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Abstract: Steady two-dimensional natural convection taking place in a rectangular cavity, partially filled with an iso-
tropic porous material, has been investigated numerically using an ADI method. It is assumed that one of the vertical 
walls of the cavity has a ramped temperature distribution. The vorticity-stream function formulation has been used to 
solve the set of nonlinear partial differential equations governing the flows in the clear region and the adjoining porous 
region. The effects of Darcy number and Rayleigh number have been discussed in detail. 
 
Keywords: Rectangular cavity; Free convection; Brinkman model; Coupled flow; Ramped boundary condition; Numeri-
cal solution. 

 
INTRODUCTION 
 

Theoretical investigations of transport mechanisms at the in-
terface region of a fluid-saturated porous medium and an ad-
joining fluid layer have gathered great pace during the last four 
decades or so. The coupling of fluid motions in the clear region 
and the porous medium typically takes place as a result of fluid 
transport to either region through the interface. These coupled 
flows have been reported in the literature to have numerous 
engineering and industrial applications in fields such as transpi-
ration cooling, geothermal energy systems, crude oil extraction, 
thermal insulation, cooling and fumigation of stored food 
grains, drying processes, to name a few. The pioneer contribu-
tion of Beavers and Joseph (1967) and, soon after, by a number 
of other researchers led to a solid foundation being made in the 
theoretical development of such flows, particularly with regard 
to the all-important condition at the clear region – porous medi-
um interface. Subsequent studies, both analytical and numeri-
cal, in this ever growing field (Alazmi and Vafai, 2001; Bhatt 
and Sacheti, 1994; Nield, 1977; Sacheti and Bhatt, 1988; Singh 
et al., 2006), have covered wide-ranging aspects of viscous 
flows, including natural convection. 

The study of laminar natural convection and heat transfer 
from an infinite plane vertical wall in the presence or absence 
of a porous medium has been a subject of intense and compre-
hensive investigations in the literature due to real life applica-
tions in a number of areas. Typical examples of such free con-
vective steady or unsteady flows include the physical configu-
rations comprising bounding vertical flat surface(s) subjected to 
isothermal or adiabatic temperature conditions or constant heat 
flux (Callahan and Marner, 1976; Chandran et al., 2001; 
Magyari and Keller, 2003; Paul et al., 1996; Singh and Singh, 
1983). Moreover, there have also been a number of works 
involving buoyancy-driven flows where researchers have dis-
cussed natural convection from vertical walls subjected to non-
uniform wall temperature conditions, e.g., step discontinuities 
or ramped profiles (temporal or spatial) for the surface tempera-
ture (Kao, 1975; Lee and Yovanovich, 1991; Hayday et al., 
1967; Chandran et al., 2005; Singh et al., 2008). Such un-
bounded flow problems have also been extended to confined 

regions (Nishimura et al., 1986; Singh et al., 1993; Valencia-
López and Ochoa-Tapia, 2001).  

In the present work, we have considered a steady two-
dimensional free convective coupled flow in a rectangular 
cavity comprising a fluid-saturated porous medium of high 
permeability underlying a viscous fluid layer in the clear re-
gion. It is assumed that the porosity of the porous medium is 
close to unity. The walls of the cavity are taken to be rigid. 
Furthermore, one of the vertical walls of the cavity is assumed 
to be subjected to a spatially ramped temperature profile.  

