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Abstract: In the study presented, different hybrid model approaches are proposed for reservoir inflow modeling from the 
meteorological data (monthly precipitation, one-month-ahead precipitation and monthly mean temperature data) by the 
combined use of discrete wavelet transform (DWT) and different black box techniques. Multiple linear regression 
(MLR), feed forward neural networks (FFNN) and least square support vector machines (LSSVM) were considered as 
the black box methods. In the modeling strategy, meteorological input data were decomposed into wavelet sub-time se-
ries at three resolution levels and ineffective sub-time series were eliminated by Mallows’ Cp based all possible regres-
sion method. As a result of all possible regression analyses, 2-months mode of time series of monthly temperature 
(D1_Tt), 8-months mode of time series (D3_Tt) of monthly temperature and approximation mode of time series (A3_Tt) 
of monthly temperature were eliminated. Remained effective sub-time series were used as the inputs of MLR, FFNN and 
LSSVM. When the performances of the training and testing periods were compared, it was observed that the DWT-
FFNN conjunction model has better results in terms of mean square errors (MSE) and determination coefficients (R2) 
statistics. The discrete wavelet transform approach also increased the accuracy of multiple linear regression and least 
squares support vector machines.  
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INTRODUCTION 
 

Analyzing inflow data of reservoir can give significant sta-
tistical information for both past and future characteristics of a 
dam. Therefore, recording and modeling of inflow data have 
highly considerable roles in planning, reservoir operation stud-
ies and water resources management. There are three main 
approaches that have been used flow modeling which include 
white-box model (physically based distributed models), gray-
box model (conceptual models) and the black-box model. The 
white and gray-box models aim to simulate the physical mech-
anisms underlying each component in the transformation of 
rainfall into flow, such as surface, subsurface and groundwater 
flow. Yet, due to their data requirements, uncertainties and 
complexities, these models may not be readily used in some 
applications (Abbott and Refsgaard, 1996). 

A basin can also be represented by black-box models which 
associate basin inputs and desired outputs without detailed 
considerations on the physical processes. In this context, con-
ventional statistical models such as linear-nonlinear regression 
types and stochastic models were commonly used. There are 
some important references which provide detailed descriptions 
of these conventional statistical models for hydrology context 
(Salas et al., 1980). 

Over the past decade, artificial intelligence methods have 
been widely used as black-box technique in the modeling stud-
ies. Especially, artificial neural networks (ANN), which is a 
nonlinear computing artificial intelligence technique inspired 
by the learning function of a human brain, have been used in 
many applications. There are numerous ANN applications with 
different algorithms in hydrology context (Campolo et al., 
1999; Cigizoglu, 2005; Coulibaly et al., 2000; Razavi and 
Araghinejad, 2009). In addition to ANN, support vector ma-
chines (SVM) which is one of the artificial intelligence meth-

ods has been also successfully applied (Bray and Han, 2004; 
Cimen, 2008; Lin et al., 2006; Liong and Sivapragasam, 2002; 
Okkan, 2012). 

Although some artificial intelligence methods had been used 
extensively as useful tools for modeling, it has also some prob-
lems to deal with non-stationary data. As the hydrological time 
series includes several frequency components and have nonlin-
ear relationships, some hybrid models which include different 
data-preprocessing and statistical techniques (set pair analysis, 
principle component analysis, clustering methods) have been 
used to raise the modeling performance (Wang et al., 2006; Wu 
et al., 2008). 

Recently, an alternative data-preprocessing technique called 
wavelet transform has been found to be popular in modeling 
studies due to its advantages over conventional methods. There 
are several applications of the combined use of wavelet trans-
form-neural networks (Anctil and Tape, 2004; Wang and Ding, 
2003; Wang et al., 2009), wavelet transform-multiple regres-
sion (Kucuk and Agiralioglu, 2006), wavelet transform - sup-
port vector machine (Kisi and Cimen, 2011). In addition to flow 
modeling, wavelet transform was also applied to the analysis of 
lake levels. Cengiz (2011) investigated the variability of lake 
levels in four lakes in the Great Lakes region by using wavelet 
transform and global spectra method.  It was showed that lake 
levels periodicities were generally the annual cycle. 

