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Abstract: In the present work, existing empirical expressions for longitudinal dispersion coefficient of rivers (K) are 
evaluated. They are found inadequate primarily because these expressions ignore the channel sinuosity, an important 
parameter representing a river’s transverse irregularities that affect mixing process. Hence, a new expression for K is 
derived taking into account the sinuosity besides few of other hydraulic and geometric characteristics of a river. The 
model makes use of genetic algorithm (GA) on published field data. Based on several performance indices, the new 
expression is found superior to many existing expressions for estimating K. The sensitivity and error analysis conducted 
on parameters of the new expression show the channel sinuosity an important input for predicting K accurately. Any 
error in measurement of sinuosity would lead to significant deviation in the longitudinal dispersion coefficient in sinuous 
rivers. 
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INTRODUCTION 
 

When a conservative and non-buoyant pollutant is released 
into a river, physical processes such as advective transport and 
dispersion determine the movement and change in pollutant 
concentration. The pollutant transport process can be viewed as 
being composed of three stages. In the first stage, a pollutant is 
diluted by the flow in the channel because of its initial 
momentum. In the second stage, the pollutant is mixed 
throughout the cross-section of the river by turbulent transport 
processes. In the third stage, after the cross-sectional and 
vertical mixing is complete, longitudinal dispersion tends to 
erase any longitudinal variation in the pollutant concentration 
(French, 1986). The knowledge of reliable value of longitudinal 
dispersion coefficient is important for devising water diversion 
strategies, designing treatment plants, intakes and outfalls, and 
studying environmental impact due to injection of polluting 
effluents into streams (David et al., 2002).  

A large disparity exists between dispersion coefficient 
values obtained for idealized and simplified systems (such as 
irrigation canals) and for natural rivers (Rutherford, 1994). 
Such a disparity suggests that the processes contributing to 
dispersion in streams are not well understood. Very few studies 
have recognized the role of the channel sinuosity that is defined 
as the ratio of the channel length to the valley length, in riverine 
dispersion. The channel sinuosity develops secondary flow 
which is transverse circulation induced by centrifugal force. A 
3D hydrodynamic model is required to simulate dispersion 
accurately in meandering channels, however, because of rapid 
vertical and transverse mixing relative to longitudinal mixing, 
most rivers can be approximated as 1D systems.  Taylor (1953, 
1954), while deriving the following equation for 1D dispersion 
in a laminar pipe flow, introduced the concept of the 
longitudinal dispersion coefficient 
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where C is cross-sectionally averaged concentration of 
pollutants (g L–1 ), A is cross-sectional area of the stream (m2), 

U is mean longitudinal flow velocity (m s–1), K is longitudinal 
dispersion coefficient at a distance of x from the point of 
injection of the pollutant (m2 s–1) and t is time of observation 
(s). Eq. (1) is applicable only after the Fickian period during 
which a contaminant is uniformly mixed across the stream. The 
solution of Eq. (1), for instantaneous injection of mass M0 can 
be obtained for stable rivers with constant longitudinal 
dispersion coefficient as 
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The estimate of K by Eq. (2) requires concentration samples 

taken from a particular reach of the stream and the models’ 
calibration and verification, such tracer investigation is 
expensive and rarely done for every stream. For that reason, 
many investigators have derived empirical expressions for K 
(Elder, 1959; Fischer et. al., 1979; Iisa and Aya, 1991; 
Thackston and Krenkel, 1967; Toprak and Cigizoglu, 2008). 
 
PREVIOUS STUDIES 
 

Fisher et al. (1979) derived the following simple and 
approximate expression for longitudinal dispersion coefficient 
of streams 
 

  
K = 0.011U 2W 2

HU*
, (3) 

 
where H is cross-sectional average flow depth (m), U* is shear 
velocity (m s–1) and W is stream width (m). 

