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A key physical property used in the description of a soil-water regime is a soil water retention curve, 
which shows the relationship between the water content and the water potential of the soil. Pedotransfer 
functions are based on the supposed dependence of the soil water content on the available soil characteris-
tics, e.g., on the relative content of the particle size in the soil and the dry bulk density of the soil. This de-
pendence could be extracted from the available data by various regression methods. In this paper, artificial 
neural networks (ANNs) and support vector machines (SVMs) were used to estimate a drying branch of      
a water retention curve. The paper compares the mentioned methods by estimating the water retention 
curves on regional scale for the Záhorská lowland in the Slovak Republic, where relatively small data set 
was available. The performance of the models was evaluated and compared. These computations did not 
fully confirm the superiority of SVMs over ANNs as is often proclaimed in the literature, because the re-
sults obtained show that in this study the ANN model performs somewhat better and is easier to handle in 
determining pedotransfer functions than the SVM models. Nevertheless, the results from both data-driven 
models are quite close, and the results show that they provide a significantly more precise outcome than a 
traditional multi-linear regression does. 
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Autori sa v príspevku venujú určovaniu pedotransferových funkcií (PTF), ktoré umožňujú stanoviť body 

vlhkostných retenčných kriviek pôdy z ľahšie merateľných pôdnych vlastností a sú dôležitým prvkom 
modelovania vodného režimu pôdy. Ešte v minulej dekáde sa objavili snahy využívať na ich určenie umelé 
neurónové siete (UNS). Multi-layer perceptron (MLP) čiže viacvrstvový perceptrón je najčastejšie použí-
vaný model doprednej umelej neurónovej siete s kontrolovaným typom učenia. Vstupné signály prechádza-
jú sieťou typu MLP iba dopredným smerom, teda postupne od vrstvy k vrstve. MLP používa tri a viac 
vrstiev neurónov rozdelených na vstupnú, skrytú a výstupnú vrstvu s nelineárnou aktivačnou funkciou a vie 
rozpoznať alebo modelovať informácie, ktoré nie sú lineárne oddeliteľné alebo závislé. Novší vývoj 
v oblasti učiacich algoritmov poskytuje ďalšie možnosti, z ktorých sa v tomto príspevku venujeme tzv. 
mechanizmom podporných vektorov (Support Vector Machines – SVM). SVM využíva pri svojom kalibro-
vaní na riešený problém princíp tzv. štrukturálnej minimalizácie namiesto iba minimalizácie chyby – (Vap-
nik, 1995). Pri trénovaní siete MLP je jediným cieľom minimalizovať celkovú chybu. Pri SVM sa si-
multánne minimalizuje chyba aj zložitosť modelu. Použitie tohto princípu vedie zvyčajne k vyššej schop-
nosti generalizácie, t.j. umožneniu presnejších predpovedí pre dáta, ktoré neboli použité pri trénovaní SVM. 
Vhodnosť štandardnej umelej neurónovej siete, SVM a viacnásobnej lineárnej regresie sa v článku vyhod-
nocuje na základe údajov získaných z pôdnych vzoriek odobratých v lokalite Záhorskej nížiny. Pôvodné 
údaje a ich aplikáciu pri vyhodnocovaní vodného režimu pôd uvádza Skalová (2001, 2007), odkiaľ boli 
prevzaté vstupné dáta a to percentuálny obsah zrnitostných kategórií (I až IV podľa Kopeckého), reduko-
vaná objemová hmotnosť (ρd) a vlhkosti pre vlkostné potenciály hw= –2.5, –56, –209, –558, –976, –3060,    
–15300 cm, ktoré boli stanovené laboratórne pre potreby určenia a testovania regresných závislostí. 
Vzhľadom na to, že pri odvodzovaní regionálnych PTF je častým prípadom nedostatok dát pre odvodenie 
dátovo riadených modelov, autori navrhli riešiť úlohu pomocou ansámblu MLP resp. SVM. Ansámbel 
dátovo riadených modelov bol vytvorený variabilným rozdelením údajov na trénovacie a validačné (vali-
dačnými údajmi sa testuje presnosť modelu vo fáze jeho tvorby, ešte sa používajú konečné testovacie dáta, 
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ktoré neboli pri tvorbe modelu použité). Výsledky ukázali lepšie regresné schopnosti oboch dátovo ria-
dených modelov (SVM aj MLP) voči multilineárnej regresii a o niečo lepšie výsledky boli získané 
z viacvrstvového perceptrónu než zo SVM. Keďže v niektorých iných prácach mal zvyčajne vyššiu 
výpočtovú presnosť model založený na SVM než na UNS, autori odporúčajú pre budúci výskum preveriť 
vhodnosť kombinácie SVM a MLP modelov v dátovo riadenom skupinovom modeli. 
 