It is well known that the classical Darcy law neglects the ef-
fects of a solid boundary and the inertial forces on fluid flow 
and heat transfer through porous media (Collins, 1961; 
Scheidegger, 1974; Vafai and Tien, 1981). As reported by 
several researchers (Chandrasekhara and Vortmeyer, 1979; 
Palm et al., 1972; Vafai and Tien, 1981), these effects become 
significant near the boundary and in high porosity media, ren-
dering the Darcy law invalid. However, modern applications 
involving high porosity materials necessitate a comprehensive 
understanding of the boundary and inertia effects. In order to 
account for them in our present analysis, we have employed the 
widely used Brinkman model (often referred to in the literature 
as Darcy-Brinkman model) to describe the flow in the porous 
medium of high permeability. In fact, a number of researchers 
have strongly advocated the appropriateness of this model for 
high porosity bounded media (Beckermann et al., 1988; Hill 
and Straughan, 2009a,b; Neale and Nader, 1974; Nield and 
Bejan, 2006; Nishimura et al., 1986, Singh et al., 1993; Singh et 
al., 2009; Straughan, 2002; Zhao et al., 2004). Porous materials 
with porosity close to unity are encountered in several industri-
al and geophysical applications. For example, storage systems 
and metallic foams (foametals) belong to this category. The 
latter (foametals) are used extensively in numerous industrial 
applications such as lightweight structures, biomedical im-
plants, fluid filters, electrodes, heat exchangers and chemical 
reactors (Lefebvre et al., 2008; Straughan, 2002). As mentioned 
in the literature (see, e.g., Zhao et al., 2004), high porosity 
materials requiring the use of Brinkman model are also of much 
current interest in industry in the design of heat transfer devic-
es. 
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The governing sets of partial differential equations for each 
region – clear region and porous medium – have been presented 
in the next section, along with the corresponding boundary and 
interface conditions. The resulting boundary value problem has 
been solved numerically using a suitable ADI method (Mallin-
son and de Vahl Davis, 1973; Singh et al., 2000). Illustrative 
sketches for streamlines and isotherms have been shown for 
both ramped and constant temperature profiles at a side wall. 
They have been analyzed in relation to the Darcy and Rayleigh 
numbers with a view to assess the extent of the natural convec-
tion process in both clear and permeable regions of the cavity.     
 
FLOW CONFIGURATION AND  
GOVERNING EQUATIONS 
 

We consider a steady two-dimensional free convective flow 
of a viscous incompressible fluid in a rectangular cavity com-
prising a clear region overlying a porous medium of large per-
meability and bounded by impermeable walls. The physical 
situation is shown in Fig 1. The  ′x -axis is taken along the 
vertical direction while the  ′y -axis is taken along the horizon-
tal direction, the positive direction of  ′y -axis being directed 
into the fluid. The clear and porous regions are separated by a 
horizontal interface at  ′x = ′d , allowing the fluid in either re-
gion to migrate to the other. As regards the temperature  ′T  on 
the walls of the cavity, the left vertical wall of the enclosure is 
assumed to have a spatially ramped temperature distribution 
while the right vertical wall is isothermal with constant temper-
ature  Tc . The ramped temperature on the left vertical wall is 
assumed in the forms as given in Eqs (10) and (11), below.  It is 
known from physical considerations that the consequence of 
keeping the walls   ′y = 0   and  ′y = L   at different temperatures 
is to have density variation in the fluid, leading to buoyancy. 
Such buoyancy effects are known to cause free convection 
currents.  Furthermore, the horizontal upper and lower walls of 
the enclosure are assumed to be perfectly thermally insulated. 
We assume that all physical properties of the fluid are constant 
except the density in the buoyancy term, where the Boussinesq 
approximation is assumed to hold.  

We shall next introduce the governing equations of the two-
dimensional flow for each region. We denote the equations in 
the clear region by the subscript f and those in the porous region 
by the subscript  p . The equations are  
 
Clear region (  0≤ ′x ≤ ′d , 0≤ ′y ≤ L ): 
 

  

∂ ′u f

∂ ′x
+
∂ ′v f

∂ ′y
= 0 , (1) 

 

  

′ρ f ′u f

∂ ′u f

∂ ′x
+ ′v f

∂ ′u f

∂ ′y

⎛

⎝
⎜

⎞

⎠
⎟ = −

∂ ′Pf

∂ ′x
+

+ µ f

∂2 ′u f

∂ ′x 2 +
∂2 ′u f

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ g ′ρ f ,

 

(2)

 

 

  

′ρ f ′u f

∂ ′v f

∂ ′x
+ ′v f

∂ ′v f

∂ ′y

⎛

⎝
⎜

⎞

⎠
⎟ = −

∂ ′Pf

∂ ′y
+

+ µ f

∂2 ′v f

∂ ′x 2 +
∂2 ′v f

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,

 (3) 

 

  

c f ′ρ f ′u f

∂ ′Tf

∂ ′x
+ ′v f

∂ ′Tf

∂ ′y

⎛

⎝
⎜

⎞

⎠
⎟ =

= κ f

∂2 ′Tf

∂ ′x 2 +
∂2 ′Tf

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

 

(4)

 

 
Porous region (  ′d ≤ ′x ≤H , 0≤ ′y ≤ L ): 
 

  

∂ ′up

∂ ′x
+
∂ ′v p

∂ ′y
= 0,  (5) 

 

  

