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Development of any area often leads to more intensive land use and increase in the generation of pol-
lutants. Modeling these changes is critical to evaluate emerging changes in land use and their effect on 
stream water quality. The objective of this study was to assess the impact of spatial patterns in land use 
and population density on the water quality of streams, in case of data scarcity, in the Chugoku district of 
Japan. The study employed artificial neural network (ANN) technique to assess the relationship between 
the total phosphorous (TP) in river water and the land use in 21 river basins in the district, and the model 
was able to reasonably estimate the TP in the stream water. Uncertainty analysis of ANN estimates was 
performed using the Monte Carlo framework, and the results indicated that the ANN model predictions 
are statistically similar to the characteristics of the measured TP values. It was observed that any reduc-
tion in forested area or increase in agricultural land in the watersheds may cause the increase of TP con-
centration in the stream. Therefore, appropriate watershed management practices should be followed be-
fore making any land use change in the Chugoku district. 
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Bahman Jabbarian Amiri, K. P. Sudheer, Nicola Fohrer: VZŤAH MEDZI CELKOVÝM OBSAHOM 
FOSFORU V TOKU A PORASTOM V DIŠTRIKTE CHUGOKU, JAPONSKO: VYUŽITIE 
NEURÓNOVÝCH SIETÍ. J. Hydrol. Hydromech., 60, 2012, 1; 51 lit., 6 obr., 5 tab. 
 

Rozvoj územia často súvisí so zintenzívnením využívania krajiny a produkciou znečistenia. Dôležité je 
modelovanie týchto zmien a ich vplyvu na kvalitu vody v tokoch. Cieľom štúdie je určiť vplyv 
priestorových zmien pri využívaní krajiny a zmeny hustoty osídlenia na kvalitu vody v tokoch v čase ne-
dostatku vody v oblasti Chugoku, Japonsko. Pri riešení sa využívajú umelé neurónové siete (artificial neural 
network -ANN), prostredníctvom ktorých sa určuje vzťah medzi celkovým obsahom fosforu (TP) v toku a 
využívaním kajiny v 21 povodiach oblasti; tento model je schopný vypočítať TP v tokoch. Analýza neurči-
tosti výsledkov dosiahnutých pomocou ANN bola vykonaná metódou Monte Carlo; výsledky analýzy 
naznačujú, že predpovede pomocou metódy ANN sú štatisticky podobné meraným hodnotám TP. Bolo zis-
tené, že redukcia lesnatosti a zvýšenie plochy poľnohospodársky využívanej pôdy v povodí môže viesť        
k zvýšeniu koncentrrácie TP v toku. Je preto potrebné pred zmenou vo využívaní krajiny prijať zodpoveda-
júce opatrenia v manažmente krajiny, ktoré budú minimalizovať negatívne dôsledky zmien využívania kra-
jiny. 
 
KĽÚČOVÉ SLOVÁ: modelovanie kvality vody, využívanie krajiny, celkový obsah fosforu, ANN, analýza 
neurčitosti. 

 
Introduction 
 

Fresh water quality in many countries is deterio-
rating due to uncontrolled urbanization and im-
proper land management practices. Stream water 
quality is affected by numerous natural and anthro-

pogenic sources (Ahearn et al., 2005; Schmalz et 
al., 2008). They can either be diffused (e.g. runoff 
from urban and agricultural fields, interflow 
through organically rich soils) or point pollutants 
(e.g. industrial effluents). In addition, watershed 
characteristics (topography and geology) can influ-
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ence the water quality (Silva and Williams, 2001; Li 
et al., 2008).  