Initially, Eq. (3) was widely used for its simplicity and 
theoretical background but the large deviation between the 
predicted values by it and the measured values has made the 
equation unpopular now. The deviation may be because no 
stream completely fulfills the assumptions inherent in the 
development of this equation.  
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Liu (1977), after analyzing several dispersion data of USA 
Rivers, emphasized the role of lateral velocity gradients in 
dispersion and derived an expression for K as 
 

  
K = µU 2W 2

HU*
, (4) 

 
where parameter µ is a function of channel geometry and cross-
sectional velocity distribution. Godfrey and Frederick (1970) 
obtained an estimate of µ as 
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Applying the one-step Huber method of nonlinear multi-

regression, Seo and Cheong (1998) derived the following 
empirical expression for predicting longitudinal dispersion 
coefficient and showed its superiority over other reported 
expressions of the time 
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Deng et al. (2001) emphasized the importance of local 

mixing coefficient (εt) in riverine pollutant transport in addition 
to the other influencing parameters of Eq. (3) and derived an 
expression for K in stable straight rivers as 
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where local transverse mixing coefficient 
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Kashefipour and Falconer (2002), using dimensional and 

regression analyses on published river data, developed the 
following expression for K in natural streams  
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which can be re-written as 
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Applying genetic algorithm optimization technique (GA) on 

published field data, Sahay and Dutta (2009) developed an 
expression for K as 
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MODEL DEVELOPMENT 
 

The present study shows the above-mentioned expressions 
(Eqs. (3) to (10)) inadequate for forecasting K in sinuous rivers 
as these rivers are morphologically different from straight 
rivers. Unlike the case of a constant cross-sectional shape, the 
longitudinal and transverse momentum and solute transport 
rates are continually adjusting, never achieving equilibrium in a 
meandering channel. Studies show the magnitude of dispersion 
coefficient more in sinuous rivers than in straight rivers 
(Fukuoka and Sayre, 1973), which increases with increasing 
radius of curvature and decreases with increasing bend length 
and depth (Guymer, 1998). Tayfur and Singh (2005) and Sahay 
(2011) showed improvement in predictive accuracy of models 
for K when channel sinuosity is considered as an input, 
however, they did not give any expression for K. Hence, a new 
expression for K in the following non-dimensional format is 
tried in the present study 
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where Si is the channel sinuosity, which can be determined 
from topographical sheets. Sinuosity is unity for straight rivers. 
The unknown coefficients α, β, γ and δ are determined 
employing genetic algorithm on published field data.  

For deriving and verifying the new expression, data 
consisting of 61 sets of observation from 24 rivers in USA 
(Table (1), Tayfur and Singh, 2005) is utilized. Reasons for 
selecting this data are two: (1) it represent a wide range of 
geometric and flow characteristics of streams, and (2) it was 
used previously by other investigators (Deng et al., 2001; 
Sahay, 2011; Seo and Cheong, 1998 and Tayfur and Singh, 
2005). Thus, results from the proposed and other expressions 
can be compared well. However, some of the datasets from 
Tayfur and Singh (2005) with missing values of channel 
sinuosity are excluded from this study. The Mississippi River is 
also ignored as its width is much larger than the average width 
of the other considered rivers. If included, performance of all 
models are affected. The empirical expression for parameters 
with such high values should be derived separately. Table 2 
shows the average and range values of the hydro-
meteorological characteristics of the rivers used in this study. 
Comparable datasets are chosen for deriving and verifying the 
new expression to avoid any bias.  

Of the 61 published datasets of Table 1, 45 datasets are 
selected to derive the expression and the remaining 16 datasets 
are used to verify it. For performance evaluation, predictions by 
the new expression and Fischer et al. (1979), Liu (1977), Seo 
and Cheong (1998), Deng et al. (2001), Kashefipour and 
Falconer (2002) and Sahay and Dutta (2009) are compared. For 
brevity, these comparison models are denoted as Fischer, Liu, 
S-C, D-S-B, K-F and S-D respectively. The statistical indices 
used for comparison are the coefficient of correlation (CC), the 
root mean square error (RMSE), the discrepancy ratio (DR) and 
the % accuracy, which are defined as 
 

  
RMSE =

(K p
i=1

N
∑ − Km)2

N
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Table 1. Measured longitudinal dispersion coefficients at 61 sites of USA Rivers (Tayfur and Singh, 2005). 
 