′ρ p ′up

∂ ′up

∂ ′x
+ ′v p

∂ ′up

∂ ′y

⎛

⎝
⎜

⎞

⎠
⎟ = −

∂ ′Pp

∂ ′x
+

+ µp

∂2 ′up

∂ ′x 2 +
∂2 ′up

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ g ′ρ p −

µp

K
′up ,

 

(6)

 

 

  

′ρ p ′up

∂ ′v p

∂ ′x
+ ′v p

∂ ′v p

∂ ′y

⎛

⎝
⎜

⎞

⎠
⎟ = −

∂ ′Pp

∂ ′y
+

+µp

∂2 ′v p

∂ ′x 2 +
∂2 ′v p

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−
µp

K
′v p ,

 

(7)

 

 

  

cp ′ρ p ′up

∂ ′Tp

∂ ′x
+ ′v p

∂ ′Tp

∂ ′y

⎛

⎝
⎜

⎞

⎠
⎟ =

=κ p

∂2 ′Tp

∂ ′x 2 +
∂2 ′Tp

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,

 

(8)

 

 
where  ′u  and  ′v  are, respectively, the components of fluid 
velocity in the  ′x  and  ′y directions,  ′P   is the pressure,  ′T   is 
the fluid temperature, ′ρ  is the density, µ   is the viscosity, g 
is the acceleration due to gravity,  K  is the permeability of the 
porous medium, c  is the specific heat at constant pressure and 
κ  is the thermal conductivity of the fluid.  

Eqs (1) – (8) are to be solved subject to a set of boundary 
conditions at   ′x = 0, H ;    ′y = 0, L  and a physically plausible 
set of matching conditions at the interface   ′x = ′d .  The bounda-
ry conditions are given as 
 

  

∂ ′T
∂ ′x

= 0 on ′x = 0, H ,  (9) 

 

  ′T = TH for 0 ≤ ′x ≤ ′d , ′y = 0,  (10) 

  

′T = Tc −
TH − Tc
H − ′d

′x − H( )
for ′d ≤ ′x ≤ H , ′y = 0,

 
(11)
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  ′u = ′v = 0 on ′x = 0, H and ′y = 0, L.  (12) 
 

Next, we shall present the matching conditions at the clear 
fluid-porous medium interface. The assumptions of the continu-
ity of temperature and heat flux at the interface  ′x = ′d  lead to  
 

  
′Tf = ′Tp , κ f

∂ ′Tf

∂ ′x
= κ p

∂ ′Tp

∂ ′x
 (13) 

 
while the continuity of velocity and shear stress at  ′x = ′d  
yield 
 

  
′u f = ′up , ′v f = ′v p ,  (14) 

 

  
µ f

∂ ′v f

∂ ′x
= µp

∂ ′v p

∂ ′x
.  (15) 

 
In the momentum Eqs (2), (3), (6), (7) and the matching 

condition (15), 
 
µ f  and 

 
µp  are, in general, not equal. Howev-

er, as reported by Neale and Nader (1974), and used by a num-
ber of researchers in later works, (e.g., Kuznetzov, 1996; Bhatt 
and Sacheti, 1994; Singh and Thorpe, 1995), in certain situa-
tions, the assumption 

 
µ f = µp  yields reasonably accurate 

results. Accordingly, we shall use this assumption in our analy-
sis. We shall also assume that 

 
ρ f = ρ p  and

 
c f = cp . Further-

more, the commonly used Boussinesq approximation is 
 

  
′ρ = ′ρ0 1 − β ′T − ′T0( )⎡⎣ ⎤⎦ ,  (16) 

 
where β  is the coefficient of thermal expansion, and  ′ρ0  and 

  ′T0  are the reference values of density and temperature, respec-
tively. The above approximation presumes that the fluid proper-
ties are constant except that the influence of the density varia-
tion arising from the temperature differential can be incorpo-
rated in a body force term. 

In order to solve the set of governing Eqs (1) – (8), subject 
to the boundary and matching conditions (9) – (15), we, as a 
first step, re-formulate our problem in terms of the new de-
pendent variables ′Ψ , the stream function and ξ, the vorticity. 
The continuity equation for the incompressible flow – Eq. (1) 
or Eq. (5) – is now used to introduce ′Ψ  as 
 

  
′u = ∂ ′Ψ

∂ ′y
, ′v = − ∂ ′Ψ

∂ ′x
.  (17) 

 
On the other hand, the vorticity function ξ is defined as 
 

  
ξ = ∂ ′v

∂ ′x
− ∂ ′u
∂ ′y

.  (18) 