Water quality is generally linked to land use in 
the watershed (Hem, 1985; Ahearn et al., 2005; 
Amiri, 2007; Lam et al., 2009; Lam et al., 2010), 
and consequently many studies have focused on the 
relationship between the land use and water quality 
in terms of dissolved salts, suspended solids (Kiesel 
et al., 2009), and nutrients (Hill, 1981; Allan et al., 
1997; Turner and Rabalais, 2003; Li et al., 2008; 
among many others). Most of these studies con-
cluded that land use strongly influence nitrogen 
(Johnson et al., 1997; Smart et al., 1998), phospho-
rus (Hill, 1991; Schmalz et al., 2007) and sediment 
concentrations (Allan et al., 1997; Ahearn et al., 
2005; Kiesel et al., 2009) in stream water. There-
fore efficient management measures are required to 
deal with the situation of deterioration of the stream 
water quality. Water quality models are practical 
tools in catchment management practices because 
of their ability to apply current knowledge to pre-
dict water quality in response to various scenarios 
such as land use change (Liu et al., 2005; Lenhart et 
al., 2005). 

While fully distributed process-based water qual-
ity models are the most suited for developing 
catchment management decisions, they are neces-
sarily complex because they attempt to describe all 
factors and processes so that the relative importance 
of these may be understood and investigated in 
response to environmental change (Dean et al., 
2009). The key sources and processes controlling 
nutrient water quality characteristics are well estab-
lished (Neitsch et al., 2002), but the understanding 
of how the sources and processes vary in time and 
space is still limited (Schmalz et al., 2007). This is 
due to the heterogeneity of environmental factors, 
which define source-areas and control process rates 
and delivery from the land to the stream network, 
such as land use, soil type, moisture and tempera-
ture, and flow routing. Often, the data available to 
develop and apply predictive models are generally 
insufficient, even for small research catchments. 
Thus, while it is useful to develop models based on 
process understanding, they will always necessarily 
be simplifications of reality. In this context, data-
driven models, which can discover relationships 
from input-output data without having the complete 
physical understanding of the system, may be pref-
erable. 

In recent decades, the advent of increasingly ef-
ficient computing technology has provided exciting 
new tools for the mathematical modelling of dy-

namic systems. Artificial neural network (ANN) is 
one such tool that relates a set of predictor variables 
to a set of target variables. Artificial neural net-
works are well known massively parallel compu-
ting models that have exhibited excellent perfor-
mance in the resolution of complex problems in 
science and engineering.  In recent years, the ANN 
technique, which is a data driven modelling tool, 
has become an increasingly popular tool for water 
quality modelling among researchers and practicing 
engineers (e.g. Keiner and Yan, 1998; Gross et al., 
1999; Sciller et al., 1999; Tanaka et al., 2000; Ba-
ruah et al., 2001; Panda et al., 2004; Gatts et al., 
2005; Sudheer et al., 2006). Nonetheless, since 
ANN is a data demanding approach for model de-
velopment, the uncertainty associated with the 
ANN models developed in data scarce situations 
may be very high, and the robustness of any model 
application will be affected. Therefore it is im-
portant to be the uncertainties in model predictions 
are well understood. Estimating prediction uncer-
tainties in water quality modelling is becoming 
increasingly appreciated (Krueger et al., 2007; 
Page et al., 2004, 2005; Radwan et al., 2004; Rode 
et al., 2007; Singh et al., 2007; van Griensven and 
Meixner, 2006). While there are various methods 
available for quantifying the uncertainty in physical 
hydrologic models (Christiaens and Feyen, 2002; 
Beven and Binley, 1992), little discussion is found 
in literature regarding the uncertainty analysis of 
the ANN hydrologic models except a few (Kingston 
et al., 2005; Khan and Coulibali, 2006; Han et al., 
2006; Srivastav et al., 2007). 

The primary objective of the present paper was 
to investigate the relationship between the total 
phosphorus in river water and the land use in 21 
river basins in the Chugoku district of Japan using 
artificial neural network. The study also focused on 
the  evaluation of the uncertainties associated with 
water quality predictions based on human activities 
such as agriculture, forestry, industry, and urbaniza-
tion in the drainage basin on the stream water quali-
ty, in case of insufficient dataset, in the Monte Car-
lo framework. 
 