In this study, three hybrid models are proposed for reservoir 
inflow modeling from the monthly meteorological data by 
using wavelet transform and some black box approaches (mul-
tiple linear regression, feed forward neural networks and least 
square support vector machines). Firstly, meteorological data 
were decomposed into wavelet sub-time series. Later, explana-
tory sub-time series were determined by using all possible 
regression method. These predictors constituted the inputs of 
these black box models. 
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METHODS 
Feed forward neural networks (FFNN) 
 

There are some books which provide a detailed description 
of the FFNN (Ham and Kostanic, 2001), and hence only a brief 
description of FFNN is given here. The running procedure of 
FFNN involves typically two phases; forward computing and 
backward computing. 

In forward computing, each layer uses a weight matrix asso-
ciated with all the connections made from the previous layer to 
the next layer.  

The hidden layer has the weight matrix Wij and activation 
function f (1); the output layer has the weight matrix Wjm and 
activation function f (2). Given the network input vector 

  x ∈R nx1 , the output of the output layer, which is the response 

(output) of the network   y ∈R mx1 , can be written as:  
 

  
ym = f (2) f (1) xiWij
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After the phase of forward computing, backward computing, 

which depends on the algorithms to adjust weights, is carried 
out. The process of adjusting these weights to minimize the 
differences between the actual and desired output values is 
called training or learning of network. If these differences (er-
rors) are higher than the desired values, the errors are passed 
backwards through the weights of the network. In ANN termi-
nology, this phase is also called the back propagation.  

Depending on the techniques to train FFNN models, differ-
ent back propagation algorithms have been developed. In this 
study, the Levenberg-Marquardt back propagation algorithm 
was used in training of the FFNN. The Levenberg-Marquardt 
back propagation algorithm is a second-order nonlinear optimi-
zation technique that is usually faster and more reliable than 
any other back propagation techniques (Coulibaly et al., 2000). 
The Levenberg-Marquardt optimization algorithm represents a 
simplified version of Newton method applied to the training of 
FFNN (Hagan and Menhaj, 1994). The training process can be 
viewed as finding a set of weights that minimize the error (ep) 
for all samples in training set (T). The performance function is a 
sum of squares of the errors as follows: 
 

  
E(W ) = 1

2
(d p − yp )2

p=1

P
∑ = 1

2
(ep )2

p=1

P
∑ , P = mT ,  (2) 

 
where T is the total number of training samples, m is the num-
ber of output layer neurons, W represents the vector containing 
all the weights in the network, yp is the actual network output, 
and dp is the desired output. 

When training with the Levenberg-Marquardt algorithm, the 
changing of weights ΔW can be computed as follows: 
 

  ΔWk = − [Jk
T Jk + µk I ]−1Jk

T ek .  (3) 
 

Then, the update of the weights can be adjusted as follows: 
 

  Wk+1 =Wk + ΔWk ,  (4) 
 
where J is the Jacobian matrix, I is the identify matrix, µ is the 
Marquardt parameter which is to be updated using the decay 

rate β depending on the outcome. In particular, µ is multiplied 
by the decay rate β (0 < β < 1) whenever E(W) decreases, while 
µ is divided by β whenever E(W) increases in a new step (Cou-
libaly et al., 2000; Ham and Kostanic, 2001). 
 
Least squares support vector machines (LSSVM) 
 

The details of standard SVM method were given by Vapnik 
(1998). In this study, least squares support vector machine 
(LSSVM), which method is a simplified version of standard 
SVM, is used in modeling. LSSVM method can be described as 
fallow according to the studies proposed by Suykens et al. 
(2002). 

Like ANN, a LSSVM model is made up neurons which are 
organized in two layers. However, unlike ANN, it is based on 
theory in statistical learning and different error optimization 
approach (Suykens et al., 2002). 

Given n-dimensional input vector
 
xk ∈Rn , the output of the 

LSSVM model   yk ∈R,  can be written as: 
 

  y =W Tφ(x)+ b , (5) 
 
where W is weight vector,   φ(x)  nonlinear mapping function  

( φ Rn → Rnh mapping to high dimensional feature space) and b 
is the bias term. 

