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Abstract: The process of sedimentation and subsequent gravity compression of kaolin and water suspensions was inves-
tigated experimentally. 45 batch tests were carried out and the time dependence of the height of the suspension column 
was measured. The one-dimensional equations of Darcian mechanics of two-phase porous media are applied to formulate 
the studied process mathematically. A very natural assumption makes it possible to find a solution of the forward prob-
lem for a starting period of the process. Analysis of the theoretical function and the experimental data gives hydraulic 
conductivity as a function of the suspension concentration. The obtained results are presented and discussed.  
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INTRODUCTION 
 

Various industrial technologies require to study the process 
of suspension sedimentation and dewatering. According to its 
energetic efficiency, the gravitational thickening is one of the 
mostly utilized methods of lowering volume of suspensions and 
increasing the concentration of their solid phase. There are two 
kinds of standard laboratory tests, the batch tests and the con-
tinuous tests, which are utilized when examining the thickening 
process or when collecting data required for its mathematical 
modelling. 

The presented research was aimed at carrying out a set of 
experiments with a well defined suspension of water and kaolin 
and to develop a convenient method of getting hydraulic con-
ductivity of the suspension as a function of its concentration. 

Numerous authors have presented contributions to experi-
mental or theoretical study of suspension thickening processes. 
To cite the classical ones, we can start with (Coe and Cleveng-
er, 1916) and continue with well known paper by Kynch (1952) 
whose results were often adopted in later research. In our re-
search, the degree of the suspension coagulation and gel point 
position were important and hence, we made use of the paper 
by Usher and Scales (2005) and particularly of results presented 
by Nasser and James (2007), who utilized a modified version of 
the model originally suggested by Landman et al. (1988). In 
this way, Nasser and James (2007) were able to consider hin-
dered settling and the effect of the gel point. It should be men-
tioned that there are studies of suspensions without coagulation 
and with negligible thickening, e.g. Vlasák et al. (2012). 

As the process we study is time-dependent, we make use of 
the Darcian-mechanics equations published by Mls (1999). The 
efficiency of this theory has already been proved particularly 
when solving the problem to determine the height of the sus-
pension column and the position of the gel point under condi-
tions of a continuous dewatering process (Mls, 2005). Though 
the equations contain Darcy's law, they are not parabolic, for 
discussion see Mls and Herrmann (2011). To formulate general 
one-dimensional process, the theory requires two parameters 
that are functions of the suspension concentration. The paper is 
aimed at presenting determination of one of them. 
 
 
 
 
 

THE APPLIED THEORY 
 

According to Mls (1999), the general flow of both the solid 
phase and the liquid phase in one dimension is governed by 
following equations 
 

  

∂n
∂t

(x,t)+ ∂w
∂x

(x,t) = 0,  (1) 

 

  

∂n
∂t

(x,t)− ∂v
∂x

(x,t) = 0,  (2) 

 

  

∂w
∂t

(x,t)+ gn(x,t)+ n(x,t)
ρw

∂p
∂x

(x,t)+ gn(x,t)
K(x,t)

u(x,t) = 0,  (3) 

 

  

∂v
∂t

(x,t)+ g(1− n(x,t))− 1
ρs

∂τ
∂x

(x,t)+

+1− n(x,t)
ρs

∂p
∂x

(x,t)−
gρwn(x,t)
ρsK(x,t)

u(x,t) = 0,
 (4) 

 
where n is porosity of the suspension, x is the space coordinate 
oriented vertically upwards, t is time, w and v are the liquid-
phase and the solid-phase volumetric flux densities, respective-
ly, g is gravity acceleration,  ρw  and 

 
ρs  are the liquid-phase 

and the solid phase densities, respectively, ρ is the liquid-phase 
pressure, K is hydraulic conductivity of the suspension, τ is the 
solid-phase stress and u is the relative liquid-phase volumetric 
flux density satisfying relation 
 

  
u = w− n

1− n
v.  (5) 

 
Eqs (1) and (2) are continuity equations of the liquid phase and 
the solid phase, and Eqs (3) and (4) are equations of motion of 
the liquid phase and the solid phase. The steady state form of 
Eq. (3) is Darcy's law. 

