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In numerical models of fluid flow with particles moving close to solid boundaries, the Basset force is 
usually calculated for the particle motion between particle-boundary collisions. The present study shows 
that the history force must also be taken into account regarding particle collisions with boundaries or with 
other particles. For saltation – the main mode of bed load transport – it is shown using calculations that two 
parts of the history force due to both particle motion in the fluid and to particle-bed collisions are compara-
ble and substantially compensate one another. The calculations and comparison of the Basset force with 
other forces acting on a sand particle saltating in water flow are carried out for the different values of the 
transport stage. The conditions under which the Basset force can be neglected in numerical models of salta-
tion are studied. 
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V numerických modelech proudění tekutin s pevnými částicemi v blízkosti pevné stěny je Bassetova his-

torická síla obvykle počítána pro pohyb částice mezi jejími jednotlivými kolisemi se dnem. Předložená 
studie ukazuje, že při výpočtu Bassetovy historické síly je nutné brát v úvahu kolisi částice s pevným dnem 
nebo s jinými částicemi. Pro saltaci, hlavní typ pohybu splavenin u dna koryta, je na základě použitých 
výpočtů ukázáno, že dvě části Bassetovy historické síly, tj. síly způsobené pohybem částice v tekutině a 
kolisí částice se dnem, jsou srovnatelné a mohou se vzájemně významně kompensovat. Výpočet Bassetovy 
historické síly a její srovnání s ostatními silami působícími na písčitou částici při jejím saltačním pohybu ve 
vodě je uskutečněn pro různé hodnoty tzv. transport stage (poměr aktuálního a kritického smykového napětí 
na dně). Zároveň byly studovány podmínky, za nichž může být Bassetova historická síla v numerických 
modelech zanedbána.  
 
KLÍČOVÁ SLOVA: Bassetova historická síla, pohyb splavenin, numerický model, kolise částice se dnem. 

 
1. Introduction 
 

For the transport of sediment particles by a water 
flow three modes of particle motion are usually 
distinguished, depending on the flow conditions, 
size and density of the sediment particles, and size 
of particles forming the bed, (e.g., van Rijn, 1984): 
(1) rolling and (or) sliding motion; (2) saltation 
motion; and (3) suspended particle motion. When 
the value of the shear velocity u* just exceeds the 
critical value u*c, the particles initiate a motion in 
the form of rolling and (or) sliding. The dimension-
less parameter τ*, named the Shields parameter or 
the dimensionless bed shear stress, corresponds to 
the shear velocity u*: τ* = u*

2/(gRdp), where dp is the 
particle diameter, R = ρp /ρf – 1, ρp is the particle 

density, ρf – the fluid density, and g is the accelera-
tion due to gravity. The critical Shields parameter 
τ*c corresponds to the critical shear velocity u*c. The 
value of τ*c can be obtained from the Shields dia-
gram (e.g., van Rijn, 1984). The dimensionless 
parameter T* = τ*/τ*c = (u*/u*c)

2 is named the 
transport stage, T* = 1 corresponds to the particle’s 
initiation of motion. For increasing values of the 
transport stage, the particles will move along the 
bed by jumps; this particle motion is referred to as 
saltation.  

When the value of the transport stage exceeds the 
critical value T*c that corresponds to the condition 
under which the value of the shear velocity exceeds 
the fall velocity ws of the particle, i.e., u* ≥ ws, the 
upward turbulent forces are comparable with or of 
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higher order than the submerged weight of the par-
ticles and as result the sediment particles may go 
into suspension (van Rijn, 1984; Vlasak et al., 
2012). The values of the transport stage considered 
in the present study are considerably less than the 
critical values or values for suspended load (Galia 
and Hradecky, 2011). In this case the particle mo-
tion occurs in the saltation mode. 

