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Abstract: The paper deals with selected procedures used to calculate the shape of compact nappe during free overfall 
from a smooth horizontal channel with rectangular cross section. Calculated and measured water surface and velocity 
conditions in the end section, the level of water surface upstream in front of the end section and the shape of the compact 
part of an overfall nappe are described for a particular compared case. 
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INTRODUCTION 
 

The determination of the shape of a nappe during free over-
fall from a channel, e.g. with rectangular cross section, is an 
important part of construction design in many practical applica-
tions. These are sudden drops in the channel bed, flumes and 
channels with a sudden end of the bed, culverts with outflow 
into a free space, certain sewerage and roof inlets, measuring 
flumes for determining the discharge Q using the measured end 
depth he, broad-crested weirs, etc.  

During the flow of water in a channel near the end section 
when the curvature of streamlines can be neglected, the hydrau-
lic calculation of the shape of the compact part of a nappe 
(without air entrainment) is relatively well explained (Kolář et 
al., 1983; Wahl et al., 2008), but less explained with self aera-
tion (Falvey, 1980). This concerns cases with a supercritical 
regime when the assumption of the non-curvature of stream-
lines is fulfilled and, at the same time, the flow is without air 
entraimnment. These are, e.g., short chutes, spillway conduits 
and straight drop structures. 

Flow in a channel near the end section where curvature of 
streamlines cannot be neglected concerns channels with an 
approximately zero bed slope. There are many approaches for 
solving that flow like a one-dimesional (1D), two-dimensional 
(2D) and three-dimensional (3D), but with different accuracy. 
This paper is focused on comparing its results with the mea-
surements. 
 
FREE OVERFALL FROM A CHANNEL  
 

Overfall from a channel forms a relatively extensive part of 
hydraulics. Research has gradually divided the issue according 
to the location of the end section into front and side overfalls; 
according to the effect of tailwater into free and submerged 
overfalls; and according to the longitudinal shape of the chan-
nel into overfall form prismatic and non-prismatic channels 
(Beirami et al., 2006). 

In the case of the front overfall, prismatic channels are di-
vided by the shape of their cross section (ISO 3847, 1977), 
(ISO 4371, 1984) into channels with rectangular (square or 
oblong) profiles and those with non-rectangular (trapezoidal, 
triangular (Dey and Kumar, 2002), circular (Dey, 2002a), semi-
circular (Dey, 2001; Raikar et al., 2004), parabolic and other 
(Dey and Lambert, 2007)) profiles. Moreover, channels can be 

divided using the bed slope i0 into channels with a negative 
slope, a zero slope and a positive slope (Dey, 2000). A special 
case is division by the properties of the channel surface (Bos, 
1989) expressed, e.g., by the roughness coefficient (Firat, 
2004), or by the friction coefficient (Dey, 2000) determined on 
the basis of the relative roughness of the channel (Pařílková et 
al., 2012). The overfall nappe can be divided into confined 
(side-bounded) and unconfined (side-unbounded) nappes (ISO 
3847, 1977).  

Due to the extent of the issue, it is considered having only a 
front free overfall from a smooth horizontal prismatic channel 
of a rectangular cross section of the width b, when water 
movement is caused only by forces of gravity determined by 
the gravitational acceleration g (constant). The hydraulic calcu-
lation of flow in the channel with end section is relatively com-
plicated. Due to the curvature of streamlines, the critical depth 
hc (it is assumed that the distribution of velocities over the cross 
section is constant, α = 1.0) 
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does not form at the end section, but at a certain distance Lc 
upstreame. At the end section, the so-called end depth he is 
created, being smaller than the critical depth: he < hc. The ratio 
between the end depth and the critical depth is called the “end-
depth ratio” (EDR) (Dey, 2002) 
 

 
EDR =

he
hc

. (2) 

 
The curvature of streamlines in the area between the section 
with the critical and end depths is relative to depth. The curva-
ture is zero at the channel bed and maximal on the water sur-
face; in this case, the hydrostatic distribution of the pressure p 
across the flow depth h is not applied. The dimensionless depic-
tion of the overfall in its longitudinal plane of symmetry deter-
mined by the axes Z/hc and X/hc is shown in Fig. 1. 

The 1D calculation of the entire phenomenon is usually di-
vided into three parts. The first part includes the calculation of 
flow in the area of the channel before the critical depth hc, the 
second part forms the calculation of flow between the critical 
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Fig. 1. Longitudinal vertical section through the plane of symmetry of the free overfall with an unconfined nappe and with the designation 
of variables. 
 
depth hc and the end depth he, and the third part is the calcula-
tion of the shape of a free overfall nappe. 