Artificial neural network 
 

An ANN attempts to mimic, in a very simpli-
fied way, the human mental and neural structure 
and functions (Hsieh, 1993). It can be character-
ized as massively parallel interconnections of 
simple neurons that function as a collective sys-
tem. The network topology consists of a set of 
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nodes (neurons) connected by links and usually 
organized in a number of layers. Each node in a 
layer receives and processes weighted input from 
previous layer and transmits its output to nodes in 
the following layer through links. Each link is 
assigned by weight, which is by numerical esti-
mate of the connection strength. The weighted 
summation of inputs to a node is converted to an 
output according to transfer function (typically a 
sigmoid function). Most ANNs have three layers 
or more: an input layer, which is used to present 
data to the network; an output layer, which is 

used to produce an appropriate response to the 
given input; and one or more intermediate layers, 
which are used to act as a collection of feature 
detectors (Fig. 2). 

The multi layer perceptron (MLP) is the most 
popular ANN architecture in use today (Maier et 
al., 2010). It assumes that the unknown function 
(between input and output) is represented by 
multi layer feed forward network of sigmoid 
units. The working of three layer ANN can be 
mathematically described as follows. 
 

 
 
 

 
 
Fig. 1. Location map of the Chugoku district, Japan. 
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Consider an ANN model with n input neurons 
(x1, …, xn), h hidden neurons (z1, …, zh), and m 
output neurons (y1, …, ym). Let i, j, and k be the 
indices representing input, hidden, and output lay-
ers, respectively. Let 

 
τ j be the bias for neuron zj 

and kϕ , the bias for neuron yk. Let wij be the weight 
of the connection from neuron xi to neuron zj and 

 
β jk  the weight of connection from neuron zj to yk. 

The function that the ANN calculates is:  
 

  
yk = g A z jβ jk +φk

j=1

h
∑

⎛

⎝⎜
⎞

⎠⎟
 (1) 

 

  
z j = f A xiwij +τ j

i=1

n
∑

⎛
⎝⎜

⎞
⎠⎟

, (2) 

 

where  gA  and  f A  are activation (transfer) func-

tions, which are usually continuous, bounded, and 

non-decreasing. The most commonly employed 
transfer function is the logistic function, which is 
defined for any variable s: 
 

  
f (s) = 1

1+ e−s
. (3) 

 

The training of MLP involves finding the opti-
mal weight vector for the network. There are many 
training techniques available. The aim of training 
the network is to find a global solution to the 
weight matrix, which is typically a nonlinear opti-
mization problem (White, 1989). Consequently the 
theory of nonlinear optimization is applicable to 
training of MLP. The suitability of a particular 
method is generally compromise between computa-
tion cost and performance, and the most popular is 
the back propagation algorithm (Rumelhart et al., 
1986), and has been employed in the current study. 
 

 

 
 
Fig. 2. General structure of a typical three layers ANN. 
 
Study area and data 
 

The present study was carried out in the 
Chugoku district of Japan. The district is in the 
west of Honshu island bounded by longitude 130o 
55' 16'' and 133o 12' 11'', and latitude 33o 57' 40'' 
and 35o 23' 34''. The district is composed of five 
Prefectures (Hiroshima, Yamaguchi, Tottori, 
Shimane and Okayama), and covers an area of 
32,000 km2 (Fig. 1). While there are a large number 
of small watersheds (total 51) in this district, the 
current study was restricted to only 21 of them. The 

locations of these 21 watersheds are presented in 
Fig. 2. Watershed boundaries were digitized using 
the Japan Geological Survey Institute (JGSI) topo-
graphic quadrangle maps (scale 1 : 200,000). Coun-
ty-scale population database was linked with the 
digital map of counties for generating human popu-
lation density map. The land cover map of all the 
21 watersheds have been derived from Landsat-5 
TM imagery for the year 2000, using Integrated 
Land and Water Information System (ILWIS, 
2004). The study area experienced the mean annual 
precipitation of 1738 mm (average over the period 