Let the considered suspension be placed in a vessel with an 
impervious bottom, which is the case we will study below, and 
let the initial height of the suspension column be L. The consid-
ered domain is then 
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  Ω = x;x ∈(0, L){ },  (6) 
and the boundary conditions imposed at x = 0 on w and v are 
 

  w(0,t) = 0   and    v(0,t) = 0  for    t > 0.  (7) 
 
From Eqs (1) and (2) we get a simple differential equation 
 

  

∂(w+ v)
∂x

(x,t) = 0,  

 
which can be easily solved. All its solutions are 
 

  w(x,t)+ v(x,t) = f (t),  
 
where f is any differentiable function. To satisfy conditions (7), 
f has to be zero. Hence 
 

  w(x,t) = −v(x,t)       for     (x,t)∈[0, L]× [0,∞),  (8) 
 

Making use of Eqs (5) and (8) and excluding the derivative 
 

∂p
∂x

 

from Eqs (3) and (4), the set of governing equations can be 
reduced to the continuity Eq. (1) 
 

  

∂n
∂t

(x,t)+ ∂w
∂x

(x,t) = 0,  

 
and the equation of motion 
 

  

∂w
∂t

+ n
ρw + n(ρs − ρw)

∂τ
∂x

=
g(ρs − ρw)n(1− n)
ρw + n(ρs − ρw)

−

−
gρwn

(1− n)K(ρw + n(ρs − ρw))
w.

 
(9)

 

 
These equations contain two unknown functions, n and w, all 
the other functions are supposed to be given parameters. Partic-
ularly the hydraulic conductivity must be known, when solving 
problems with Eqs (1) and (9). In this paper, we focus on the 
problem of determining hydraulic conductivity of kaolin sus-
pensions. The suspension concentration defined as mass of the 
solid phase contained in unit volume of the suspension, i.e. 
 

  c=ρs(1−n),  (10) 
 
is generally used to describe the state of a suspension. In order 
to respect this, we replace porosity n by concentration c in the 
following text. 

We will suppose that under conditions of monotonous pro-
cesses, hydraulic conductivity K  and solid-phase stress τ are 
functions of the suspension’s concentration. The notion of the 
monotonous process was introduced by Mls (1995) in order to 
exclude a possible effect of hysteresis: a process in a suspen-
sion is monotonous when it satisfies the condition 
 

  
∂c
∂t

(m1,t1)∂c
∂t

(m2,t2)≥0,  (11) 

 
for any couple of values m1 and m2 of a material coordinate and 
for any couple of instants t1 and t2. 

 
THE MATERIAL OF THE SUSPENSION 
 

The experimental research was carried out with suspensions 
of water and kaolin. Among the available materials, the Sedlec 
kaolin Zettlitz Ia was chosen as it is a well defined material 
making it possible to repeat the experiments at any time later. 
Moreover, it is also suitable because of its well-balanced granu-
lometric curve, see Fig. 1 and Table 1. The particle size distri-
bution was measured with the SediGraph ET 5000, manufac-
tured by the Micromeritics. The sedigraph measures particle 
mass directly via X-ray absoption and determines the equiva-
lent spherical diameter of particles from the rate at which parti-
cles fall under gravity through a liquid having known proper-
ties. The data presented in Fig. 1 and Table 1 are affected by 
the accuracy of the described method of measurement. The 
applied water was deionized before it was used in suspensions. 

Kaolinite is a layered silicate mineral with one tetrahedral 
sheet of SiO4 linked through oxygen atoms to one octahedral 
sheet of Al2O3. Within the kaolinite structure, there are isomor-
phous substitutions possible: Silicate (4+) can be surrogated by 
Al(3+) or by Fe(3+). If so, kaolinite particle carries negative 
charge on its surface, van Olphen (1963). Table 2 shows the 
composition of the applied kaolin. 
 

 
Fig. 1. Kaolin Zettlitz Ia – granulometric curve. 
 
Table 1. Kaolin Zettlitz Ia – granulometric distribution. 
 

D (µm) 50 40 30 25 20 15 10 8 
Mass 
(%) 

99.0 99.4 100.0 100.2 98.7 97.5 94.1 91.7 

D (µm) 7 6 4 3 2 1.5 1  
Mass 
(%) 

89.6 86.4 77.7 70.9 60.9 54.4 45.9  

 
If the particles are mechanically damaged, the linkage of Al-

O-Al or Si-O-Si is disconnected. In water environment, groups 
of Al-OH or Si-OH arise. Under acidic conditions, which was 
our case as we worked with pH between 5.8 and 6.2, Al-OH 
groups loose hydroxide ion and Si-OH groups stay unchanged. 
Now, surfaces carry a negative charge whilst the charge of 
edges is positive and the edges and faces attract each other 
giving rise to a face – edge coagulation and the resulting struc-
ture is known as the ”card-house” coagulum (Šatava, 1973). 