S.N. Stream Width, Depth, Velocity, Sh. Vel., Sinu., W/H U/U* Meas. 
  W (m) H (m) U (m s–1) U* (m s–1) Si   K (m2 s–1) 
1 Antietam Creek, Md. 12.8 0.30 0.42 0.057 1.40 42.67 7.37 17.5 
2 Antietam Creek, Md. 24.1 0.98 0.59 0.098 2.25 24.59 6.02 101.5 
3 Antietam Creek, Md. 11.9 0.66 0.43 0.085 2.25 18.03 5.06 20.9 
4 Antietam Creek, Md. 21.0 0.48 0.62 0.069 1.26 43.75 8.99 25.9 
5 Bayou Anacoco 20.0 0.42 0.29 0.045 1.41 47.62 6.44 13.9 
6 Bayou Anacoco 17.5 0.45 0.32 0.024 1.41 38.89 13.33 5.8 
7 Bayou Anacoco 25.9 0.94 0.34 0.067 1.41 27.55 5.07 32.5 
8 Bayou Anacoco 36.6 0.91 0.40 0.067 1.41 40.22 5.97 39.5 
9 Bayou Bartholomew, La 33.4 1.40 0.20 0.031 2.46 23.86 6.45 54.7 
10 Bear Creek, Colo. 13.7 0.85 1.29 0.553 1.08 16.12 2.33 2.9 
11 Chattahoochee River, Ga    75.6 1.95 0.74 0.138 1.27 38.77 5.36 88.9 
12 Chattahoochee River, Ga    91.9 2.44 0.52 0.094 1.57 37.66 5.53 166.9 
13 Clinch River, Va 48.5 1.16 0.21 0.069 1.25 41.81 3.04 14.8 
14 Clinch River, Va 28.7 0.61 0.35 0.069 1.14 47.05 5.07 10.7 
15 Clinch River, Va 57.9 2.45 0.75 0.104 1.14 23.63 7.21 40.5 
16 Clinch River, Va 53.2 2.41 0.66 0.107 1.14 22.07 6.17 36.9 
17 Comite River 13.0 0.26 0.31 0.044 1.31 50.00 7.05 7.0 
18 Comite River 16.0 0.43 0.37 0.056 1.31 37.21 6.61 13.9 
19 Comite River, La 15.7 0.23 0.36 0.039 1.31 68.26 9.23 69.0 
20 Conococh. Creek, Md. 42.2 0.69 0.23 0.064 2.25 61.16 3.59 40.8 
21 Conococh. Creek, Md. 49.7 0.41 0.15 0.081 2.25 121.22 1.85 29.3 
22 Conococh. Creek, Md. 43.0 1.13 0.63 0.081 1.31 38.05 7.78 53.3 
23 Copper Creep, Va. 16.7 0.49 0.20 0.080 2.54 34.08 2.50 16.8 
24 Copper Creep, Va. 18.3 0.38 0.15 0.116 2.54 48.16 1.29 20.7 
25 Copper Creep, Va. 16.8 0.47 0.24 0.080 2.54 35.74 3.00 24.6 
26 Copper Creep, Va. 19.6 0.84 0.49 0.101 1.26 23.33 4.85 20.8 
27 Difficult Run, Va. 14.5 0.31 0.25 0.062 1.09 46.77 4.03 1.9 
28 John Day River, Ore. 25.0 0.58 1.01 0.140 1.08 43.10 7.21 13.9 
29 John Day River, Ore. 34.1 2.47 0.82 0.180 1.89 13.81 4.56 65.0 
30 Little Pincy Creek, Md. 15.9 0.22 0.39 0.053 1.13 72.27 7.36 7.1 