Linkage between in-stream total phosphorus and land cover in Chugoku district, Japan: an ANN approach 

37 

of 10 years), and the mean temperature was report-
ed to be 15.9 0C. The underlying geology is largely 
volcanic (andesite and rhyolite) in the central and 
northern parts, Mesozoic sedimentary formations 
(sandstones/shale/pudding stone) in the western 
part and quaternary sedimentary formations (gravel 
and clay) in the low land of the study area. The 
dominant soil groups in the study area are Dystric 
Regosols, Gleysols, Humic Cambisols, Ochric 
Cambisols, and Rhodic Arcsols. 

The land use characteristics of the 21 watersheds 
are presented in Tab. 1. It is noted that 79.34% of 
the study area is under forest cover. Agriculture is 
the second largest land use in the study area cover-
ing an area of 8.33% of the total. The other land 
uses include urban (2.24%), grassland (6.63%) and 
water bodies (0.46%). It is noted from Tab. 1 that 
there is a wide variation of land uses across the 
watersheds. For example, the forest cover varies 
from 57.61 % in Kurose to 91.76% in Nishki, and 
the urban area ranges from 1.04 in Nishki to 13.99 
in Washino. The Tab. 1 also presents the population 
density in each of these watersheds. The population 
data was based on the 2000 census. The population 
density ranges from 63 persons/km2 to 819 per-
sons/km2. 

The water quality used in this study was second-
ary data, which were obtained from the five Prefec-
ture offices (Hiroshima, Yamaguchi, Tottori, 
Shimane and Okayama). Annual mean of the water 
 

quality data in the year 2000 used in this study was 
calculated using monthly measurements, which are 
carried out by the respective Prefecture offices. The 
monitoring network maintained by the Prefecture 
offices is very extensive and is distributed well 
across the district. The current study used Total 
Phosphorus (TP) as the representative parameter of 
the water quality. Tab. 2 presents the summary 
statistics of the water quality in the 21 watersheds 
in the study area. It is observed that the coefficient 
of variation of TP in various watersheds varied 
from 15 to 94 %.  
 
Methodology 
 
ANN Model Development 
 

One of the most important steps in the ANN 
model development process is the determination of 
significant input variables. Usually, not all of the 
potential input variables will be equally informative 
since some may be correlated, noisy or have no 
significant relationship with the output variable 
being modelled (Maier and Dandy, 2000). General-
ly some degree of a priori knowledge is used to 
specify the initial set of candidate inputs (e.g. Cam-
polo et al., 1999; Thirumalaiah and Deo, 2000). 
Although a priori identification is widely used in 
many applications and is necessary to define the 
candidate set of inputs, it is dependent on the ex- 
 

 
T a b l e  1.  Compositional attributes (%) of land cover and human population density in the catchments of the Chugoku district. 
 

Basin 
number 

River 
name 

Area 
[km2] 

Land use Population density 
[person/km2] Urban Forest Agriculture Grassland Water body 

1 Awano 182 1.97 86.61 5.62 5.89 0.28 63 
2 Kakefuchi 85 4.36 71.94 16.35 5.42 1.04 106 
3 Fuka 72 6.39 84.17 5.01 4.27 0.10 150 
4 Misumi 67 1.36 88.41 5.05 4.18 0.00 70 
5 Hamada 253 8.48 78.59 3.72 6.87 1.01 176 
6 Gonoo 2622 1.79 83.89 7.44 6.61 0.27 72 
7 Shizuma 174 2.46 84.23 5.39 10.05 0.22 150 
8 Kando 495 7.09 78.16 11.84 2.76 0.14 222 
9 Numata 627 4.42 65.60 24.74 5.04 0.21 165 