The history force evaluation requires significant 
computer resources. The relative accelerations of 
the particle have to be stored for integration over 
the entire lifetime of the particle what can make the 
calculation very time and memory consuming. In 
the case of large numbers of particles simulations 
become even more demanding. Search for the solu-
tion to this problem results in different approaches. 
First approach employs the fact that the history 
force can be entirely neglected under the condition 
that it is small in comparison with the other forces 
acting on the particle (e.g., Schmeeckle and Nelson, 
2003; Kholpanov and Ibyatov, 2005; Lee et al., 
2000, 2006). The other development is based on a 
resource-saving method of history force calculation 
(e.g., Michaelides, 1992; Bombardelli et al., 2008), 
which was successfully used e. g. by Bialik 
(2011a). Finally, there have been proposed new 
approaches for the evaluation of the history force 
which allow reducing of the computational costs 
(e.g., Hinsberg et al., 2011). 

Bombardelli et al. (2008) using calculations and 
the findings of Mordand and Pinton (2000) and 
Niño and Garcia (1994, 1998) arrived at the follow-
ing conclusion: the history force must be included 
in Lagrangian models of bed-load transport for 
particles whose fall velocity ws is such that the par-
ticle Reynolds number Rep (defined by the fall ve-
locity ws) is smaller than about 4000; Rep = wsdp/ν, 
where ν is the kinematic viscosity of the fluid. This 
condition is examined in the present study for salta-
tion of a sand particle in channel with a rough fixed 
bed. The forces acting on the particle are calculated 
for different particle sizes and flow conditions. The 
history force is compared with other forces and the 
conditions under which the history force is negligi-
ble are discussed. 

The main trait of bed load transport that distin-
guishes it from the other particle-laden flows and 
must be taken into account in numerical models is 
that the particle motion occurs near a solid rough 
boundary – the channel bed with irregular and ran-
dom configuration. It results in random process of 
particle-bed collisions.  

In its classical definition, the integral associated 
with the history force (hereafter called the history 
integral) must be calculated between the initial and 
current time. In the case of particle saltation in fluid 
flow over a rough bed, a few particle collisions 
with the bed are possible during this period. From a 
mathematical point of view, the collision model 
usually supposes that during the infinitesimal time 
of the collision, an infinite force acts on the particle 
so that the impulse of the force remains finite. The 
infinitely large force corresponds to an infinitely 
large acceleration. Since the relative particle accel-
eration is contained in the integrand of the history 
integral, the particle acceleration due to the colli-
sion must be taken into account – although theoret-
ically its period of activity is zero. The present 
study shows that for a particle saltating in fluid 
flow over a rough bed, the part of the history force 
related to particle-bed collisions and that related to 
particle motion in fluid are comparable and sub-
stantially compensate one another. 

This paper is organized as follows. The used 
numerical model of particle saltation is briefly de-
scribed in Section 2. In Section 3 the history force 
related to the particle-bed collision is introduced. In 
Section 4 it is shown that two parts of the history 
force – due to both particle motions in fluid and 
particle-bed collisions – can be under some condi-
tions comparable and can substantially compensate 
one another. In Section 5 the comparison of the 
forces acting on the saltating particle are realized. 
In Section 6 are obtained the conditions under 
which the Basset force can be neglected. The final 
section concludes with a summary of the work. In 
Appendix A the formula for the history force due to 
the particle collision is derived for arbitrary contin-
uous kernels and in Appendix B the correlation 
between the particle Reynolds number and critical 
transport stage for sand particles in water is consid-
ered. 
 
2. Numerical model of the particle saltation 
 

For the calculations, the 3D numerical model of 
Lukerchenko et al. (2009a) is used. It can be briefly 
described as follows.  