31 Missouri River     183.0 2.33 0.89 0.066 1.35 78.54 13.48 465.0 
32 Missouri River 197.0 3.11 1.53 0.078 1.35 63.34 19.62 892.0 
33 Missouri River 201.0 3.56 1.28 0.084 1.35 56.46 15.24 837.0 
34 Monocacy River, Md. 48.7 0.55 0.26 0.052 1.28 88.55 5.00 37.8 
35 Monocacy River, Md. 93.0 0.71 0.16 0.046 1.28 130.99 3.48 41.4 
36 Monocacy River, Md. 51.2 0.65 0.62 0.044 1.28 78.77 14.09 29.6 
37 Monocacy River, Md. 97.5 1.15 0.32 0.058 1.61 84.78 5.52 119.8 
38 Monocacy River, Md. 40.5 0.41 0.23 0.040 1.61 98.78 5.75 66.5 
39 Nooksack River 86.0 2.93 1.20 0.530 1.30 29.35 2.26 153.0 
40 Nooksack River 64.0 0.76 0.67 0.268 1.30 84.21 2.50 34.8 
41 Powell River, Tenn. 36.8 0.87 0.13 0.054 2.20 42.30 2.41 15.5 
42 Red River, La   253.6 1.62 0.61 0.032 1.20 156.54 19.06 143.8 
43 Red River, La  161.5 3.96 0.29 0.060 1.44 40.78 4.83 130.5 
44 Red River, La 152.4 3.66 0.45 0.057 1.44 41.64 7.89 227.6 
45 Red River, La 155.1 1.74 0.47 0.036 1.24 89.14 13.06 177.7 
46 Sabina River, La 116.4 1.65 0.58 0.054 1.19 70.55 10.74 131.3 
47 Sabina River, La.              160.3 2.32 1.06 0.054 1.17 69.09 19.63 308.9 
48 Sabina River, Tex. 14.2 0.50 0.13 0.037 2.53 28.40 3.51 12.8 
49 Sabina River, Tex. 12.2 0.51 0.23 0.030 2.05 23.92 7.67 14.7 
50 Sabina River, Tex. 21.3 0.93 0.36 0.035 1.47 22.90 10.29 24.2 
51 Salt Creek, Nebr. 32.0 0.50 0.24 0.038 1.38 64.00 6.32 52.2 
52 Susquehanna River           203.0 1.35 0.39 0.065 1.13 150.37 6.00 92.9 
53 Tangipahoa River, La 31.4 0.81 0.48 0.072 1.46 38.77 6.67 45.1 
54 Tangipahoa River, La 29.9 0.40 0.34 0.020 1.46 74.75 17.00 44.0 
55 Tickfau River, La 15.0 0.59 0.27 0.080 1.75 25.42 3.38 10.3 
56 Wind/Big. River, Wyo 44.2 1.37 0.99 0.142 1.56 32.26 6.97 184.6 
57 Wind/Big. River, Wyo 85.3 2.38 1.74 0.153 1.56 35.84 11.37 464.6 
58 Wind/Big. River, Wyo 59.4 1.10 0.88 0.119 1.18 54.00 7.39 41.8 
59 Wind/Big. River, Wyo 68.6 2.16 1.55 0.168 1.18 31.76 9.23 162.6 
60 Yadkin River, N.C. 70.1 2.35 0.43 0.101 2.17 29.83 4.26 111.5 
61 Yadkin River, N.C. 71.6 3.84 0.76 0.128 2.17 18.65 5.94 260.1 