10 Kamo 98 3.79 78.92 7.62 9.63 0.00 211 
11 Kurose 282 10.8 57.61 20.64 10.1 0.75 819 
12 Ota 1700 4.74 85.22 4.29 4.71 0.29 386 
13 Oze 354 3.01 86.91 3.31 6.15 0.56 183 
14 Nishki 932 1.04 91.76 2.76 3.72 0.71 165 
15 Shimada 284 5.91 77.75 8.14 7.72 0.43 267 
16 Saba 572 2.62 88.35 2.89 5.61 0.53 225 
17 Washino 300 13.99 72.84 6.96 5.89 0.30 434 
18 Kotou 416 3.80 75.64 8.83 10.91 0.79 253 
19 Ariho 98 9.23 72.76 9.24 8.34 0.44 477 
20 Asa 226 6.24 78.09 7.14 7.94 0.52 109 
21 Koya 299 4.67 78.67 7.97 7.46 1.07 362 
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T a b l e  2.  Descriptive statistics of the annual mean of TP     
in stream water. 
 

Catchment 
No. 

TP [mg L-1] 
Mean Standard Deviation 

1 0.0255 (±0.024) 
2 0.0412 (±0.017) 
3 0.0325 (±0.009) 
4 0.0238 (±0.007) 
5 0.0618 (±0.021) 
6 0.0320 (±0.015) 
7 0.0713 (±0.011) 
8 0.0398 (±0.022) 
9 0.0420 (±0.013) 

10 0.0250 (±0.001) 
11 0.0460 (±0.008) 
12 0.0210 (±0.013) 
13 0.0320 (±0.016) 
14 0.0129 (±0.002) 
15 0.0384 (±0.014) 
16 0.0453 (±0.018) 
17 0.1644 (±0.062) 
18 0.0453 (±0.019) 
19 0.0546 (±0.025) 
20 0.0540 (±0.027) 
21 0.0796 (±0.033) 

 
pert's knowledge, and hence, is very subjective and 
case dependent. Relying on the whole-watershed 
land cover approach suggested by Silva and Wil-
liams (2001), the percentage of different land use in 
each watershed has been considered as input varia-
bles to map in-stream TP concentration in the re-
spective watershed. While developing any model, 
the total available samples are generally divided 
into training and validation sets prior to the model 
building, and in some cases a cross-validation set is 
also used. It should be noted that the available data 
in the present study is limited and therefore cross 
validation was not performed. 

Based on the early stopping idea (Rech, 2002), 
data set is classified into three groups called train-
ing (60%), controlling (25%) and testing (15%) 
data sub-sets. The first subset is used to estimate 
the parameters. The second subset is called the 
validation set. The third subset which is used to 
monitor the calibration process error, is called the 
cross validation set. When the network begins to 
overfit the data, the error on the cross validation set 
typically begins to rise. When the cross validation 
error increases for a specified number of iterations, 
the estimation process is discontinued, and the pa-
rameters estimated at the minimum of the cross 
validation error serve as final estimates (Hsieh, 

1993). Considering the number of rivers for which 
the water quality data were available (21 basins), it 
seems that number of rivers that should be kept for 
testing the trained network would be very few 
(three basins). Subsequently, reliable information 
could not be provided for judging on the trained 
network. Therefore, testing the trained networks 
was given up using testing data that was real but 
few in numbers. They were added to the controlling 
data set. Finally, twenty-one catchments were clas-
sified into two sets in proportion to 60% and 40% 
as training (12 river basins) and controlling (9 river 
basins) data, respectively. The controlling dataset 
was then used for validation, as well. However, the 
uncertainty analysis performed on the developed 
ANN model would certainly help build the confi-
dence in the model predictions. 

