergent and 
concave-convergent hillslopes are respectively 25% and 14% 
greater than that of straight-convergent hillslopes. It appears 
that these six hillslopes react differently to the change of plan 
shape such that in convergent hillslopes the effect is far more 
than in divergent slopes. 

In divergent hillslopes, the greater the absolute value of ω, 
the higher the decrease in TC. Changes in profile curvature in 
divergent hillslopes do not affect TC. Convergent hillslopes are 
more sensitive compared to divergent and parallel slopes. Also, 
different profile curvatures exhibit different responses. For 
example, a convex-convergent hillslope has the maximum TC 
as compared to convex-straight slopes such that the convergent-
convex hillslope (ω = 0.0027) has a TC of 1.86 times that of the 
parallel-convex slope (ω = 0) and TC for a convergent-concave 
slope is 1.6 times that of the parallel-concave slope. 

Overall, one may state that plan shape factor exert more in-
fluence on the TC of surface flow than those the profile curva-
ture. This is particularly bold in convergent hillslopes than 
divergent ones.  
 
 

CONCLUSIONS 
 

In this article, a general relationship was presented for com-
puting the TC of complex hillslopes considering the plan shape 
and profile curvature. The 3D geometry of complex hillslopes 
was formalized and the parameters defining plan shape and 
profile curvature were incorporated into the TC relationship. 
The results obtained for straight hillslopes with convergent, 
parallel and divergent shapes were shown to agree with those 
reported by Singh and Agiralioglu (1981a, 1981b, 1982) and 
Agiralioglu (1985). Finally, the proposed relationship was 
calibrated against the laboratory data. Main conclusions of this 
study are as follows: 
1. Experimentally calibrated concentration coefficients for 
concave, straight, and convex hillslopes are 0.98, 0.94, and 
0.94, respectively. 
2. Based on the laboratory evidence, the TC of complex 
hillslopes was regarded as the time when the flow reaches 0.96 
of excess rainfall intensity. 
3. Convergent hillslopes with different profile curvatures have 
longer TC as compared to the parallel and divergent slopes. For 
example, average TC for convergent hillslopes is about 2.4 
times those of divergent hillslopes and 1.7-times those of paral-
lel slopes under similar conditions. 
4. The plan shape of hillslopes greatly influences the TC. In 
contrast, the profile curvatures has a slight effect. The effect of 
profile curvatures on converging hillslopes is higher than that 
on divergent or parallel slopes. TC of convex hillslopes with 
constant plan shape is close to TC for straight and concave 
hillslopes. 
5. TC for convergent hillslopes is almost twice that for parallel 
and divergent slopes. Convergent-convex hillslopes are domi-
nate hillslopes in comparison to other types in nature. TC of 
convergent – convex hillslopes is 1.25 times those of straight-
convergent and 2-times those of parallel-straight hillslopes. 
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