 
Note: The shaded is a verification dataset. 
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Table 2. Average and range values for geometric and hydraulic data of the considered rivers. 
 

Dataset 
 

U/U* 
 

Min – Max – Avg 

W/H 
 

Min – Max – Avg 

Si 
 

Min – Max – Avg 

K (m2 s–1) 
 

Min – Max – Avg 
Whole 
Deriving  
Verification 

1.29 – 19.63 – 7.23 
1.29 – 19.06 – 7.10 
2.33 – 19.63 – 7.60 

13.81 – 156.54 – 51.84 
18.65 – 156.54 – 52.75 
13.81 – 131.00 – 49.28 

1.08 – 2.54 – 1.55 
1.09 – 2.54 – 1.57 
1.08 – 2.53 – 1.48 

1.9 – 892.0 – 104.8 
1.9 – 837.0 – 104.5 
2.9 – 892.0 – 105.4 

 

  

CC =
(Km − K

−
m)(K p − K

−
p )

1

N
∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Km − K
−

m
⎛

⎝
⎜

⎞

⎠
⎟

2

K p − K
−

p
⎛

⎝
⎜

⎞

⎠
⎟

2

i=1

N
∑

i=1

N
∑

,  (13) 

 

DR =
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K p
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100 n
N
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where Km, Kp are the measured and predicted longitudinal 

dispersion coefficients respectively,  K
−

m , K
−

p  are the mean 
measured and predicted longitudinal dispersion coefficients 
respectively, N is number of observations and n is number of 
predictions lying between 50% and 200% of the measured 
values (i.e., DR values lying between –0.3 and 0.3). 

From Eq. (14), DR = 0 suggests exact match between the 
measured and predicted values, otherwise, there is either an 
over prediction (DR > 0, i.e., Kp > Km) or under prediction (DR 
< 0, i.e., Kp < Km). 
 
Genetic algorithm  
 

The new expression is derived using genetic algorithm on 
published dispersion data. GAs are search and optimization 
procedures motivated by the principles of natural genetics and 
natural selection. Using this analogy, a process involving 
selection, crossover, and mutation are used to evolve a 
 

population of potential solutions for a variety of engineering 
problems towards improved solutions. These solutions satisfy 
the specified constraints while minimizing or maximizing the 
objective function. Goldberg (1989), Michalewicz (1996) and 
Deb (2002) have given good illustrations of GAs. The 
implementation of GA starts with initializing a population of 
candidate solutions (called chromosomes) which are randomly 
sampled from the feasible parameter space. In each generation, 
the individual chromosomes are selected through a fitness-
based process, where the more fit chromosomes in the 
population are preferentially selected to reproduce new 
promising offspring using crossover and mutation operations. 
The crossover operator chooses ‘parent’ solutions and 
exchanges important building blocks of the two parent 
chromosomes to generate new ‘offspring’ solutions. The 
‘offspring’ solutions are then randomly mutated to increase the 
diversity of the new population. The operation is repeated until 
a stopping criterion is reached. The criterion may be either the 
number of generations or the change in the fitness values of 
chromosomes between two consecutive generations. The 
working structure of GA model is given in Fig. 1. 

The criterion considered in the present study for determining 
optimal values of constant α, β, γ and δ within a GA framework 
is the minimization of the residual sum of squares errors (SSQ) 
between the measured and predicted dispersion coefficients, 
i.e.,  
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Fig. 1. Working structure of GA model. 
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Here, GA is implemented on MATLAB 7 toolbox adopting a 
binary code of representation for variables. A string-length of 
10 for each variable is used which is sufficient for the range of 
values that these variables can attain. Thus, the total string-
length of a chromosome is 40 bits. After trying many 
combinations of population size, crossover probability and 
mutation, a GA scheme with a population size 100, Gaussian 
crossover fraction 0.85, Gaussian mutation function with scale 
and shrink 1 each and reproduction with elite count 2 is found 
to yield the minimum SSQ. The corresponding values of the 
design coefficients found are α = 2.0, β = 0.72, γ = 1.37 and δ = 
1.52. Thus, the new derived expression for longitudinal 
dispersion coefficient in a natural stream is 
 

  