 
Having introduced ′Ψ  and ξ, one can easily eliminate the 

pressure gradient terms in either set of momentum equations – 
Eqs (2), (3) or Eqs (6), (7) – using the Eqs (16), (17) and (18). 
This finally leads to our formulation of the problem in terms of 

′Ψ  and ξ, as  
 

  

∂2 ′Ψ f

∂ ′x 2 +
∂2 ′Ψ f

∂ ′y 2 = − ′ζ f ,  (19) 

 

  

′u f

∂ ′ζ f

∂ ′x
+ ′v f

∂ ′ζ f

∂ ′y
= ν f

∂2 ′ζ f

∂ ′x 2 +
∂2 ′ζ f

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ gβ

∂ ′Tf

∂ ′y
,  (20) 

 

  

∂2 ′Ψ p

∂ ′x 2 +
∂2 ′Ψ p

∂ ′y 2 = − ′ζ p ,  (21) 

 

  

′up

∂ ′ζ p

∂ ′x
+ ′v p

∂ ′ζ p

∂ ′y
= ν p

∂2 ′ζ p

∂ ′x 2 +
∂2 ′ζ p

∂ ′y 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

+ gβ
∂ ′Tp

∂ ′y
−
ν p

K
′ζ p .

 (22)

 

 
In the above,  ν = (µ / ρ)  is the kinematic viscosity of the 

fluid. 
The boundary and matching conditions corresponding to the 

Eqs (12), (14) and (15) now become 
 

  ′Ψ = 0 on     ′x = 0, H and     ′y = 0, L,  (23) 
 

  
′ζ = − ∂2 ′Ψ

∂ ′x 2
on     ′x = 0, H ,  (24) 

 

  
′ζ = − ∂2 ′Ψ

∂ ′y 2
on     ′y = 0, L,  (25) 

 

  
′ζ f = ′ζ p ,

∂ ′ζ f
∂ ′x

=
∂ ′ζ p
∂ ′x

,  (26) 

 

  
′Ψ f = ′Ψ p ,

∂ ′Ψ f

∂ ′x
=
∂ ′Ψ p

∂ ′x
.  (27) 

 
It may be noted that the condition (24) follows from the fact 

that the streamlines near the boundaries   ′x = 0  and  ′x = H  are 
parallel to the  ′y -axis, hence showing negligible variation with 
respect to the  ′y -coordinate. A similar argument applies to Eq. 
(25) also.  
 
NON-DIMENSIONAL EQUATIONS 
 

We introduce the non-dimensional quantities 
 

  
(x, y) = ( ′x , ′y ) L , u = L ′u α f , v = L ′v α f ,

 

  

ζ = L2 ′ζ α f , Ψ = ′Ψ α f ,

θ = ′T − Tc( ) TH − Tc( ),
 

(28)
 

 

where 
 
α f = κ f ρ f c f( )  and the non-subscripted quantities 

refer to either the clear fluid or the porous medium. Using Eq. 
(28) together with the non-dimensional clear-region depth 
parameter   d = ′d / L  and the aspect ratio   Ar  =  H / L  in Eqs 
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(17) – (22), (4), (8), (9) – (11), (13) and (23) – (27), the non-
dimensional equations are obtained as  
 

  
u = ∂Ψ

∂y
, v = − ∂Ψ

∂x
,  (29) 

 

  
ξ = ∂v

∂x
− ∂u
∂y

.  (30) 

 
Clear region (  0≤ x≤d , 0≤ y≤1): 
 

  

∂2Ψ f

∂x2 +
∂2Ψ f

∂y2 = −ζ f ,  (31) 

 

  

u f

∂ζ f

∂x
+ v f

∂ζ f

∂y
= Pr 

∂2ζ f

∂x2 +
∂2ζ f

∂y2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ Ra Pr
∂θ f

∂y
,

 

(32)

 

 

  
u f

∂θ f

∂x
+ v f

∂θ f

∂y
=

∂2θ f

∂x2 +
∂2θ f

∂y2 .  (33) 

 
Porous region (  d ≤ x≤Ar , 0≤ y≤1 ): 
 

  

∂2Ψ p

∂x2 +
∂2Ψ p

∂y2 = −ζ p ,  (34) 

 

  

up

∂ζ p

∂x
+ v p

∂ζ p

∂y
= Pr 

∂2ζ p

∂x2 +
∂2ζ p

∂y2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ Ra Pr
∂θ p

∂y
− Pr

Da
ζ p ,

 

(35) 

 