Using the Mei et al. (1991) form of the governing 
equation (introduced by Maxey and Riley, 1983) for 
the motion of a small spherical particle in an un-
bounded fluid, Niño and Garcia (1994) proposed 
equations for the 2D mean trajectory of the saltat-
ing particle in a turbulent boundary layer. Extend-
ing these equations to the 3D model and taking into 
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account also particle rotation, the system of the 
governing equations for the particle saltation mo-
tion in the channel with a rough bed can be written 
as  
 

    
ρpΩ

dv
dt

= Fd  + Fm  + Fg + Fh + FM ,   (1) 
 

  
J dω

dt
=T ,  (2) 

 

where t is time, v – the vector of the velocity of the 
particle’s centre of mass, ω – the vector of angular 
velocity of the particle’s rotation around its diame-
ter, J – the particle’s moment of inertia, Ω = 4πr3/3 
is the particle’s volume, r = 0.5 dp is the particle’s 
radius; Fd, Fm, Fg, Fh, FM are the following forces: 
drag force, force due to added mass, submerged 
gravitational force, history force, and Magnus force 
per unit volume, respectively, and T is the drag 
torque of viscous forces acting on the particle. 

Let vr = v – vf  be the vector of the particle’s rela-
tive velocity, vf  be the vector of fluid velocity; ωr = 
= ω – 0.5 rot vf  be the vector of the particle’s rela-
tive angular velocity, and g be the vector of the 
acceleration due to gravity.  

The expression for the drag force is 
 

Fd = – Cd ρf | vr | vr π dp
2/ 8. (3) 

 

The force due to added mass can be written as  
 

  
Fm = ρ fΩCm v∇( )v f −

dv
dt

⎡

⎣
⎢

⎤

⎦
⎥ , (4) 

 

where Cm = 0.5 is the added mass coefficient. 
The submerged gravitational force is 

 

Fg = Ω (ρp – ρf) g. (5) 
 

The expression for the history force is discussed 
in the next section.  

The Magnus force is 
 

FM = CM Ω ρf [ωr , vr ]. (6) 
 

The drag torque is 
 

   
T = –Cω

ρ
2
ω r ω r r5 .    (7) 

 

In (3), (6), and (7), Cd, CM , and Cω are the di-
mensionless drag force, Magnus force and drag 
torque coefficients, respectively. These coefficients 
are the functions of two dimensionless parameters: 
the Reynolds number Re = |vr| dp/ν (based on the 
relative particle-fluid velocity |vr|, similarly as Niño 
and Garcia, 1994) and the rotational Reynolds 

number Reω = | ωr | r 2/ν (based on the relative an-
gular velocity | ωr |, e.g., Oesterle and Dinh, 1998; 
Michaelides, 2003; Lukerchenko et al., 2008). 

For the calculation of particle-bed collisions the 
contact zone stochastic method is used. Immediate-
ly before the collision the contact zone is calculated 
as the set of points on the particle surface in which 
contact with the bed is possible. The contact zone 
depends on the direction of the particle velocity 
immediately before the collision. The contact point 
is chosen from the points of the contact zone in 
random manner using a random-number generator. 
Then the coordinate system is transformed to the 
collision coordinate system, in which the impulse 
equations can be written in the simplest form. The 
system of impulse equations is used to calculate the 
translational and angular velocities immediately 
after the collision. The values of these velocities are 
the initial conditions for the calculation of the next 
particle trajectory. 
 
3. History force related to the collision  
 

If a small spherical particle moves in a viscous 
fluid flow, the history force Fh acting on the parti-
cle can be written in the following form (Mei and 
Adrian, 1992): 
 

   
Fh = −6π μ f r

dvr
dτ− ∞

t
∫ K t −τ ,τ( )dτ , (8) 

 

where t is the current moment and μf  – the fluid 
dynamic viscosity.  