The ANN used here is the three layer feed for-
ward network (Fig. 2), trained using the standard 
back propagation algorithm, with sigmoid trans-
forming function in the hidden layer and the output 
layer, which were fixed after various trials. The 
number of hidden neurons in the network, which is 
responsible for capturing the dynamic and complex 
relationship between various input and output vari-
ables was identified by various trials (Eberhart and 
Dobbins, 1990; Maier and Dandy, 2000). The trial 
and error procedure started with two hidden neu-
rons initially, and the number of hidden neurons 
was increased up to 13 during the trails with a step 
size of 1 in each trial.  For each set of hidden neu-
rons, the network was trained in batch mode to 
minimize the mean square error at the output layer. 
The training was stopped when there was no sig-
nificant improvement in the efficiency, and the 
model was then tested for its generalization proper-
ties.  
 
Uncertainty analysis and impact  
of land use change on TP 
 

Due to the possibility of high uncertainty which 
might be originated from the limited data points, 
uncertainty analysis of the ANN model predictions 
based on Monte Carlo simulations was performed 
to assess the confidence in model predictions. Ac-
cordingly, the probability distribution of the input 
variables was initially identified and 500 synthetic 
combinations of land use in the watersheds were 
generated using the information about the derived 
probability distribution of variables. While generat-
ing the synthetic land uses, the following conditions 
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were considered: (i) the land use percentage should 
be within 0 to 100, (ii) the summation of land use 
percentages for a watershed should be 100% since 
the land use change is not independent, and (iii) the 
generated land use follow the probability distribu-
tion of the variable concerned. Five hundred such 
random combinations of land uses were generated 
in this procedure, and all of them were inputs to the 
trained (and tested) ANN model. The generated 
synthetic land uses represent any combination of 
land use that is plausible in the future and therefore 
can be employed for assessing the impact of land 
use change on TP concentrations in the study area. 
 
Results and discussions 
 
Performance of ANN Model 
 

Tab. 3 presents the performance of ANN models 
(in terms of the r-square between the computed and 
measured TP value) during the trial and error pro-
cedure used for model development. The trial in-
cluded varying the number of hidden neurons in the 
network, as well as training the network with dif-
ferent initial weights. It can be noted from Tab. 3 
that the performance of the ANN model varies the 
number of hidden neurons in the model architec-
ture, which was as expected. It can be seen from 
Tab. 3 that ANN with higher than 5 neurons may be 
over fitting the data as standard deviation of per-
formance between various trials (different initial 
weights) are quite high. The maximum performance 
with minimum coefficient of variation is observed 
for the model with 4 neurons and is selected for 

further analysis, thereby making the architecture of 
the ANN be 6-4-1. The minimum coefficient of 
variation during the trials implies that the trained 
network has minimum uncertainty. 

Fig. 3 depicts the scatter plot of measured and 
ANN estimated TP values in the watershed. It can 
be noted from the Fig. 3 that the plot shows less 
scatter and data point do not significantly deviate 
from the 1 : 1 line (solid lines in the plot). There-
fore it can be inferred that the trained ANN has 
sufficiently learned the relationship between the 
input and the output variables. The model showed 
the RMSE of 0.0018 mg L-1 on the validation data 
sets. 
 
Statistical variability of input variables 
 

The probability distribution of land use and pop-
ulation density was quantified using the Best Fit 
program (Palisades Corp. CA, USA), which con-
sidered 28 different distributions to the data, and 
ranked them according to the specified goodness of 
fit criterion. The parameters of the probability dis-
tributions were estimated using maximum-
likelihood estimator (Haan, 2002). The Chi-Square 
goodness of fit test was performed to evaluate and 
rank the distributions that best described the data. 
The statistical properties of the best fitted distribu-
tion for each of the variables are presented in Tab. 4 
and the shape of the distribution is presented in Fig. 
4. The major land use in the watershed, forest, fol-
lowed 3-parameter log-logistic distribution, while 
agriculture land use followed log-Pearson type III 
distribution. 

 
T a b l e  3.  R-square value between the ANN output and measured TP value during the model development stage. 
 