Given training set  {xk , yk}k=1
N , the error optimization prob-

lem is defined as: 
 

  
min J (W ,e) = 1

2
W TW + γ 1

2
ek

2

k=1

N
∑ , (6) 

 
subject to equality constraints 
 

  yk =W Tφ(xk )+ b+ ek , k = 1,..., N , (7) 
 
where ek  is error term and γ regularization parameter. 

Because of high dimensional feature space, solution of this 
optimization problem cannot be obtained by using classical 
numerical methods. The solution of the optimization problem is 
obtained by considering the Lagrangian as: 
 

  
L(W ,b,e,α ) = J (W ,e)− α k W Tφ(xk )+ b+ ek − yk{ }

k=1

N
∑ , (8) 

 
where αk are Lagrange multipliers. Conditions for optimality 
can be obtained by differentiating with respect to W, b, ek and 
αk, i.e. 
 

  

∂L
∂W

= 0→W = α kφ(xk )
k=1

N
∑ , (9a) 

 

  

∂L
∂b
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∂L
∂ek

= 0→α k = γ ek , k = 1,..., N , (9c) 
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∂L
∂α k

= 0→W Tφ(xk )+ b+ ek − yk , k = 1,..., N . (9d) 

 
Solution 
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with 
   y = [y1;....; yN ], 1


= [1;....;1],α = [α1;....;αN ]  and by apply-

ing Mercer’s theorem (Mercer, 1909). 
 

  Ωkm = φ(xk )Tφ(xm) = K(xk ,xm), k,m = 1,..., N . (11) 
 

Resulting LSSVM model for function estimation can be ex-
pressed as:  
 

  
y = α k K(xk ,x)

k=1

N
∑ + b , (12) 

 
where K(xk , x) is the Kernel function. 

The Kernel functions treated by standard SVM and LSSVM 
are the functions with linear, polynomial, Gaussian radial basis, 
exponential radial basis, splines etc. (Okkan, 2012). The Gauss-
ian radial basis function used in this study can be defined as 
 

  

K(xk ,x) = exp −
x − xk

2

2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, (13) 

 
where σ is the Gaussian radial basis Kernel function width. 
 
Wavelet transform 
 

The wavelet transform, developed during the last decades, is 
an effective decomposition method. This method provides an 
analyzing way of a signal in both time and frequency and ap-
pears to be a more successful than the conventional Fourier 
transforms that do not provide time-frequency analysis for the 
variables involve non-stationary signals (Daubechies, 1990; 
Kucuk and Agiralioglu, 2006). 

The time-scale wavelet transform of a continuous time sig-
nal, x(t), is defined as : 
 

  
W (s,τ ) = s

−1/2

−∞

∞
∫ ψ * t −τ

s
⎛
⎝⎜

⎞
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x(t)dt τ ∈R, s ∈R,s ≠ 0 , (14) 

 
where * corresponds to the complex conjugate and ψ(t) is 
wavelet function or mother wavelet, s is scale or frequency 
factor, τ is time factor, R is the domain of real number.  

Eq. (14) describes that wavelet transform is the decomposi-
tion of x(t) under different resolution scale. The original series 
can be reconstructed using the inversion of transform (Rajaee et 
al., 2011). 

In this study, the Haar mother wavelet (simple wavelet) has 
been used because it is conceptually simple, fast and memory 
efficient. 

The Haar mother wavelet is defined as: 
 

  

ψ (t) =
1 0 ≤ t ≤1/ 2
−1 1/ 2 ≤ t ≤1
0 otherwise

⎧

⎨
⎪

⎩
⎪

.   (15) 

 
For practical applications in hydrology, researchers have ac-

cess to a discrete time signal, rather than to a continuous time 
signal. A discretization of Eq. (14) based on trapezoidal rule is 
perhaps the simplest discretization of the continuous wavelet 
transform (CWT). It transform produces N2 coefficients from a 
data set of length N; hence unnecessary information is locked 
up within the coefficients; which may or may not be a desirable 
property. To overcome this difficulty, discrete wavelet trans-
forms (DWT) which present power of two logarithmic scaling 
of the translations can be used in practical applications. Be-
cause it reduces the computational complexity of the CWT and 
the redundancy of the CWT, there is an advantage for prefer-
ring the DWT over the CWT (Rajaee et al., 2011). 