  

up

∂θ p

∂x
+ v p

∂θ p

∂y
= λ

∂2θ p

∂x2 +
∂2θ p

∂y2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.  (36) 

 
Boundary conditions and matching conditions: 
 

  

∂θ
∂x

= 0 on    x = 0, Ar,  (37) 

 

  θ = 1 for    0 ≤ x ≤ d , y = 0,  (38) 
 

  
θ = x − Ar

d − Ar
for    d ≤ x ≤ Ar , y= 0, , (39) 

 

  Ψ = 0 on    x = 0, Ar    and    y = 0, 1,  (40) 

  
ζ = − ∂2Ψ

∂x2
on    x = 0    and    x = Ar,  (41) 

 

  
ζ = − ∂2Ψ

∂y2
on    y = 0    and    y = 1,  (42) 

 

  
θ f = θ p ,

∂θ f

∂x
= λ

∂θ p

∂x
on    x = d ,  (43) 

 

  
ζ f = ζ p ,

∂ζ f

∂x
=

∂ζ p

∂x
on    x = d ,  (44) 

 

  
Ψ f = Ψ p ,

∂Ψ f

∂x
=

∂Ψ p

∂x
on    x = d.  (45) 

 
The non-dimensional physical parameters appearing in Eqs 
(32), (35) and (36) are defined as 
 

  

Pr = 
ν f

α f
, Ra = 

gβL3 TH − Tc( )
ν f α f

,

Da = K
L2 , λ =

κ p

κ f
,

 

(46)

 

 
and these are the well-known parameters: Prandtl number Pr, 
Rayleigh number Ra, Darcy number Da, and the ratio λ  of the 
thermal conductivities of porous and fluid layers.  
 
RESULTS 
 

To solve the system of partial differential equations in the 
above section, we have employed a false transient method 
(Mallinson and de Vahl Davis, 1973) by which the nonlinear 
equations are transformed to parabolic form, and the trans-
formed equations are then discretized on a non-uniform grid. 
The resulting finite difference equations have been solved by a 
well-known alternating direction implicit (ADI) method, fol-
lowing Singh et al. (2000). 

The free convective flow considered here is governed by a 
set of non-dimensional parameters Ar, Pr, Da, Ra, λ  and   d.  In 
this work, we have examined the influence of mainly two key 
parameters – the Darcy number Da and the Rayleigh number 
Ra – on the streamlines and temperature, keeping the remaining 
parameters fixed. Furthermore, in studies involving ramped 
temperature at a boundary, it is desirable to compare the effects 
of ramped temperature profile vis-á-vis constant temperature 
profile (Chandran et al., 2005; Singh et al., 2008). We have thus 
computed the streamlines as well as isotherms for a range of 
values of Da and Ra. These have been illustrated in Figs 2 – 5. 
Furthermore, the variation of temperature in the cavity has also 
been shown in Figs 6 and 7. In each figure, the effects of 
ramped wall temperature in comparison to isothermal surface 
have been illustrated. In Figs 2 – 7, we have assumed the values 
Ar = 1, Pr = 0.71 and  λ = 1 , while the thickness parameter  d   
has been set at 0.5, indicating that the clear region and the 
porous region occupy equal space of the cavity.  

In Figs 2 and 3, we have shown the effects of permeability 

on streamlines, for Ra = 105   and  106,  respectively. It can be 

seen that the streamlines for  Da = 10−5  and  Da = 10−6  are 
very similar. However, as Da increases, the innermost stream-
lines undergo changes. This is particularly manifested for high-
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er values of Ra, as can be seen from Fig. 3 for  Da = 10−4  
ramped temperature case; here the innermost streamline breaks 
into two loops. One can also notice the formation of boundary 
layers in the clear region of the cavity for higher values of the 
buoyancy parameter  Ra (= 106).  As regards the comparison of 
streamlines for the ramped wall temperature case with the con-
stant profile case, we notice that for  Ra = 105,  the pattern of 
innermost streamlines is more sensitive to changes in Da. In 
this case, the effect of Da on the innermost streamlines is seen 
to be opposite in nature. 

The variations of isotherms with the parameters Da and Ra 
have been shown in Figs 4 and 5. It can be noted that the iso-
therms, in general, are not too sensitive to variations in these 
parameters. However, they are greatly influenced by the tem-
perature profile at the wall   y = 0.  The effect of ramped wall 
temperature on the isotherms is conspicuous if one compares 
any of the profiles in these figures with their constant tempera-
ture profile counterparts. The comparative effects of ramped 
and isothermal wall temperatures have been further illustrated 
in Figs 6 and 7, and are self-explanatory. 
 