Number of 
hidden neu-
rons in the 
network   R-square during trials with different initial weights 

Summary statistics of the 
performance during trials 

 1 2 3 4 5 Mean S.D. 
1 0.45 0.45 0.45 0.46 0.45 0.45 0.00 
2 0.55 0.53 0.47 0.52 0.54 0.52 0.04 
3 0.56 0.51 0.51 0.53 0.53 0.53 0.02 
4 0.57 0.62 0.53 0.54 0.55 0.56 0.03 
5 0.97 0.82 0.57 0.54 0.89 0.76 0.17 
6 0.55 0.53 0.51 0.86 0.56 0.60 0.18 
7 0.52 0.58 0.53 0.91 0.57 0.62 0.15 
8 0.54 0.54 0.54 0.88 0.54 0.61 0.15 
9 0.56 0.54 0.87 0.53 0.97 0.70 0.18 

10 0.55 0.54 0.54 0.56 0.53 0.54 0.16 
11 0.55 0.55 0.89 0.91 0.88 0.76 0.17 
12 0.99 0.56 0.57 0.53 0.54 0.64 0.19 
13 0.87 0.89 0.93 0.52 0.55 0.75 0.20 
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Fig. 3. Comparison of the measured and ANN estimated TP values in the district during training and validation of the ANN model. 
 
T a b l e  4.  Results of the distribution fitting of the 21 catchments data set. 
 

Variable Statistical Distribution Parameters 
Urban Dagum k = 0.607 α = 3.1893  β = 5.6559 
Forest Log-Logistic (3P) α = 1.9051E+8  β = 8.5099E + 8  γ=–8.5099E + 8 
Agriculture Log-Pearson 3 α = 1.8099  β = 4.1985  γ = 2.258 

Grassland Johnson 
γ = 0.46987  δ = 1.0045 
λ = 11.236  ξ = 2.0892 

Water body Johnson 
γ = 0.5658  δ = 0.76132 
λ = 1.397  ξ =–0.0481 

Human population density Log-Normal σ = 0.64718  μ = 5.2726 

 
Uncertainty analysis of ANN output 
 

As mentioned earlier, the generated samples of 
land use combinations and population density in the 
watersheds, whose statistics were summarized in 
Tab. 5, are given the trained ANN model to get the 
output (TP). The ANN estimated TP values (500 
numbers) are used to identify the probability distri-
bution that it follows. It is noted that both the 
measured and predicted values of TP followed ex-
ponential distribution. It is observed during the 
analysis that the shape and location parameters of 
the probability distribution followed by the mea-
sured and predicted TP were sufficiently close to 
each other, indicating a good confidence on the 
model predictions. The parameter value of the ex-
ponential distribution (Schmidt and Makalic, 2009) 
for the measured TP was 20.58, while that for the 
ANN generated data was 21.25. Fig. 5 shows the 
probability distribution followed by the measured 
value of TP and the ANN estimated value of TP 
obtained from synthetic replicates of land use. It is 
noted that the distribution characteristics of mea-

sured TP and ANN estimated TP do not vary much, 
indicating that the ANN estimated TP is statistically 
similar to the measured values. The results of the 
analysis ensure that the ANN model predictions are 
satisfactory and can be employed for decision-
making.  
 
Impact of land use change on TP 
 

Fig. 6 depicts the impact of land use change on 
TP concentration in the streams of the Chugoku 
district, Japan. It can be observed that any decrease 
in forest cover will cause the increase in TP con-
centration in the stream flow for this region, which 
is obvious since the forest area reduces the erosion 
from the watershed and the phosphorus transport 
will be less in densely forested areas. The results of 
the analysis indicate that the rate of increase in TP 
will be high when the forested area is less than 30% 
in any catchment. These results also revealed that 
forest ecosystem could play a significant role in 
improvement of in-stream water quality in the riv-
ers of the study area.  
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Fig. 4. Probability distribution of the land use variation in the Chugoku district. 
 