The 1D calculation of flow before the critical depth hc is 
well explained. To solve it, a step method – the standard step 
method – is most often used (Chow, 1959; Kolář et al., 1983); 
when calculating it, it is proceeded upstream from the profile 
with the critical depth hc determined by the Eq. (1). 

The place of the origin of the critical depth hc, determined by 
the length Lc, or by their ratio Lc/hc, is generally variable, de-
pending particularly on the bed slope i0 (Dey, 2002), or on the 
value of the Froude number Fr (Dey, 2002), the shapes of the 
longitudinal and cross sections of the channel and on the rela-
tive roughness ks/R, where ks is the equivalent Nikuradse sand-
grain roughness height and R is the hydraulic radius. In the case 
of the prismatic rectangular channel with a zero bed slope, the 
critical depth is at a distance Lc = 3hc to 4hc from the end sec-
tion (Chow, 1959). 

The description of flow between the critical depth hc and the 
end depth he and the indication of their ratio EDR (2) is the 
subject of about 80 years long investigation that has probably 
not finished yet which show numerous new papers (Castro-
Orgaz and Hager, 2010; Sharifi et al., 2010; Castro-Orgaz and 
Hager, 2011). The methods of the solution of flow in this inter-
val can be divided (Dey, 2002) into: the Boussinesq approxima-
tion (Dey, 2002), the energy approach (Anderson, 1967; Hae-
ger, 1983), the momentum approach (Murty Bhallamudi, 1994), 
the weir (without crest) flow approach (Rouse, 1936), the free-
vortex approach (Ali and Sykes, 1972), the potential flow ap-
proach (Southwell and Vaisey, 1946) and empirical approach 
(Davis et al., 1998). 

The value of the end depth he is not generally dependent on-
ly on the discharge Q, the gravitational acceleration g and the 
width b of the channel, but also on the shape of the longitudinal 
and cross sections of the channel (Ferro, 1999), the slope i0 of 
the channel bed, the relative roughness ks/R of the channel 
(Firat, 2004), on the side boundaries of the nappe and, for the 

end depths he < 0.03 m (Bos, 1989), also on the Weber number 
We and the Reynolds number Re.  

The end depth he can also be used for determining the dis-
charge Q. In a channel of a rectangular cross section of the 
width b with the zero bed slope i0 and with the action of gravi-
tational acceleration g, on the basis of the knowledge of the 
value of the end depth he, the equation below is used (ISO 
3847, 1977) 
 

  Q = Cdg1/2bhe
3/2 , (3) 

 
where Cd is the discharge coefficient (Cd = 1.66 for a confined 
nappe, Cd = 1.69 for an unconfined nappe; b > 0.3 m, 
he > 0.04 m (ISO 3847, 1977)). For non-rectangular cross sec-
tions of a channel, the Eq. (3) is somewhat more complicated 
(practically every shape of the cross section has its own equa-
tion), being based on the critical depth hc with the indication of 
EDR (ISO 4371, 1984). 

The methods of flow description mentioned above can be 
used particularly for determining the ratio EDR. In the area of 
description of the trajectory and shape of a free overfall nappe, 
they cannot be used generally. The trajectory of a free overfall 
nappe was discussed in White et al. (1943), Markland (1965), 
Marchi (1993), Davis et al. (1999), Wahl et al. (2008), Hong et 
al. (2010) and others. Particularly a confined and fully aerated 
nappe is described to a distance before it is compact. Valuable 
information can be obtained from the Straight Drop Structure 
Design Guidelines from 1991 (Standing Committee on Rivers 
and Catchments, 1991) in which the mean shape of the upper 
and lower surface of a free nappe and his trajectory under the 
tailwater surface level Zd is depicted. The relationship is re-
drawn in Fig. 2 which indicates points of the tangential devia-
tion of the upper surface of the nappe in the place of the tailwa- 
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Fig. 2. Shape of a confined overfall nappe after the Straight Drop Structure Design Guidelines (Standing Committee on Rivers and Catch-
ments, 1991), redrawn from the original. 
 
ter level; the trajectories marked by a dashed line are used, e.g., 
to design the shape of a stilling pool (the nappe breaks down 
under the tailwater surface level). 