In this study, the Mallat algorithm was used for the DWT of 
monthly time-series. According to the Mallat algorithm, the 
discrete wavelet transform of discrete time series xt is defined 
as (Mallat, 1989): 
 

  
W j,k = 2− j/2 ψ (2− j t − k)xt

t=0

N−1
∑ ,   (16) 

 
where t is integer time steps, j and k are integers that control, 
respectively, the scale and time, Wj,k is the wavelet coefficient 
for the scale factor s = 2j and the time factor τ = 2jk. 

In DWT method, the time series (xi) passes through two fil-
ters and are decomposed into wavelet sub-time series compo-
nents, which can be computed by using Eq. (16), without losing 
the information about the instant of the element occurrence. 
The DWT converts a signal into father and mother wavelets. 
Father wavelets represent the high-scale, low frequency com-
ponents (approximation (A) components). Mother wavelets are 
representations of the low-scale, high frequency components 
(detail (D) components). Thus, DWT allows one to study dif-
ferent investing behaviors in different time scales independent-
ly (Rajaee et al., 2011). These computations can be carried out 
by wavelet toolbox for use with MATLAB. 
 
STUDY AREA AND DATA 
 

The study area covers the drainage basin of Demirkopru 
Dam (total drainage area of 6590 km2), which is located in the 
Gediz basin and Aegean region in Turkey. The reservoir of the 
dam is fed by four streams. Streamflow is observed at four 
gauging stations (Demirci/EIE-522, Deliinis/EIE-515, 
Selendi/EIE-514, and Gediz/EIE-523) located upstream of the 
dam (Fig. 1).  

For the study area, the data sets of streamflow (106 m3) were 
acquired from the records of the II. Regional Directorate of 
State Hydraulic Works of Turkey, and were arranged for the 
period between January 1977 and December 2006. In addition 
to inflow data, the data sets of precipitation at Demirci, Icikler, 
Kiransih, Fakili and Gediz meteorological stations were ob-
tained from the State Meteorological Organization of Turkey 
and the General Directorate of State Hydraulic Works of Tur-
key. Next, the monthly mean areal precipitation values were 
calculated from these meteorological stations by Thiessen po-
lygons. The monthly data sets of temperature at Demirci and 
Gediz meteorological stations were also obtained from the State 
Meteorological Organization of Turkey and the monthly mean 
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areal temperature values were computed by using arithmetical 
mean values from these meteorological stations for the period 
from January 1977 to December 2006. 
 

 
 
Fig. 1. Gediz Basin and Demirkopru Dam ( : flow gauging sta-
tions; : meteorological stations). 
 

In hydrological modeling, the determination of appropriate 
input variables would play an important role. In this study, 
modeling strategy that predicts inflow data from inputs based 
on monthly rainfall and temperature data. In addition to concur-
rent values of input data, precipitation values at various lags 
were also considered. A statistical approach proposed by 
Sudheer et al. (2002) was employed to determine the appropri-
ate order of precipitation lag. The approach is based on the 
heuristic that the potential influencing variables corresponding 
to different time lags can be identified through statistical analy-
sis of the data series that uses cross correlation between the 
variables. The cross correlation function (CCF) between the 
reservoir inflow and precipitation values at various lags showed 
significant correlation at concurrent precipitation and one 
month of precipitation lag on the inflow. Thus, three input data 
(Pt, Tt, Pt-1) were prepared for the same periods of the monthly 
inflow records (Pt: monthly precipitation; Pt-1: one-month-
ahead precipitation; Tt: monthly temperature).  
 