At Reynolds number Re << 1 the history force is 
known as the Basset force FB with the kernel (Bas-
set, 1888)  
 

KB(t – τ, τ) = [ρf r2/πμf (t–τ)]1/ 2   (9) 
 

and the collision history force is then (see Appen-
dix A) 
 

   
FBc = −6r2 π μ f ρ f

v p
+ − v p

-

t − tc
. (10) 

 

For saltation of the sand particle in water flow 
over a rough bed the values of the Reynolds num-
ber can reach a few hundreds or even thousands. 
Moreover, the particle rotation also can influence 
on the forces, including the history force, acting on 
the particle. Formulas for the history force, which 
are valid for these conditions, have up to now not 
been obtained. Seemingly, the expression of the 
history force kernel supposed by Mei and Adrian (1992). 
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K MA t −τ ,τ( )= πν
r2

t −τ( )⎡

⎣
⎢

⎤

⎦
⎥

1
4 + π

2rν
vr τ( )

0.75+0.105Re τ( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3

t −τ( )2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

-2

, (11) 

 

which is valid also for finite Reynolds number, 
reflects the behaviour of the history force more 
adequately than kernel (9). The expression (11) 
shows that the history kernel decays for small times 
as t -1/ 2 but for large times as t -2. 

Lovalenti and Brady (1993a,b) derived an ex-
pression for the hydrodynamic force acting on a 
rigid spherical particle translating with arbitrary 
time-dependent motion in an unsteady flow also for 
small Reynolds numbers Re < 1. 

Lawrence and Mei (1995) and Lovalenti and 
Brady (1995) shown that the asymptotic behavior 
of the kernel at large times may be as t -2 or t -1 or 
even exponential, depending on the type of motion 
(sudden stop, sudden increase, reverse motion, etc.)  

Kim et al. (1998) using a three-dimensional nu-
merical solution of the Navier–Stokes equations 
proposed a modified history kernel that is valid for 
Re up to 150 and particle to fluid density ratios 
from 5 to 200. 

In numerical models of saltation the history force 
is usually used in the Basset form (e.g., Niño and 
Garcia, 1994; Lukerchenko et al., 2006, 2009a, 
Bialik, 2011a), i.e., with the history kernel (9). For 
any kernel that decays faster than the kernel (9), the 
magnitude of the history force is less than the mag-
nitude of the Basset force. Therefore the estima-
tions obtained below of the particle Reynolds num-
bers Rep, above which the Basset force can be ne-
glected, can be considered as upper estimations. In 
other words, for these and larger values of Rep, the 
history force can be also neglected for any kernel 
that decays faster than (9), including the kernel 
(11).  
 
4. Basset force calculation 
 

Let us consider a spherical particle saltating in 
fluid flow over a rough bed. The x-axis coincides 
with the downstream direction, the y-axis is normal 
to the bed and upwards, and the z-axis is in the lat-
eral direction. For example, let us consider the y-
component of the Basset history force FBy =            
= FBmy+FBcy, where FBmy is the part of this force’s 
component related to the particle motion in the 

fluid and FBcy is that related to particle-bed colli-
sions. This component of the Basset force has an 
influence on the height of the particle’s trajectory. 
Let us show that FBmy > 0 and FBcy < 0. It follows 
from physical considerations that the particle has a 
y-component of instantaneous acceleration ay ≤ 0 
during the entire period of its motion in the fluid. 
The integrand of the Basset integral is negative and 
FBmy > 0.  

The y-component of the particle velocity imme-
diately before a collision with the bed is u –

py < 0 
and immediately after the collision, u+

py > 0. Ac-
cording to (10), FBcy < 0 for each particle-bed colli-
sion. 

The calculations were carried out for sand parti-
cles (density ρp = 2650 kg m-3) saltating in water 
(density ρf = 1000 kg m-3; ν = 10–6 m2 s-1) in a 
channel with a rough bed. The bed roughness ks 
was taken to be equal to the saltating particle diam-
eter, i.e., ks = dp. 