This overview shows that in the case of a complete descrip-
tion of the phenomenon it is necessary to make practically 
always three separate consecutive calculations, which can be 
relatively complicated. Disadvantages of this calculation sepa-
ration are eliminated by a 2D or a 3D solution by means of a 
numerical model (Wang et al., 2009) using the Reynolds equa-
tions, which provides a complete view of flow (velocities and 
pressures) (Ramamurthy et al., 2006). At the present time, free 
overfall from a channel of a rectangular cross section with a 
confined and fully aerated nappe is used as a testing or a vali-
dating task of numerical models, e.g. Zerihun and Fenton 
(2004), Jia and Wang (2005), Wang et al. (2009), etc. This 
paper deals particularly with this solution for a confined as well 
as an unconfined nappe. There are not many measured data 
suitable for comparing the shape of an unconfined nappe; hence 
a physical experiment was used. 
 

PHYSICAL EXPERIMENT 
 

The channel with length 2.5 m and square cross section of 
0.15 m in width and height was used. In the inlet were regulat-
ing wings and polystyrene slab for faster stabilisation of flow. 
The channel was ended in the cross section perpendicular to its 
longitudal axis (Fig. 3).  

The determination of discharge was made using a Thomson 
weir. Water falling from the channel freely without side walls; 
hence this was an unconfined nappe. This physical experiment 
is described in more detail in Böhm (2010). 

The position of the water surface was measured by a point 
contact gauge with three exchangeable needle points. Velocities 
were measured by a UVP Monitor XW-PSi instrument with a 
4-MHz probe.  

The system of coordinates chosen for determining the shape 
of the water surface its origin in the centre of the end edge, the 
axis X was oriented horizontally downstream, the axis Y passed 
through the end edge and the axis Z was vertical (positive up-
wards). 
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Fig. 3. Physical experiment (left), a point contact gauge (right). 
 

Assumptions were the symmetrical distribution of the ve-
locity field about the plane XZ, which was confirmed by testing 
measurement, and negligible velocities in the direction of the 
axis Y. Instantaneous point velocities ux in the direction of flow 
and at the end section (Fig. 5) were measured upwards from a 
distance of 0.04 m in front of the end section. Instantaneous 
point velocities uz in the direction of the axis Z were measured 
just behind the end section (starting at 0.005 m from the end 
section). The average values of them representing the relevant 
components vx and vz of the (mean) point velocity was calculat-
ed; these components defined the (mean) point velocity v (see 
Figs 4 to 6). 
 

 
 
Fig. 4. Measured water surface level and the position of measure-
ment of point velocities at the end section. 
 

Measurement by a point contact gauge was made in three 
steps. The first step included the measurement of the position of 
the water surface level in a longitudinal plane of the channel 

from the end depth up to a distance of X = –1.000 m at 0.100 m 
intervals. These data were used to determine the position of the 
critical depth hc, which was validated by us at a distance of 
Lc = 3hc (Fig. 1). The second step comprised the measurement 
of the water surface level at the end section. This measurement 
was made at 0.010 m intervals (Fig. 4). The level at the end 
section was detected as approximately horizontal. The shape of 
a half of the width of the free nappe was measured also (the 
symmetry about the plane XZ was assumed). Measurement was 
made in vertical sections spaced 0.010 m apart, up to a distance 
of X = 0.300 m and of the axis Y at 0.005 m intervals. At a 
distance greater than 0.300 m from the end section, the self-
aeration of flow and the fluctuation of the water surface were so 
high. The shape of the nappe measured only by the upper and 
lower needle points is depicted in longitudinal planes XZ 
spaced 0.01 m apart (see Fig. 8). 
 

 
 
Fig. 5. X component of point velocity determined from measure-
ment at the mid-profile of the end section.  
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Fig. 6. Z component of point velocity determined from measure-
ment at the mid-profile of the end section.  
 

 
 
Fig. 7. Point velocity at the mid-profile of the end section. 
 

The shape of the vertical cross section through the nappe 
gradually changes downstream along the centreline from an 
oblong shape up to the shape of a horseshoe (the shape of the 
nappe in the form of vertical sections at 0.05 m intervals is 
shown in Fig. 9). On a horizontal plan view, it widens along the 
axis X by about 8° and its thickness gradually reduces with the 
increasing mean flow velocity vA. The upper surface of the 
nappe gradually all rounds; the lower surface of the nappe 
changes particularly in the places of its widening.  

A surface characterizing the shape of a nappe was interpo-
lated through the measured points. The shape of the nappe 
obtained in this way, with depicted vertical cross sections, is 
shown in dimensionless form in Fig. 10. 