APPLICATION AND RESULTS 
 

In the study presented, DWT was linked to different black 
box models (MLR, FFNN and LSSVM) for the reservoir inflow 
modeling. In the modeling strategy, the input data (Pt, Pt-1, Tt) 
of training and testing periods were decomposed into a certain 
number of sub-time series components by DWT. In order to 
decompose the input data, a decomposition level must be se-
lected. For the monthly scaled hydrological modeling studies, 
three decomposition levels are able to represent the related time 
series (Kisi and Cimen, 2011). Similarly, three decomposition 
levels were used in this study. Thus, meteorological data were 
decomposed and twelve sub-time series components (time 
series of 2-months mode (D1), 4-months mode (D2), 8-months 
mode (D3) and approximation mode (A3)) were obtained for 
the training and testing periods by proportions of 2/3 (January 
1977−December 1996) and 1/3 (January 1997−December 

2006), respectively. For example, the three levels decomposi-
tion of the Pt that yield four sub-signals by the Haar wavelet are 
presented in Fig. 2. 

After the decomposition processes, the effective sub-time se-
ries components should be determined as some correlated sub-
time series components may reduce the performances of the 
black box models. In this study, the effective sub-time series 
components were determined by Mallows’ Cp based all possible 
regression method. This statistical method is an effective way 
to determine the subset of variables in cases where there are a 
large number of potential predictor variables. In Mallows’ Cp 
approach, adequate models are those for which Cp is roughly 
equal to the number of variables in the model (Mallows, 1973). 
The Cp values can be computed as: 
 

  

Cp = (N − k)
MSEi

2

MSEF
2
− (N − 2i −1) , (17) 

 
where N is the number of data, MSEi is the mean of residual 
squares in the model with i variable, MSEF

  is the mean of re-
sidual squares in the full model with k variable. 

Once the effective variables were selected, based on the Cp 
values for training period were calculated as shown in Tab. 1. 
Performances of the models with the nine variables (seen as 
bold and underlined characters in Tab. 1) are nearly the same as 
those of the model with twelve variables; that is, the explained 
variance of the monthly reservoir inflow data by the model with 
nine variables, which has the minimum Cp value, is nearly 
equal to that explained the full linear model with twelve varia-
bles. According to the analyses, 2-months mode of time series 
of monthly temperature (D1_Tt), 8-months mode of time series 
of monthly temperature (D3_Tt), and approximation mode of 
time series of monthly temperature (A3_Tt ) were eliminated.  

Before presenting the input data to FFNN and LSSVM, the 
all data were normalized in the range [0–1] to prevent the mod-
els from being dominated by the variables with the extreme 
values.  

Models with optimum structures provided the best training 
result in terms of the minimum mean square errors (MSE), and 
the maximum determination coefficients (R2) were also em-
ployed for the testing period.  In the application, some codes 
which involve discrete wavelet transform and multi-linear 
regression (DWT-MLR), Levenberg-Marquardt algorithm 
based feed forward neural networks (DWT-FFNN), least 
squares support vector machines (DWT-LSSVM) were written 
in MATLAB. The results of DWT-MLR, DWT-FFNN and 
DWT-LSSVM models were also compared with conventional 
MLR, FFNN and LSSVM models. MLR and DWT-MLR coef-
ficients were computed by using the variables of training period 
(January 1977–December 1996). Thus, the testing of models 
was carried out using determined regression equations. 

In FFNN applications, three widely used transfer functions, 
namely tangent sigmoid, linear, and log-sigmoid are evaluated 
in FFNN structure trials. The best results were achieved by 
using the log-sigmoid function. The optimum values of 
LSSVM and DWT-LSSVM parameters were determined by 
using the trial and error approach. The best configurations of all 
models are presented in Table 2.  
 
DISCUSSIONS AND CONCLUSIONS 
 
Many of the activities associated with planning and manage-
ment of water resources require appropriate hydrological 
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Fig. 2. Original time series (a), 2-months mode of time series (b), 4-months mode of time series (c), 8-months mode of time series (d) and 
approximation mode of time series (e) of monthly precipitation for training period. 
 
models in practice. In particular, there is a necessity for model-
ing of flow values to optimize the system or to plan for future 
variations. The current study presented the applications of 
DWT based black box models (DWT-MLR, DWT-FFNN and 
DWT-LSSVM) compared with MLR, FFNN and LSSVM 
models used undecomposed data, for modeling of monthly 
inflows of Demirkopru Dam, based on the meteorological data.  