T a b l e  5.  Summary of the statistics of the synthetically generated data set, which was used for uncertainty analysis of the ANN-
based TP model. 
 

Statistics Urban Forest Agriculture Grassland Water body 

Human 
population 

density 
Mean 4.10 65.09 18.24 12.18 0.39 242.46 
Standard error 0.12 0.35 0.40 0.10 0.01 8.83 
Median 3.52 66.34 16.09 12.07 0.31 181.89 
Standard deviation 2.72 7.81 8.94 2.17 0.30 197.36 
Sample variance 7.37 61.00 80.00 4.69 0.09 38950.36 
Kurtosis 2.36 1.97 2.60 –0.12 4.12 9.67 
Skewness 1.35 –1.07 1.32 0.13 1.66 2.58 
Range 16.80 52.30 56.35 13.07 1.89 1434.06 
Minimum 0.00 27.93 4.39 5.18 0.00 45.52 
Maximum 16.80 80.23 60.75 18.26 1.90 1479.59 
Confidence level (95.0%) 0.24 0.69 0.79 0.19 0.03 17.34 

 
The agriculture land use is of major concern for 

TP loading in stream mainly due to fertilizer appli-
cation in the land. The results presented in Fig. 6 
suggests that effective management strategies are 
required to contain the increase in TP concentration 

in stream flow if intensive agriculture is being 
planned in the watersheds. Any increase beyond 
60% of the total area for agriculture use will signif-
icantly increase the TP concentrations. It may be 
noted that the increase in agricultural land use 



B. J. Amiri, K. P. Sudheer, N. Fohrer 

42 

would be mostly at the expense of the forest reduc-
tion, and the changes in both land uses jointly at-
tribute to the increase in TP. It is noted from Fig. 6 
that increase in grassland also would enhance the 
TP concentration in the stream flow plausibly due 
to fertilizer and manure application. The rate of 
increase of TP due to change in area of grassland is 

higher compared to that of agriculture land use. Fig. 
6 also suggests some thresholds in the land use sub-
system of the catchments. If the catchment system 
passes through these thresholds, drastic change will 
appear in the response of the catchment in term of 
TP concentration. 
 

 

 
Fig. 5. Probability distribution of the measured and ANN estimated Total Phosphorus (TP). 
 

 
 
Fig. 6. ANN model predicted variation of TP along the variation of land use percentage. 
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Summary and conclusions 
 

Rapidly growing countries, and particularly 
those emerging from rural to urban, frequently 
lack the resources to adequately monitor and 
forecast the impacts of land development on bio-
logic, hydrologic, and social resources. Devel-
opment often leads to more intensive land use 
and related increase in the generation of pollu-
tants. Modeling these changes is critical to evalu-
ate emerging land use and potential problems in 
water quality in the watershed. The objective of 
this study was to assess the nature and emergence 
of spatial patterns in land use and population 
density on the water quality of streams in the 
Chugoku district of Japan.  

The study employed artificial neural network 
(ANN) technique to assess the relationship be-
tween the total phosphorus in river water and the 
land use in 21 river basins in the district. The 
results suggest that the ANN could be a viable 
tool to relate the land use characteristics to the 
water quality. The developed model was able to 
reasonably estimate the Total Phosphorus (TP) in 
the stream water. The study also focused on the 
evaluation of the uncertainties associated with 
water quality predictions from the ANN model 
using the Monte Carlo framework. The results of 
the uncertainty analysis indicated that the ANN 
model predictions are statistically similar to the 
characteristics of the measured TP values in the 
21 watersheds. It was observed from the study 
that any reduction in forested area or increase in 
agricultural land in the watersheds may cause an 
increase in TP concentrations in the stream water, 
and therefore appropriate watershed management 
practices should be followed before making any 
land use change in the Chugoku district. 
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