K
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After deriving the new expression, it is evaluated for its 

performance. Table 3 summarizes the performance of all 
models. It shows the new expression, i.e., Eq. (17), to have 
successfully been derived as prediction by it yields the 
minimum RMSE and the maximum CC among all the 
considered models. The predicted values of K by Eq. (17) can 
be seen evenly distributed around the ideal line, showing little 
bias for over or under prediction (Fig. 2). This expression 
successfully predicted the highest three K-values of 892.0 m2  
s–1, 837.0 m2 s–1 and 464.6 m2 s–1 as 897.1 m2 s–1, 720.8 m2 s–1 
and 398.4 m2 s–1 respectively, and the lowest three K-values of 
1.9 m2 s–1, 5.8 m2 s–1 and 7 m2 s–1 as 4.76 m2 s–1, 17.69 m2 s–1 
and 8.42 m2 s–1 respectively.  

It is understood that the satisfactory prediction by the new 
expression may not be entirely due to the consideration of 
channel sinuosity and GA might have captured the input-output 
pattern better than earlier models, however, the results as a 
whole, do suggest improvement when sinuosity is taken into 
account.  
 
MODEL VALIDATION, RESULTS AND DISCUSSION 
 

After deriving the new expression satisfactorily, it is 
evaluated for the verification and the whole datasets. Table 3 
enumerates the performance indices of the models for these 
datasets. It shows  the new expression a better predictive model 
than any other considered model as prediction by it has the least 
RMSE and the highest CC, both for the verification dataset and 

the whole dataset. Models D-S-B, K-F and S-D follow the 
performance of the proposed model in that order. The Fischer 
model is found the least accurate with RMSE value as high as 
982.05 m2 s–1 for the verification dataset and 867.44 m2 s–1 for 
the whole dataset. The performance of all models improves 
when extreme values (K > 100 m2 s–1 and W/H > 50) are 
ignored. The most significant improvements are found in 
Fischer, Liu and S-C models, with their respective RMSEs 
reducing from 867.44 m2 s–1, 173.56 m2 s–1, and 109.29 m2 s–1 
to 21.15 m2 s–1, 21.18 m2 s–1 and 38.85 m2 s–1 respectively. 
However, this reduction suggests their inadequacy for 
predicting K in very wide and shallow rivers or rivers with very 
high dispersion rates. On comparison, the proposed expression 
shows the least improvement with the omission of extreme 
values, making it a general solution, suitable for predicting K in 
all kinds of rivers. 
 

 
 
Fig. 2. Predicted vs. measured K (derivation dataset). 
 

Another performance indicator, discrepancy ratio (DR), 
which shows proximity of the predicted values with the 
measured values, for the new model is found superior as its 
range of –0.76 to 0.94 is found the best among all the 
considered models. The DR ranges of other models are skewed 
towards either underestimation (K-F) or overestimation 
(Fischer, Liu, S-C, D-S-B and S-D). If % accuracy of a model 
is defined as the percentage of the predicted values lying 
between 50% and 200% of the measured values, i.e., DR values  
 

 
Table 3. Performance indices of the models. 
 

Prediction 
equations 

Derivation 
dataset 

Verification 
dataset 

Whole dataset 
 

CC RMSE 
(m2 s–1) CC RMSE 

(m2 s–1) CC RMSE 
(m2 s–1) 

DR Range 
 

RMSE (m2 s–1) 
(K > 100 and 

W/H > 50 
ignored) 

Accuracy    
(%) 

GA (Present study) 0.96 41.08 0.99 33.51 0.97 39.24 –0.76 to 0.94 17.99 79 
Fischer 0.51 822.85 0.96 982.05 0.69 867.44 –1.04 to 1.55 21.15 39 
Liu 0.56 196.47 0.94 79.28 0.66 173.56 –1.78 to 1.95 21.18 46 
S-C 0.94 86.43 0.98 156.61 0.95 109.29 –1.77 to 1.90 38.85 39 
D-S-B 0.94 55.50 0.98 69.47 0.95 59.48 –0.72 to 0.99 30.30 64 
K-F 0.93 60.01 0.97 62.46 0.94 60.67 –1.42 to 0.97 23.04 56 
S-D 0.91 74.88 0.98 94.99 0.93 80.64 –0.62 to 1.13 23.70 62 

 
Note: Fischer is Fischer et al. (1979), Liu is Liu (1977), S-C is Seo and Cheong (1998), D-S-B is Deng et al. (2001), K-F is Kashefipour 
and Falconer (2002), and S-D is Sahay and Dutta (2009).  
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Fig. 3. Comparison of discrepancy ratio by models. 
 