 
 
Fig. 8. Shape of a nappe measured by the upper and lower needle 
points, depicted in the longitudinal planes XZ with spacing of 
0.01 m. 
 

 
 
Fig. 9. Vertical cross sections through a nappe spaced 0.05 m apart 
in the direction of the axis X, evaluated from measurements. 
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Fig. 10. Shape of a nappe evaluated from measurements – vertical 
cross sections and a longitudinal section through the plane XZ. 
 
SHAPE DETERMINED BY CALCULATION 
 

To determine the shape of a fully aerated and confined (Fig. 
2) and an unconfined (Fig. 10) nappe by calculation, three 
approaches were used. The first approach was 1D (solving both 
a confined and an unconfined shape of a nappe) and was based 
on the characteristics of flow at the end section. The second 
approach was 2D in a vertical longitudinal plane (solving the 
confined shape of a nappe) and the third approach was 3D 
(solving the unconfined shape of a nappe). 
 
1D calculation of the shape of a nappe on the basis  
of the characteristics of flow in the end section 
 

This is a very simple method used to determine the shape of 
a nappe with a whole number of relatively significant simpli-
fied assumptions, but yielding relatively good results. 
Assumptions for the calculation were as follows:  
• The distribution of the point velocity v over the cross-

sectional area A is constant. This simplification was used on 
the basis of the measurements of the velocity field made by 
us, which differed along the vertical within about 20% 
(compare Fig. 7). The centre of gravity of the velocity pat-
tern is in the mid-depth he, being the origin of the centreline 
of the nappe. 

• The pressure field does not affect flow in the nappe. 
• The vector of the mean flow velocity vA in the place of the 

centreline is in the mid-slope as is the slope of the water sur-
face ih at the same end section. This is based on the assump-
tion of the linear distribution of velocity in the direction of 
the axis Z (the difference from the real pattern is shown in 
Fig. 8). 

• The width b of the nappe fulfils one of the following condi-
tions: 
o It is constant along its whole length (the nappe is con-

fined); the space under the nappe is fully aerated; fric-
tion against the side walls is negligible; then the shape 
in a longitudinal section determined by calculation ap-
plies to the whole width of the nappe; 

o It is not constant along its whole length (the nappe is 
unconfined), but its relative width b/h is large and its 
inner part not affected by side widening (it is assumed 

that it does not widen: b = const.) has the same shape as 
a confined nappe, and hence the calculation applies on-
ly to this part; 

o It is not constant along its whole length (the nappe is 
unconfined), but its relative width b/h is small (the 
whole nappe is affected by widening), then it is as-
sumed that the cross-sectional area through the nappe 
changes downstream from an oblong to a trapezium 
having the length of the upper edge unchanged and the 
length of the lower edge variable according to the wid-
ening of the nappe. 

• The nappe is compact, does not break down and is not af-
fected by friction against air or by surface tension. 
The known variables are: the width b of the prismatic chan-

nel, the gravitational acceleration g, then either the end depth he 
or the critical depth hc or the discharge Q, combined in the Eq. 
(1), the Eq. (2) and in the water level slope ih at the end section 
(see certain methods in the chapter Free Overfall from a Chan-
nel or equations derived on the basis of experiments, e.g. in 
Davis et al., 1999, for broad-crested weirs Zachoval et al., 
2012), or, for an unconfined nappe, the angle of its widening (if 
it is known for a particular case, e.g. in Emiroglu, 2010).  

The procedure of the calculation consists of the determina-
tion of the mean flow velocity vA at the end section with the 
width b of the cross-sectional area and the flow depth he 
 

 Q = vA Ae = vA bhe . (4) 
 
The centreline slope is is determined from the water surface 
level slope ih at the end section 
 

  is = 0.5ih . (5) 
 
Then, the velocity components are determined 
 

 
is =

vAz
vAx

, (6) 

 

  vA
2 = vAx

2 + vAz
2 . (7) 

 
The pattern of the centreline of the nappe is solved in the time t. 
For the axis X it holds that 
 

 
X = vAx t  (8) 

 
and for the axis Z 
 

  Z = vAz t + 0.5g t2 . (9) 
 

The longitudinal shape of the nappe defined by the upper 
and lower surfaces is bound to its increasing mean flow veloci-
ty vA of water due to the action of the gravitational acceleration 
g. Therefore, the thickness of the nappe along the length of its 
centreline is determined by using the Eq. of continuity (4) and 
the Eqs (7), (8) and (9) describing the trajectory of the centre-
line. The determination of the cross-sectional area A by apply-
ing the Eq. (4) along the length of the nappe depends on con-
finement of the nappe and its relative width b/h. In the case of a 
confined nappe, the width of an oblong cross section along the 
length of the centreline is the same, b = const. In the case of an 
unconfined and relatively wide nappe, the same is assumed for 
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the part unaffected by the side widening. In the case of an un-
confined and relatively not so wide nappe, it is assumed that the 
cross section through the nappe changes downstream from an 
oblong to a trapezium that has its upper edge unchanging and 
the length of the lower edge variable according to the nappe 
widening (Emiroglu, 2010).  