In the study presented, monthly meteorological data (Pt, Pt-1, 
Tt) were decomposed into wavelet sub-time series by using the 
discrete wavelet transform (DWT). Three resolution levels were 
considered. Thus, twelve sub-time series components (time 
series of 2-months mode (D1), 4-months mode (D2), 8-months 
mode (D3) and approximation mode (A3) for each input data) 
were determined for the training period and testing period. 

Because correlated sub-time series components reduced the 
generalization capabilities of the models, effective sub-time 
series components were determined by using Mallows Cp based 
all possible regression method. As a result of all possible re-
gression analyses, effective sub-time series components were 

selected. Thus, these variables that represented the new inputs 
of the MLR, ANN and LSSVM were treated so as to reduce 
collinearity. 
Table 2 presents the statistical measures performed by the dif-
ferent kind of black box models. Because the phenomenon of 
the hydrological time series have the inherent complexities and 
nonlinearities, the performance of single MLR model was not 
suitable. On the contrary, DWT approach increased the perfor-
mances of the MLR, FFNN and LSSVM in terms of MSE and 
R2 values for training and testing periods (Okkan, 2011, 2012). 
The model structures with the best accuracy were also provided 
in Tab. 2. Furthermore, when y = ax + b fitted lines are exam- 
ined, one can see that for DWT-MLR, DWT-FFNN, and DWT-
LSSVM models, the slope “a” gets closer to one, and “b” gets 
closer to zero, compared to the conventional MLR, FFNN and 
LSSVM models. 

In terms of the best accuracy, DWT-FFNN model with Haar 
mother wavelet resulted in MSE reductions and, R2 increases 
relative to that of the other models. This approach has generali- 
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Table 1. Summary of all possible regression analyses. 
 

Number  
of variables 

R2 

[%] 
Adj.R2 

[%] 
Cp 

 
D1_
Pt 

D2_
Pt 

D3_
Pt 

A3_
Pt 

D1_
Pt-1 

D2_
Pt-1 

D3_
Pt-1 

A3_
Pt-1 

D1_
Tt 

D2_
Tt 

D3_
Tt 

A3_
Tt 

1 25.0 24.7 327.8             ●           
1 19.0 18.7 373.0     ●                   
1 17.8 17.5 382.1               ●         
2 42.8 42.3 195.9             ● ●         
2 39.4 38.9 221.5       ●     ●           
2 37.5 37.0 236.0   ●         ●           
3 55.3 54.7 104.2   ●         ● ●         
3 52.2 51.6 127.6           ● ● ●         
3 51.9 51.3 129.7   ●   ●     ●           
4 63.9 63.3 41.1 ● ●         ● ●         
4 60.8 60.2 64.5 ●         ● ● ●         
4 60.5 59.9 66.7 ● ●   ●     ●           
5 66.1 65.4 27.0 ● ●     ●   ● ●         
5 64.9 64.2 35.6 ● ● ●       ● ●         
5 64.8 64.0 37.0 ● ●   ●     ● ●         
6 67.1 66.2 21.5 ● ● ●   ●   ● ●         
6 66.9 66.0 22.9 ● ●   ● ●   ● ●         
6 66.9 66.0 23.0 ● ●     ● ● ● ●         
7 67.9 66.9 17.4 ● ● ● ● ●   ● ●         
7 67.9 66.9 17.5 ● ● ●   ● ● ● ●         
7 67.7 66.7 18.9 ● ●   ● ● ● ● ●         
8 68.7 67.6 13.4 ● ● ● ● ● ● ● ●         
8 68.6 67.5 14.0 ● ● ●   ● ● ● ●   ●     
8 68.4 67.3 15.4 ● ●   ● ● ● ● ●   ●     
9 69.4 68.2 9.9 ● ● ● ● ● ● ● ●   ●     
9 68.9 67.6 14.1 ● ● ● ● ● ● ● ● ●       
9 68.8 67.6 14.3 ● ● ● ● ● ● ● ●       ● 