Kaolin Zettlitz Ia is not a raw material. In the course of fab-
rication it is enriched by calcium (II) and sodium cations which 
stimulate the coagulation. On the other hand, the degree of 
coagulation is too small to create a clearly visible interface 
between the suspension and the overlying layer of water. As it 
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was necessary to measure the position of this interface with a 
good accuracy and for a relatively wide range of suspension 
concentrations, a precise rate of coagulation was defined. At 
any applied suspension concentration, the coagulation was 
achieved by adding Calcium(II) chloride at 0.4 percent of the 
solid-phase mass. 
 
Table 2. Composition of the Kaolin Zettlitz Ia. 
 
SiO2 Al2O3 Fe2O3 TiO2 CaO MgO K2O Na2O Loss on 

ignition 

47.28 35.78 0.97 0.26 0.29 0.23 1.05 0.03 14.02 

Kaolinite 91% 

Quartz 2% 

Mica 7% 
 

Vertical cylinders with impervious bottom were used to car-
ry out the settling experiments. The height of the cylinders was 
2000 mm and, in most cases, their inner diameter was 104 mm. 
Several cylinders having inner diameters 94 and 114 mm were 
also used in order to check whether the results were affected by 
the  cross-section surface and perimeter. 
 
THE LABORATORY MEASUREMENTS 
 

A set of 45 batch tests has been carried out in the laboratory 
of Department of Hydrogeology at Charles University. The 
applied suspensions were mixtures of the above described 
kaolin and water in the precisely defined state of coagulation. A 
homogeneous mixture was prepared in a tank and was poured 
into the vessel used for the measurements immediately that 
after. According to this procedure, we supposed that each test 
started from homogeneous state of the suspension column. 
Hence the initial conditions of an experiment are 
 

  c(x,0)=c0  and    w(x,0) = 0  for    x ∈(0, L),  (12) 
 
where L is the initial height and c0  is the initial concentration 
of the suspension column at the experiment. A visible interface 
develops in the suspension during the sedimentation process.  

The interface separates the zone of suspension from the 
overlying layer of water and moves downwards starting at time 
t = 0 from the level x = L. We will denote with Z(t) its height 
above the bottom at time t. The thickening of the suspension 
begins at the impervious bottom where the particles of the solid 
phase are stopped. Consequently, another interface starts its 
motion from the bottom upwards, separating the layer of sus-
pension of the initial concentration c0 from the zone of thicken-
ing, see Fig. 2. As the upper interface is clearly visible, it was 
possible to measure the time dependence of the height of the 
suspension column. In this way, 45 batch tests were carried out 
each one for particular initial values of concentration c0 and 
height L. 

The data obtained during a test are of the form 
 

  
(ti ,zi ){ }i=0

N j ,  (13) 

 
where  Zi  is the height of the suspension column at time  ti , 

  t0 = 0 , 
  
z0 = Lj , 

 
Lj  is the initial height of the column at j-th 

test and 
 
N j  is the number of measurements made during the j-

th test. The first part of a data set obtained during one of the 
batch tests is depicted by square marks in Fig. 3. If we denote 

  Y (t)  the height of the lower interface above the bottom at time 

t, i.e. the level below which  c > c0 , the zone between the inter-
faces contains suspension at the initial concentration  c0 : 
 

  c(x,t) = c0  for    t > 0  and    x ∈(Y (t),Z(t)),  (14) 
 
see Fig. 2. We will utilize this knowledge when solving the 
following forward problem. 
 

 
Fig. 2. Development of the suspension profile during the experi-
ments. 
 

 
 
Fig. 3. Test No. 7 – function Z(t) and the measured values. 
 
A FORWARD PROBLEM AND ITS SOLUTION 
 

Let us suppose that there is a region below the upper inter-
face where there is the constant concentration c0 of the suspen-
sion for certain time interval. In virtue of continuity Eq. (1), the 
volumetric flux density of the liquid phase does not depend on 
the space coordinate x and is a function of time only. Hence, the 
Eq. of motion (9) becomes the following ordinary differential 
equation 
 

  

∂w
∂t

+
gρwn0

(1− n0 )K(c0 )(ρw + n0(ρs − ρw))
w =

=
g(ρs − ρw)n0(1− n0 )
ρw + n0(ρs − ρw)

,
 

(15)
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where n0 is the initial value of porosity related to the initial 
concentration c0 by Eq. (10). According to conditions (12), the 
initial condition is 
 

  w(0) = 0.  (16) 
 
The solution to the problem (15), (16) is the function  
 

  

w(t) = ρ(1− n0 )2 K(c0 )

1− exp
−gn0t

(1− n0 )(1+ ρn0 )K(c0 )
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ ,

 
(17)

 

 
where 
 

 
ρ=ρs − ρw

ρw
. 