Fig. 1 shows the calculated changes of the Basset 
force components and its modulus during five suc-
cessive jumps of the saltating particle. The modulus 
of the submerged gravitational force  | Fg | = const 
is chosen as a force unit, with the second the unit of 
time.  The value of the particle Reynolds number 
Rep = 3970 corresponds to a particle diameter of dp 
= 7 mm. (the correlation between the parameters 
Rep and dp is given in the Appendix B. The value of 
the Shields parameter τ* = 0.2 corresponds to the 
shear velocity u* = 0.15 m s-1. 

Fig. 1b) depicts the typical dependence of the y-
component of the Basset force FBy and its parts FBmy 
and FBcy on t. The particle motion was calculated 
during 100 particle jumps. The Basset force related 
to particle-bed collisions was calculated as the sum 
of all collisions that occurred from the initial to the 
current moment using (10).  

In Fig. 1b) FBy is completely different from FBmy. 
The parts FBmy and FBcy substantially compensate 
one another, while the total value of the Basset 
force y-component, FBy is significantly closer to 
zero than the value of FBmy. The same is true for the 
x- and z-components of the Basset force. 
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Fig. 1. Typical dependences of the components and modulus of the Basset force FB and its parts FBm and FBc on time, during five 
successive jumps of the saltating particle (Rep = 3970; τ* = 0.2). 
 
5. Comparison of the forces acting  
on the particle  
 

According to Bombardelli et al. (2008), the Bas-
set force must be included in Lagrangian models of 
bed-load transport for particle Reynolds numbers 
Rep smaller than about 4000. Let us examine this 
statement, using the calculation and comparison of 
the Basset force with other forces acting on a parti-
cle saltating in water flow. A sand particle of diam-
eter dp = 7 mm in water corresponds to the value of 
the Reynolds number Rep = 3970 ≈ 4000 (Appen-
dix B). 

The calculation is carried out under the following 
conditions: the flow shear velocity is u* = 0.15 m s-1, 
corresponding to the transport stage T* = 3.6. 

In Fig. 2 the components and moduli of the drag, 
Magnus, Basset and resultant forces versus time t 
are shown during the five successive jumps of the 
saltating particle. The resultant force is the vector 
sum of all forces acting on the particle: the drag 
force, Magnus force, submerged gravitational force, 
force due to added mass and Basset force. The ab-
solute values of the Basset force components are 
significantly less than the absolute values of the 

components of the drag and Magnus forces. How-
ever, a mathematically-exact evaluation of the 
force’s contribution to the particle motion is neces-
sary to answer the question: “How large can the 
error due to neglect of the Basset force be?” 

The contribution of a force to particle motion 
during time t can be characterized by the average 
absolute values of the force components and aver-
age value of the force modulus: 
 

  
F̂i = t−1 Fi t( ) dt

0

t
∫   and  

   
F̂ = t−1 F t( ) dt

0

t
∫ . (12) 

 

These quantities make possible to compare rela-
tive importance of particular forces acting on the 
particle. It is documented in Fig. 3. 

The plots represent the contributions of the par-
ticular forces to the resultant force for the given 
particle Reynolds number Rep = 3970 (dp = 7 mm). 
More accurately, the ratios of the average values of 
the components and moduli of the drag, Magnus 
and Basset forces to the average values of the com-
ponents and modulus of the resultant force are de-
picted  as  functions of the transport stage T*. It was  
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Fig. 2. The components and moduli of the drag, Magnus, Basset and resultant forces during five successive jumps of the particle 
(Rep = 3970; τ* = 0.2). 
 

 
 
Fig. 3. The ratios of the average values of the components and moduli of the drag, Magnus and Basset forces, to the average values 
of the components and modulus of the resultant force, versus transport stage (Rep = 3970). 
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conducted that the Basset force modulus remains 
small in comparison with other forces. However, 
for T* = 1 the Basset force modulus is about 17% of 
the drag force modulus, and thus we can infer that 
especially in initiation of motion the Basset force 
contributes to motion of the particle by a certain 
amount. 
 