It is advantageous to create the shape of the nappe in a longi-
tudinal plane of symmetry as an envelope of circles with their 
diameters equalling to the thickness of the nappe and with their 
centres on the centreline; the thickness of the nappe is constant 
over the cross section (Fig. 11). 
 

 
 
Fig. 11. Construction of the shape of a nappe, a 1D calculation, by 
a solid line – a confined nappe, or the part of an unconfined nappe 
unaffected by side widening, by a broken line – an unconfined 
nappe affected by side widening (input data from experiment). 
 
2D calculation of the shape of a nappe  
 

A 2D calculation of the shape of a nappe in a vertical plane 
assumes that the nappe is confined and the effect of the walls is 
negligible. 

This calculation was made using the software ANSYS 12 – 
FLOTRAN (ANSYS, 2010) based on the finite element meth-
od. The Reynolds equations were solved using the Boussinesq 
approximation by introducing the turbulent viscosity νt that was 
determined by means of the standard k-ε model of turbulence. 
The water surface was calculated using the volume of fluid 
analysis. The mesh with quadrilateral elements was adjusted so 
that its use for water flow simulations could be maximized (Fig. 
12 shows the boundaries of the mesh by a dashed line) and the 
gradients of variables could be well detected. The solution was 
time-dependent; it was necessary to adapt the length of the time 
step to the dimensions of the elements. The initial condition 
was the existence of water in all the elements. The boundary 
condition for the wall was the zero value of velocity; the condi-
tion of the external boundary was the zero reference pressure 
and the boundary condition on the inflow to the area was a pre-
defined value of velocity. Because of the unicity of the setting 
and stability of the calculation, the last-mentioned boundary 
condition was solved as a pressure inflow with constant pres-
sure and velocity over the cross section and with the upper level 
of the inflow by 0.1h lower than the assumed water surface 
level. The advantage of the setting was the constancy of the 
inflow velocity with the water surface level, and hence of its 
relation to pressure conditions as well. The condition of the 
possibility of the given setting was a sufficient length of the 
inlet part, in which stabilized flow conditions along the length 

developed. The length 50hc was used. The solution is stable and 
converges relatively well. The extent of the mesh and the shape 
of the confined nappe determined by calculation are shown in 
dimensionless form in Fig. 12. 
 

 
 
Fig. 12. 2D calculation of the shape of a nappe using the software 
ANSYS 12 – FLOTRAN, the shape of a nappe – by a solid line, 
the extent of the mesh – by a broken line. 
 
3D calculation of the shape of a nappe 
 

The calculation was made using the software ANSYS 12 – 
CFX (ANSYS, 2010) based on the finite volume method. The 
3D calculation of the shape of a nappe uses a similar approach 
as in the case of the 2D calculation, but, in addition, solving the 
flow in the direction of the axis Y (hexahedral elements were 
used). A change, as compared with the above-given 2D ap-
proach, is the solution of the two-component water/air medium. 
The model of turbulence was identically used, as well as the 
setting of the boundary conditions except the expression of the 
effect of the wall in which the wall function was used, charac-
terizing a hydraulically smooth wall. The position of the surface 
is determined by the ratio of water to air that equals to 0.5. The 
solution is stable. The shape of the unconfined nappe deter-
mined by calculation is shown in dimensionless form in  
Fig. 13. 
 

 
 
Fig. 13. 3D calculation of the shape of a nappe using the software 
ANSYS 12 – CFX, vertical cross sections through a nappe and a 
longitudinal section through the plane of symmetry XZ. 
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COMPARISON OF SHAPES 
 

The shapes are compared for an unconfined as well as a con-
fined fully aerated nappe.  

The comparison of the shape of the confined fully aerated 
nappe determined by the 1D calculation and by the 2D calcula-
tion with the shape of the nappe determined by the Guidelines 
for Stabilising Waterways (Standing Committee on Rivers and 
Catchments, 1991) is shown in Fig. 14. 