 
Denote by vs the speed of solid-phase particles. Then, according 
to the definition of the volumetric solid-phase flux density, it 
holds 
 

  v=(1−n)vs  
 
and at the same time 
 

 
vs=

dZ
dt

, 

 
as the upper interface moves down with the solid-phase parti-
cles. The last two equations together with relations (8) and (17) 
enable us to formulate the following ordinary differential equa-
tion for the height of the upper interface 
 

  

(1− n0 )
dZ
dt

= −ρ(1− n0 )2 K(c0 )

1− exp
−gn0t

(1− n0 )(1+ ρn0 )K(c0 )
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

 (18) 

 
supplemented with the initial condition 
 

  Z(0) = L , (19) 
 
where L is the initial height of the suspension column. Then, 
the solution to the last problem is 
 

  

Z(t) = L− ρ(1− n0 )K(c0 )t +
ρ(1+ ρn0 )(1− n0 )2 K(c0 )

gn0

2

1− exp
−gn0t

(1− n0 )(1+ ρn0 )K(c0 )
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ .

 

(20)

 

 

Function Z given by Eq. (20) satisfies every one of the 45 
data sets (13) provided all the parameters L, ρ, n0 and K(c0) 
agree with the parameters of the test and  t∈(0,tm) , where 

  
tm=sup ϑ ∈R1;Z(t) > Y (t), t ∈(0,ϑ ){ } . 

 
Fig. 3 shows measured values of the upper interface eleva-

tion and the associated curve Z(t) given by Eq. (20). Splitting of 
these curves is clearly visible indicating that tm lies close to 30 
hours. Also it can be seen from the figure that the derivatives of 
both curves decrease at the beginning until they become almost 
constants. While the theoretical function approaches very 
quickly to its asymptote, in minutes, the measured data obtain 
the linear form after several hours. This phenomenon was ob-
served in all the experiments and can be explained by an initial 
instability of the suspension column. 

 
DETERMINATION OF THE FUNCTION K(c) 
 

Every one of the 45 tests started with its own parameters L, 
ρ, n0 and K(c0). The only unknowns among them were the val-
ues K(c0). The remaining values L, ρ, and n0 are measurable and 
were determined. To get the values K(c0), the sum S(K) of 
squares of differences between the theoretical function Z and 
measured data (ti,zi),  
 

  
S(K )= (zi − Z(ti ))

2

i=1

N
∑ ,  (21) 

 
was minimized, where the integer N satisfied the condition tN < 
tm. The problem leads to a nonlinear equation of a third-order 
polynomial in the unknown K(c0) containing moreover an ex-
ponential term. Let us denote 
 

 ζ i = L− zi ,  A = ρ(1− n0 )  , 
 

  
B =

(1− n0 )2(1+ ρn0 )ρ
gn0

, 

 

  
ei = exp

−gn0ti
(1− n0 )(1+ ρn0 )K(c0 )

, 

 
i.e. 
 

  
ei = exp

−Ati
BK(c0 )

. (22) 

 
The sum of squares of differences (21) is now 
 

  
S = ζ i − AK(c0 )ti + B(K(c0 ))2(1− ei )( )2

i=1

N
∑ . (23) 

 
Hence, the sum  S  is minimized at   K(c0)  satisfying equation 
 

 

  
2B2 (1− ei )

2(K(c0 ))3 − AB eiti(1− ei )+ 3
i=1

N
∑ ti(1− ei )

i=1

N
∑

⎛
⎝⎜

⎞
⎠⎟

(K(c0 ))2 +
i=1

N
∑ A2 ti

2(1+ ei )+ 2B
i=1

N
∑ ζ i(1− ei )

i=1

N
∑

⎛
⎝⎜

⎞
⎠⎟

K(c0 )− A tiζ i(1+ ei ) = 0
i=1

N
∑ .

 

 

 (24)
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As the function 
 

  
e(t) = exp

−At
BK(c0 )

 

 
converges to zero exponentially with time, the function Z(t) 
quickly approaches its asymptote 
 

  

φ(t) = L− ρ(1− n0 )K c0( )t +

+
(1− n0 )2(1+ ρn0 )ρ(K(c0 ))2

gn0
.
 