6. Conditions under which the Basset  
force can be neglected 
 

The ratios of the average Basset force compo-
nents and modulus to the average resultant force 
components and modulus versus the transport stage 
is shown in Fig. 4. The values of the particle  
Reynolds numbers 530, 1650, 3970 and 8000 in the 
plots correspond to particle diameters of 2, 4, 7 and 
11 mm respectively, for sand particle saltation in 
water flow. These plots represent the contribution 
of the Basset force to the resultant force. 

With a decrease in the particle Reynolds number, 
the contribution of the Basset force increases. For 
Rep = 3970, the contribution of the x-component is 
less than about 8%, the y-component less than 11%, 
the z-component less than 18% and modulus less 
than 10%. Let us suppose that the Basset force can 
be neglected in the  numerical model if its contribu- 

tion to the resultant force does not exceed about 
10%. Then for 2D numerical models, in which the 
z-component is not considered, the previously-
mentioned conclusion of Bombardelli et al. (2008) 
can be reformulated a little: The Basset force can be 
neglected in Lagrangian models of bed-load 
transport if the particle Reynolds number Rep is 
larger than about 4000. For the saltation of sand 
particles in water this corresponds to the condition 
dp ≥ 7 mm. 

However for 3D numerical models, in which the 
z-component is important – for example, in the case 
of the calculation of the lateral dispersion of parti-
cles (e.g., Lukerchenko, 2009b; Bialik, 2011b; 
Bradley et al., 2010; Nikora et al., 2001) – the Bas-
set force can be neglected only if the particle  
Reynolds number Rep is larger than about 8000. 

As was noted above, these evaluations of the Rep 
are upper bounds. The kernel of the Basset force 
was derived for vanishing values of the Reynolds 
number Re. The kernels of the history force men-
tioned in Section 3 that are valid for finite values of 
the Re, decay faster than the kernel of the Basset 
force. Therefore, under the same conditions the 
magnitude of the history force is less than the mag-
nitude of the Basset force and the history force can 
be neglected also for less values of the Rep. 
 

 

 
 
Fig. 4. The ratio of the average Basset force components and modulus to the average resultant force components and modulus, 
versus the transport stage. 
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7. Conclusions 
 

The contribution of particle collisions to the Bas-
set history force has been taken into account in the 
numerical modeling of spherical particle saltation. 
A particle collision brings to a peak the increase in 
the Basset force during a short time period so that 
its impulse remains finite. 

It was shown that for a particle saltating in fluid 
flow over a rough bed the two parts of the Basset 
force (the first related to the particle motion in fluid 
and the second to the particle-bed collisions) are 
comparable and substantially compensate one an-
other. 

Calculations for the example Rep = 3970 show 
that the Basset force components and its modulus 
are significantly less than the components and 
modulus of the drag and Magnus forces. 

The ratios of the average Basset force compo-
nents and modulus to the average resultant force 
components and modulus were calculated as func-
tions of the transport stage for the values 530, 1650, 
3970 and 8000 of the particle Reynolds numbers. 

For 2D numerical models of saltation, the Basset 
force can be neglected if the particle Reynolds 
number  Rep is larger  than  about 4000;  for 3D nu-  
merical models of saltation in the cases where the 
lateral component is important, the Basset force can 
be neglected if Rep ≥ 8000. In these cases the inac-
curacy of the resultant force calculations, connected 
to the neglect of the Basset force, is less than about 
10%. 
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Appendix A. 
 

Let us suppose that the kernel K (t–τ, τ) in (8) is a 
continuous function. The integral must be per-
formed, by definition, between the beginning of 
time and the current time t. The history of the parti-
cle motion during this period must therefore be 
taken completely into account, including particle 
collisions with boundaries and with other particles. 