 

 
 
Fig 1. Physical description. 

 

 
 
Fig 2. Streamlines. (Ra = 105). 
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Fig 3. Streamlines. (Ra = 106). 

 
 
Fig 4. Isotherms. (Ra = 105). 
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Fig 5. Isotherms. (Ra = 106). 
 

 
 
Fig 6. Temperature θ. (Ra = 105). 
` 

Finally, in Table 1, we have compared the maximum abso-
lute value of the stream function, 

 
Ψ

max
,  and the average 

value of Nusselt number, Nuav. The importance of 
 
Ψ

max
 aris-

es from the fact that it is directly related to the intensity of the 
natural convection inside the cavity while the average Nusselt 
number represents the overall rate of heat transfer. The average 
Nusselt number is defined as 
 

  
Nuav = 1

Ar
Nu(x) dx0

Ar∫ ,  (47) 

 
where Nu(x) is the local Nusselt number on the hot wall, de-
fined by 
 

  

Nu(x) =

∂θ f

∂y
, 0 ≤ x ≤ d

1
2

∂θ f

∂y
+ λ

∂θ p

∂y

⎛

⎝
⎜

⎞

⎠
⎟ , x = d

λ
∂θ p

∂y
, d ≤ x ≤ Ar

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (48) 

 
From Table 1, we observe that the effect of increase of Da is 

to enhance 
 
Ψ

max
 and Nuav for both ramped and constant tem-

perature wall conditions. Qualitatively, similar behaviour is 
also observed for Ra. However, the effect of Ra is more pro-
nounced than that of Da. We further observe that 

 
Ψ

max
 in-

creases with the aspect ratio Ar for both ramped as well as 
constant temperature wall conditions. In contrast, the behaviour 
of Nuav with regard to increase in Ar is noteworthy in that this 
parameter attains its maximum for only a square cavity. Finally, 
with regard to the relative influence of ramped temperature vis-
á-vis constant temperature, we notice that the former causes 
moderate reduction in both convection currents and the rate of 
heat transfer.  
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Fig 7. Temperature θ. (Ra = 106). 
 
Table 1. Values of 

 
Ψ

max
and Nuav. (Pr = 0.71,   λ =1.0, d =0.5 ). 

 
   

 
Ψ

max
 Nuav 

Ar Ra Da T 
Constant  

T 
Ramped 

T 
Constant 

T 
Ramped 

0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
2.0 
2.0 
2.0 
2.0 

105 
105 
106 
106 
105 
105 
106 
106 
104 
104 
105 
105 

10-4 
10-6 
10-4 
10-6 
10-4 
10-6 
10-4 
10-6 
10-4 
10-6 
10-4 
10-6 

2.7704 
2.6217 
8.2740 
7.9818 
7.2246 
7.1065 
14.001 
13.145 
6.6426 
6.6043 
11.547 
11.306 

2.5812 
2.4484 
7.9133 
7.7480 
6.8621 
6.7963 
12.866 
12.585 
6.2925 
6.2730 
10.887 
10.796 

2.1609 
2.0388 
6.5143 
6.0182 
3.3184 
3.2458 
6.6394 
6.1202 
1.7641 
1.7597 
3.0615 
3.0145 

1.8541 
1.7627 
5.8016 
5.5546 
3.0473 
3.0073 
6.0775 
5.8516 
1.6000 
1.5942 
2.9035 
2.8765 

 
CONCLUSIONS 
 

This paper deals with a steady two-dimensional free convec-
tive coupled flow taking place in the confines of a rectangular 
vertical cavity with impermeable bounding walls. The cavity 
space is assumed to consist of a clear fluid region overlying a 
fluid-saturated porous medium, with Brinkman model govern-
ing the flow in the permeable region. It is further assumed that 
the left vertical wall of the cavity is subjected to ramped tem-
perature distribution. The governing flow equations for each 
region, allowing for Boussinesq approximation and formulated 
in terms of vorticity and stream function, have been solved 
numerically subject to a host of boundary and matching condi-
tions using an ADI method. The influence of two key parame-
ters – Darcy number and the Rayleigh number – on the stream-
lines, isotherms and fluid temperature, has been discussed in 
detail. The results for ramped temperature case have been com-
pared with the corresponding results for isothermal temperature 
profile. Some quantities of interest, arising in a number of 
applications, have also been computed.  
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