10 69.6 68.3 10.6 ● ● ● ● ● ● ● ● ● ●     
10 69.6 68.3 10.7 ● ● ● ● ● ● ● ●   ●   ● 
10 69.5 68.1 11.5 ● ● ● ● ● ● ● ●   ● ●   
11 69.8 68.3 11.4 ● ● ● ● ● ● ● ● ● ●   ● 
11 69.7 68.2 12.2 ● ● ● ● ● ● ● ● ● ● ●   
11 69.6 68.2 12.3 ● ● ● ● ● ● ● ●   ● ● ● 
12 69.8 68.2 13.0 ● ● ● ● ● ● ● ● ● ● ● ● 

 
 
Table 2. The performances of different model applications in the training and testing periods. 
 

Models Model structures R2 (%) MSE (106 m6) 
Training Testing Training Testing 

MLR – 61.4 59.1 1890.7 2054.2 
DWT-MLR – 69.4 66.5 1498.5 2047.7 
FFNN j = 3; µ0 = 0.001; β = 0.1; k = 10 79.2 75.3 1020.9 1181.6 
DWT-FFNN j = 9; µ0 = 0.001; β = 0.01; k = 7 96.7 84.6 161.9 886.7 
LSSVM γ = 16; σ2 = 0.97 81.1 73.6 932.2 1228.2 
DWT-LSSVM γ = 45.5; σ2 = 6.51 96.5 81.3 180.9 894.4 
j is number of neurons in hidden layer, k is iteration number, µ0 is initial Marquardt parameter, β is decay rate of Levenberg-
Marquardt algorithm, γ is regularization parameter, σ is Gaussian radial basis kernel function width. 

 
 

                          (a)                                                                                                       (b) 

 
 

Fig. 3. The scatter plots (a) and hydrographs (b) of DWT-FFNN model for the testing period. 
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zation capability and thus can more easily capture inflow of 
Demirkopru Dam. The scatter plot and hydrograph of DWT-
FFNN for the testing period are presented in Fig. 3.  

Besides of the MSE and R2 values, in terms of descriptive 
statistics, DWT-FFNN model proved to be successful in the 
training and testing periods. It was also seen that the extreme 
value statistics of DWT-FFNN for the testing period were quite 
satisfactory providing superior results compared with other 
conventional methods.  

Although DWT-FFNN models have ability to represent 
complex and nonlinear relations of a basin, the structures of 
feed forward neural networks (FFNN) may be hard to deter-
mine and they can be determined using after many trial-and-
error simulations. Therefore, DWT based MLR (DWT-MLR) 
and DWT based LSSVM (DWT-LSSVM) models that may be 
much easier for practical interpreting. Thus, these approaches 
can be used as alternative ways to DWT-FFNN and FFNN 
methods for monthly reservoir inflow modeling. For example, 
LSSVM and DWT-LSSVM have considerable features includ-
ing the fact that requirement on Kernel function and the nature 
of the optimization problem results in a uniquely global opti-
mum, generalization capability, and avoidance of converging to 
a local minimum solution.  

The study presented uses some hybrid methodologies that 
are beneficial in reconstruction of reservoir inflow data. Espe-
cially, developed DWT-FFNN and DWT-LSSVM models, 
which are successful tools for the modeling of reservoir inflow 
series, can be used for future assessment of climate change 
impacts at the watershed scale. Thus, they can be employed to 
produce significant monthly scaled information for water re-
sources management and planning problems such as irrigation 
planning, reservoir operation, water budget studies, watershed 
modeling, etc. The authors also suggest that the developed 
hybrid techniques can be also applied to other hydrological 
variables and other water resources problems to reconfirm the 
effectiveness of them.  

In the study, the Mallat algorithm was used for the DWT of 
monthly meteorological time-series. For future study, the other 
DWT algorithms (e.g., Trous algorithm) and the other types of 
transform (e.g., fast wavelet transform, Fourier transform) may 
be used for the construction of the different neuro-computing 
models (e.g., other neural network algorithms, fuzzy logic). In 
addition to these, other data-preprocessing techniques (e.g., 
principle component analysis, factor analysis, set pair analysis) 
can be also compared with the wavelet transform for the future 
researches.  
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