Let us consider a single particle collision, which 
occurs at the moment tc < t. Let us denote by δtc the 
small period of time during which the collision 
continues, and then the contribution of the collision 
to the integral in (8) is: 

   

Ihc =
dvr
dτtc

tc+δ tc
∫ K t −τ ,τ( )dτ =

dv p
dτtc

tc+δ tc
∫

K t −τ ,τ( )dτ − dv f
dτtc

tc+δ tc
∫ K t −τ ,τ( )dτ .

 

(A.1)

 

The second integral in (A.1) tends to zero if δtc 
→ 0 from physical considerations because the fluid 
acceleration is finite – the velocity of a viscous 
fluid is a continuous function of time and coordi-
nates. Let us suppose that the first integral can be 
written using the theorem of the mean as 

   

dv p
dτtc

tc+δ tc
∫ K t −τ ,τ( )dτ ≈

δv p
δ tc

K t −τ0,τ0( ) dτ
tc

tc+δ tc
∫ ,

 

(A.2)

 

where tc ≤ τ0 ≤ tc + δtc,   δ v p = v p
+ − v p

−  is the change 

in the particle velocity vector owing to the collision 

and   v p
−  and   v p

+  are the particle velocity vectors 

immediately before and after the collision, respec-
tively. For δtc → 0 we obtain finally 
 

   
Ihc = v p

+ − v p
-( )K t − tc ,tc( ) ,       (A.3) 

 

and the contribution of the particle collision to the 
history force (hereafter called the “collision history 
force”) can be written as 
 

   
Fhc = −6π μ f r v p

+ − v p
-( )K t − tc ,tc( ) .     (A.4) 

 

The similar formulas were obtained by Lawrence 
and Mei (1995) for a step change of the fluid veloc-
ity in the case of the Basset force (Re << 1) and by 
Kim et al. (1998) for the case where there is a 
steady flow prior to moment t = 0 with an impulse 
at t = 0. It seems that the present derivation is closer 
to the classical model of the particle collision. 

The formula for the calculation of the full history 
force is 
 

   

Fh = Fhm + Fhc = −6πμ f r

dvr
dτ− ∞

t
∫ K t −τ ,τ( )dτ +

v pi
+ − v pi

-( )K t − tci ,tci( )
i
∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

,
 

(A.5)
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where tci is the time of the i-th particle collision, 

and   v pi
−  and   v pi

+  – the particle velocity vectors im-

mediately before and after the i-th collision, respec-
tively. 

At Reynolds number Re << 1 the history force is 
known as the Basset force FB with the kernel (Bas-
set, 1888)  
 

KB(t – τ, τ) = [ρf r
2/πμf (t – τ)]1/ 2 (A.6) 

 

and the collision history force is then (see also 
Lukerchenko, 2010) 
 

   
FBc = −6r2 π μ f ρ f

v p
+ − v p

-

t − tc
.        (A.7) 

 

It follows from (A.6) that at the moment of the 
collision, the value of the Basset force becomes 
infinitely large. In moments just after the collision, 
t = tc+ Δ t (Δ t << tc) , the value of Fhc is great but 
the impulse of the Basset force has the order of

  Δt ,  i.e., is small. Thus a particle collision brings 
to a peak the increase of the Basset force in a short 
period of time, so that its impulse remains finite. 
 
Appendix B. Particle Reynolds number  
and critical transport stage for sand particles  
in water 
 

In the opinion of the Bombardelli et al. (2008), 
the Basset force must be included in Lagrangian 
models of bed-load transport for particle Reynolds 
numbers Rep = wsdp/ν smaller than about 4000. Let 
us find the values of Rep as a function of particle 
size for a sand particle (ρp = 2650 kg m-3) moving 
in water (ρf =1000 kg m-3; ν = 10-6 m2 s-1). The val-
ue of the particle fall velocity can be calculated 
from the balance of the forces acting on the particle 
when it falls with the constant velocity ws in water 
– the submerged gravitational force and drag force: 
 

Ωg(ρp –ρf) = Cd (ρf ws
2/2)(πdp

2/4). (B.1) 
 

The drag force coefficient Cd can be calculated 
from the expression (Niño and Garcia, 1994): 
 

  

Cd = 24
Re p

(1+0.15(Re p )0.5+0.017Re p )

− 0.208
1+104Re p

-0.5
.