 
Table 4. Measured and predicted longitudinal dispersion coefficients by the models (verification dataset). 
 

Stream Obs. 
value 

Present, 
Eq. (13) 

Fischer, 
Eq. (3) 

Liu,           S-C, 
Eq. (4)       Eq. (6) 

K-F, 
Eq. (9) 

D-S-B, 
Eq. (7) 

S-D, 
Eq. (10) 

T-S 
(ANN) 

1 Antietam Creek, Md. 20.9 28.6 5.1 7.4 20.2* 15.2 15.0 13.7 26.8 
2 Bear Creek, Colo. 2.9 25.1 7.3* 33.6 52.2 27.1 28.1 39.1 39.2 
3 Chattahooch.River,Ga 88.9 108.2 127.9 168.6 169.1 82.1* 168.8 147.1 77.6 
4 Clinch River, Va 10.7 15.3 26.4 37.8 27.6 11.5* 28.5 25.8 26.9 
5 Clinch River, Va 36.9 70.9 52.6* 56.2 139.6 104.1 118.3 97.8 76.6 
6 Conococh. Creek, Md. 53.3 63.3 88.2 66.5 96.7 58.8* 93.2 78.2 43 
7 John Day River, Ore. 13.9 41.3* 86.4 72.9 83.3 44.8 81.8 71.2 45.2 
8 John Day River, Ore. 65.0 124.0 19.3 32.6 116.7 97.9 71.1* 73.6 77.2 
9 Missouri River 892 897.1* 4119.6 776.0 1317.3 990.5 952.1 1074.7 763.4 
10 Monocacy River, Md. 37.8 19.2 61.7 90.3 27.1 7.6 28.2 31.7* 27.1 
11 Monocacy River, Md. 41.4 17.8 74.6 188.1 23.5 4.2 25.8 33.4* 31.4 
12 Powell River, Tenn. 15.5 15.5* 5.4 23.5 9.9 2.9 9.9 10.3 25.3 
13 Sabina River, La. 308.9 397.3 2535.1 477.0 718.7 512.3 509.0 603.8 346.6* 
14 Sabina River, Tex. 12.8 9.5* 2.0 5.0 5.2 2.4 4.6 4.4 21.9 
15 Tangipahoa River, La 44.0 30.9 142.1 33.2 39.2* 24.5 28.7 34.7 26.5 
16 Wind/Big. River, Wyo 41.8 92.8 229.6 186.8 159.9 76.0 156.7 147.0 59.7* 

 
 

 
No. of closest estimates 

  
4 

 
2 

 
0 

 
2 

 
3 

 
1 

 
2 

 
3 

 
Note: * is closest estimate to the measured value, Fischer is Fischer et al. (1979), Liu is Liu (1977), S-C are Seo and Cheong (1998), D-S-B 
is Deng et al. (2001), and K-F are Kashefipour and Falconer (2002), S-D are Sahay and Dutta (2009) and T-S are Tayfur and Singh (2005). 
 
lying between –0.3 and 0.3, then, Table 3 shows that 79% of 
the prediction by the new expression is accurate, followed by 
D-S-B, K-F and S-D models with 64%, 62% and 56% 
accuracies respectively. The Fischer is again found to be the 
least accurate model with only 39% accuracy. 