 
Hence, we are looking for such a solution of Eq. (24) that is 
close to the solution of the equation 
 

  
2B2 (K(c0 ))3 − 3AB ti

i=1

N
∑ (K(c0 ))2 +

i=1

N
∑

 

  
+ A2 ti

2 + 2B
i=1

N
∑ ζ i

i=1

N
∑

⎛
⎝⎜

⎞
⎠⎟

K(c0 )− A tiζ i = 0
i=1

N
∑ .  (25) 

 
It can be shown that for each data set (13) obtained from the 

45 experiments, Eq. (25) has exactly one positive root κ  and 
that Eq. (24) has exactly one root   K(c0)  in the interval 

 (κ / 2,2κ ) . According to this knowledge, the 45 unknown 
values   K(c0)  were found by the interval bisection method. Fig. 
3 shows the data   (ti,zi)  obtained from one of the batch tests 
and the function   Z(t)  with the corresponding solution  K(c0) . 
The splitting of the depicted functions, which is clearly visible 
in the figure, indicates the time  tm  at which   Z(tm) = Y (tm)  and 
both the interfaces meet. It is also evident that, when looking 
for  K(c0) , only those elements   (ti,zi)  of the set (13) can be 

utilized that satisfy the condition ti < tm . It was found that the 
starting value κ  is very close to the solution  K(c0) , i.e. that the 
linear function 
 

  
ς (t) = L− ρ(1− n0 )κ t +

(1− n0 )2(1+ ρn0 )ρκ 2

gn0
 

 
fits the measured data almost as well as the function (20). 

Connecting the obtained values
  

K(c0 )( )i ,   i = 1,...,45  with 

the starting conditions of the i-th test, particularly with values

  (c0)i ,  a new data set was obtained: 
 

  
ci , Ki{ }i=1

45 , (26) 

 
where the notation was simplified writing ci and Ki instead of 

  (c0)i  and
  

K(c0 )( )i , respectively. Analyzing the data (26) it was 

realized that the hydraulic conductivity decreases with concen-
tration in the whole region and that the nature of the decrease is 
of a power form for lower values of concentration and exponen-
tial for its higher values. Using again the least squares method 
for logarithms of hydraulic conductivity and requiring moreo-

ver certain degree of smoothness, the unknown function K(c) 
was determined. Particularly the sum 

  
S = ln(Ki )− ln((K(ci ))( )

i=1

45
∑

2

,  

 
was minimized, and   K∈C1(D)  was required, where D is the 
domain of the function K. Eventually, the following results 
were achieved: 
 
D = [4.50, 421],  

  K = A1 × cB1 for  c ∈ 4.50,95.7438⎡⎣ ⎤⎦ , 
 

  K = A2 × B2
c for  c ∈ 95.7438,421⎡⎣ ⎤⎦ , 

 
where 
 

  A1 = 0.44872 ,   B1 = −1.8578 ,  

  A2 = 6.0028×10−4 ,   B2 = 0.98078 . (28) 
 

Figs 4 and 5 show the curve   K(c)  in two different scales; 
the solid curves depict the obtained function K(c) and the points 
(the squares) are the values of K computed from the 45 batch 
tests using the above described method. The bold line shows 
the power function and the thin line shows the exponential 
function. The different scales of the c-axes in the figures were 
chosen in order to make visible how the function changes its 
nature. The vertical dashed lines in the figures denote the pre-
cise position of the threshold of separation. 
 

 
 
Fig. 4. Function K(c). 
 
CONCLUSIONS 
 

The hydraulic conductivity of water and kaolin suspension 
as a function of its concentration was investigated. Instead of 
measuring the hydraulic conductivity directly, 45 batch tests 
were carried out and, during each of them, couples of time and 
height of the suspension column were measured. Making use of 
Darcian mechanics of two-phase systems, Eq. (1) to (4), it was 
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possible to find the solution (20) of the direct problem. The 
solution of the corresponding inverse problem is based on the 
comparison of the solution (20) with the measured data. As the 
solution describes the settling process in its initial phase, before 
the zone of compression reaches the top of the suspension 
column, the obtained value of hydraulic conductivity corre-
sponds to the initial concentration of the measured test. 
 

 
 
Fig. 5. Function K(c). 
 

The hydraulic properties of a suspension strongly depend on 
its degree of coagulation. To achieve uniqueness of obtained 
results, the coagulation was precisely defined for every concen-
tration as the rate of added Calcium(II) chloride and the mass of 
the solid phase. Particularly 4 g of CaCl2 were added to 1 kg of 
the solid phase. In this way, the material is considered as differ-
ent concentrations of one suspension. 

Analysis of the results made it possible to determine the de-
pendence of hydraulic conductivity on the suspension concen-
tration i.e. the function K(c). Denoting the domain of measured 
concentrations D, the requirement   K∈C1(D)  has been satis-
fied. Moreover, it was find that the dependence changes its 
nature. A point ξ  was determined such that  ξ ∈D  and, as the 
concentration increases, the function K changes at ξ from a 
power function to an exponential function. 
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