 

(B.2)

 

 

The system (B.1) and (B.2) was solved using an 
iteration method. Fig. B1 shows the dependence of 

the particle Reynolds number on particle size in the 
case of particle motion in water. 
 

 
 
Fig. B1. The particle Reynolds number versus the particle 
diameter for a spherical sand particle moving in water. 
 

According to Fig. B1, the value of the Reynolds 
number 4000 corresponds to the particle diameter 
dp= 7 mm. 

Depending on the size of the bed material and on 
the flow conditions, the transport of sediment parti-
cles by a flow of water can take place as either bed 
load or suspended load. When the value of the 
shear velocity exceeds the fall velocity of the parti-
cles, i.e., u* > ws, the particle may go into suspen-
sion (van Rijn, 1984; Ramsankaran et al., 2010). 
Using this condition, the value of the critical 
transport stage T*c under which the bed load is 
transformed into suspension can be found. 
 

 
 
Fig. B2. The critical transport stage versus the particle diameter 
for a spherical sand particle moving in water. 
 

Fig. B2 shows the approximate plot of the criti-
cal transport stage T*c versus the particle diameter 
dp in the case of a spherical particle with the density 
of sand in water flow. For the values of the particle 
diameter dp > 2 mm (Rep >530) used in the present 
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work, the critical transport stage was  T*c > 50. In 
these calculations, the values of the transport stage 
were in the range of 1 to 12, i.e., far from the sus-
pension mode. 
 
List of symbols 
 
Cd – drag force coefficient [–], 
Cm – force due to added mass coefficient [–], 
CM – Magnus force coefficient [–], 
Cω – drag rotation coefficient [–], 
dp – diameter of the moving particle [m], 
FB – Basset force [N], 
Fh – history force [N], 
Fd – drag force [N], 
Fg – submerged gravitational force [N], 
Fm – force due to added mass [N], 
FM – Magnus force [N], 
g – gravitational acceleration [m s -2], 
J – particle moment of inertia [kg m-2],  
ks – bed roughness [m], 
K – kernel of the history force integral [–],  
T – drag torque of viscous forces acting on a rotating particle 

in fluid [N m], 
T* – transport stage [–], 
T*c – critical transport stage [–], 
R – dimensionless parameter, which characterizes the relative 

particle density [–], 
r – radius of the moving particle [m], 
Re – translational Reynolds number [–], 
Reω – rotational Reynolds number [–], 
Rep – particle Reynolds number defined by the fall velocity [–], 
t – time [s], 
tc – moment of a collision [s], 
u* – fluid shear velocity [m s-1], 
u*c – critical fluid shear velocity [m s-1], 
vf – vector of the fluid velocity [m s-1], 
v – vector of velocity of the particle centre of mass [m s-1], 
vr – vector of the particle relative velocity [m s-1], 
v-p – vector of the particle translational velocity immediately 

before a collision [m s-1], 
v+p – vector of the particle translational velocity immediately 

after a collision [m s-1], 
ws – particle fall velocity [m s-1], 
δtc – period of time during which the collision continues [s], 
δvp – change in the particle velocity vector owing to the colli-

sion [m s-1],  
μf – dynamic viscosity [Pa s], 
ν – kinematic viscosity [m2 s-1], 
ρf – fluid density [kg m -3], 
ρp – density of the moving particle [kg m-3], 
τ* – dimensionless bed shear stress or Shields parameter [–], 
τ*c – dimensionless critical shear stress for sediment motion  

[–], 
Ω – particle volume [m3], 
ω – vector of angular velocity of the particle rotation around 

its diameter [s-1], 
ωr – vector of the particle relative angular velocity [s-1]. 
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