The comparison of the shape of the unconfined nappe de-
termined by the 1D calculation and by 3D calculation with the 
shape of the nappe determined by measurement is shown in 
Fig. 16. To provide a better spatial picture of the shape of the 
nappe, a comparison is also made in the form of vertical sec-
tions spaced 0.05 m apart and of a longitudinal section through 
the plane of symmetry XZ in axonometric projection (Fig. 16). 

The characteristics of the flow at the end section are funda-
mental for the subsequent determination of the shape of the 
nappe; therefore the distribution of the velocity field at the end 
section determined by the 2D calculation and by the 3D calcu-
lation is compared with the measured shape (Fig. 17). The 
picture shows certain dissimilarities in the shape of the velocity 
field determined by the 3D calculation in which the effect of 
friction against the side walls of the channel is significantly 
shown, which also explains the differences between the shape 
of the nappe determined by calculation and that determined by 
measurement (Fig. 16).  
 

 
 
Fig. 14. Comparison of the shapes of a confined nappe determined 
by a 1D calculation – by a broken line, and by a 2D calculation – 
by a dashed line, with the shape determined by the Guidelines for 
Stabilising Waterways (Standing Committee on Rivers and Catch-
ments, 1991) – by a solid line. 
 

The discharges Q determined by different methods were also 
compared. The discharge Q = 20.0 l s–1 was calculated from the 
measurement of the determined point velocities vi and their 
corresponding areas Ai at the end section according to the rela-
tion 
 

  
Q = vi ⋅ Ai( )

i=1

n
∑ . (10) 

 
The discharge determined by the Thomson weir on the basis of 
the measurement of the overfall height was 20.1 l s–1, and the 

discharge determined according to ISO 3847 on the basis of the 
measurement of the end depth he was 20.2 l s–1. The discharge 
determined by the Thomson weir was always considered for all 
the numerical calculations. 
 

 
 
Fig. 15. Comparison of the shapes of an unconfined nappe deter-
mined by a 1D calculation – by a broken line, and by a 3D calcula-
tion – by a dashed line, with the shape determined by the mea-
surement described in this paper – by a solid line, it applies for the 
plane of symmetry. 
 

 
 
Fig. 16. Comparison of the shape of a nappe determined by mea-
surement – by a thick line and by a 3D calculation – by a thin line 
in axonometric projection, vertical cross sections with horizontal 
spacing of 0.05 m and a vertical longitudinal section through the 
plane of symmetry. 
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Fig. 17. Velocities in verticals at the end section.  
 
CONCLUSIONS 
 

The conclusions of the research can be summed up in the 
following points. 

The shape of the confined and the unconfined overfall nappe 
unaffected by tailwater is markedly different in those cases in 
which the effect of confinement of the nappe by the sides is 
shown. 

The 1D approach of the solution used, even despite its sim-
plicity and considerable simplifications, yields relatively good 
results for the plane XZ in the cases of both the confined and 
the unconfined nappe and can be used, e.g., for the primary 
design of an object or its part. Because of the 1D approach, 
however, it does not provide a spatial view of the shape of a 
nappe, which is an essential restriction particularly in the case 
of an unconfined nappe. It is possible to use it for the prelimi-
nary design of structures with a confined, fully aerated and 
compact nappe and with smooth guiding side walls where the 
effect of the curvature of the nappe in the cross section can be 
neglected. In comparison with 1D more sophisticated methods 
for confined nappe this very simple method gives approximate-
ly similar accurate results. 

The 2D approach describes the shape of a confined nappe 
better than the 1D approach, provides complete information 
about the distribution of pressure and velocity in the longitudi-
nal plane through the nappe, but does not yield a view of the 
cross shape of the nappe either. It can be recommended for use 
in designing objects with smooth side walls bounding a com-
pact nappe where the curvature of the nappe in the cross section 
can be neglected. 

The 3D approach yields the most accurate results with a 
complete description of velocities and pressures in a nappe. It is 

possible to recommend it for the design of objects with a con-
fined as well as unconfined and compact nappe. 

It is necessary to emphasize that in general cases surface 
tension, the aeration of the flow and the roughness of the walls 
of a channel have significant effects on the shape of an overfall 
nappe. These effects were neglected within the numerical solu-
tion in the tested cases. 

The velocity field at the end section is practically identically 
described using numerical models; in the 3D calculation, the 
effect of the side walls of a channel appears to be greater (the 
near-wall area is thicker). 
Acknowledgements. Thanks are due to Project GA103/09/0977 
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