Fig. 3 shows percentage of predicted values of dispersion 
coefficient falling into different discrepancy brackets. The 
objective is to show how the predicted values compare with 
their measured values for the entire dataset. It shows an almost 
even distribution for predictions from the new expression, 
suggesting little bias for under or over prediction. On 



Rajeev Ranjan Sahay 

220 

comparison, predictions by other models are skewed toward 
either the positive or the negative side. 

Table 4 shows the measured and predicted values of K for 
the verification dataset. The highest number of predicted values 
by the proposed expression is found closest to the measured 
values. While 4 out of 16 estimates by the new model are 
closest to the measured values, T-S, K-F, S-C, S-D, D-S-B, and 
Fischer have only 3, 3, 2, 2, 1 and 1 predictions respectively 
closest to the measured values.  
 
SENSITIVITY ANALYSIS 
 

A sensitivity and error analysis is carried out on the mean 
values of input and output parameters of the new expression 
(Eq. (17)). The average values of 61 sets of data in Table 1 are 
taken as W = 61.79 m, H = 1.28 m, U = 0.54 m s–1, U* = 0.093 
m s–1, and Si = 1.55. The indices used to compare sensitivities 
and error are defined as  
 

Absolute Sensitivity (AS) =
 

∂K
∂θ

≈
 

ΔK
Δθ  

 

Relative Sensitivity (RS) =
 

ΔK
Δθ  

θ
K  

 

Relative Error (RE) = 
 

ΔK
K

, (18) 

 
where ΔK is the deviation in K caused by the variation in input 
θ (W, H, U, U*, or Si) by an amount Δθ. Incrementing each 
input by 10%, i.e., Δθ = 0.1θ, ΔK, AS, RS and RE are 
determined and given in Table 5. Table 5 shows the channel 
sinuosity causing the greatest deviation in K, illustrating its 
importance in riverine solute transport. Any inaccuracy in 
measurement of Si would lead to significant error in K. The 
flow velocity U has almost similar impact on K, followed by 
the channel width W, flow depth H and shear velocity U*. But 
as far as AS, i.e., rate of change in K with change in θ is 
concerned, U is the most sensitive input followed by Si, U*, H 
and W. 
 
Table 5. Sensitivity and error analysis of new expression (Eq. 
(17)). 
 

Par θ Δ θ ΔK AS RS RE 
W 61.79 6.18 5.98 0.97 0.71 0.071 
H 1.28 0.13 2.27 17.77 0.27 0.027 
U 0.54 0.05 11.73 217.26 1.39 0.139 
U* 0.09 0.01 0.57 60.99 0.07 0.007 
Si 1.55 0.16 13.11 84.59 1.56 0.156 

 
Note: θ is input parameter, Δθ = 0.1 θ,  ΔK is change in K due to 
change in θ by Δθ, AS is absolute sensitivity, RS is relative 
sensitivity, and RE is relative error. 
 
CONCLUSION 
 

In spite of many studies dealing with effect of sinuosity on 
dispersion coefficient, there is still considerable uncertainty at 
accurate determination of the longitudinal dispersion coefficient 
value for the specific natural conditions. In the present work, a 
new empirical expression for K has been derived employing 
genetic algorithm on published field data which takes into 
account the river sinuosity in addition to the other readily 
available bulk hydraulic and geometric characteristics of rivers. 

The performance of the new expression is compared with those 
of Fischer et al. (1979), Liu (1977), Seo and Cheong (1998), 
Deng et al. (2001), Kashefipour and Falconer (2002), and 
Sahay and Dutta (2009). Based on various performance indices, 
the new expression is found to give better estimate of K. About 
79% of the predicted values by the new expression lie between 
50% and 200% of the measured values, the highest among all 
the considered models. Fischer et al. (1979) is found to yield 
the least satisfactory estimate. The sensitivity and error analysis 
carried out on the average values of the parameters of the new 
expression find K sensitive to the channel sinuosity. An error of 
10% in measurement of sinuosity leads to 13.11 % deviation in 
the longitudinal dispersion coefficient in sinuous rivers.   
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