KĽÚČOVÉ SLOVÁ: retenčná krivka, pedotransférová funkcia, neurónová sieť, mechanizmus podporných 
vektorov, viacnásobná lineárna regresia. 

 
Introduction 
 

Modeling water and solute transport in soil has 
become an important tool in simulating agricultural 
productivity as well as in dealing with various envi-
ronmental quality issues. For instance, optimum 
irrigation management requires a systematic esti-
mation of the soil-water status to determine both 
the appropriate amounts and timing of irrigation.    
A possible ecological application of soil-water 
modeling is described, e.g., in Skalová et al., 2009. 
In general, two categories of methods for evaluat-
ing a soil-water regime can be distinguished: (1) 
the measurement techniques and (2) predictive 
methods (mathematical modeling). However, de-
spite the progress that has been achieved, the mea-
surement techniques remain time consuming and 
costly, especially when data are needed for large 
areas (Wösten et al., 2001). On the other hand, the 
use of mathematical models depends on knowledge 
of the input data which are needed for the numeri-
cal simulations. Some of this data (meteorological, 
climatic, hydrological or crop characteristics) are 
usually available in competent institutions, but hy-
draulic soil properties are only available for some 
sites in Slovakia (the same situation is usual in oth-
er countries). That is why these characteristics ap-
pear as a key problem in the numerical simulation 
of a soil-water regime. During the last ten years a 
relatively large number of works have appeared 
which were devoted to determining the water reten-
tion curve which is needed for this purpose from 
more easily available soil properties such as particle 
size distribution, dry bulk density, organic C con-
tent, etc., e.g. Gupta and Larson, 1979; Rawls et al., 
1982; Minasny et al., 1999, and in Slovak scientific 
literature (Šútor, Štekauerová, 1999; Štekauerová, 
Skalová, 1999, etc.). Pedotransfer functions (PTF) 
have become the term for such relationships be-
tween soil hydraulic parameters and the more easily 
measurable properties usually available from a soil 
survey (Bouma, Van Lanen 1987; Bouma, 1989). 
Consequently, the method for the quantification of 
these relationships uses various types of regression 

analyses. The aim of this paper is a comparison of 
three regression models for determining pedotrans-
fer functions. 

Besides the standard regression methods, artifi-
cial neural networks (ANNs) have become the tool 
of choice in the last decade in developing PTFs, 
e.g., Schaap et al., 1998; Pachepsky et al., 1996; 
Tamari et al., 1996 etc.. The above authors confirm 
that they received better results from ANN-based 
pedotransfer functions than from standard regres-
sion-based PTFs.  

One of the advantages of ANN-based PTFs 
compared to traditional regression PTFs is that they 
do not require an a priori regression model, which 
relates the input and output data, and which in gen-
eral is difficult to define, because these models are 
not known (Minasny and McBratney, 2002). The 
training of an ANN is basically an iterative process; 
on the other hand, some problems from its character 
may sometimes arise. In Twarakawi et al., 2009, 
the possible weaknesses of the ANN approach are 
confirmed and summarized as follows: 1. ANNs 
have a number of coefficients (weights) that do not 
permit easy physical interpretation (Schaap et al., 
2001); 2. the ANN’s structure has to be selected a 
priori and therefore may not be optimal since there 
are many types of neurons and many types of pos-
sible connections (Wösten et al., 2001); 3. a higher 
number of neurons and connections than required 
can result in overfitting and over parameterization 
(Hastie et al., 2001), which can negatively affect 
the ability of the models obtained to generalize. 
That is why also other possibilities for solving giv-
en regression task were evaluated in this study.  

Recent developments in machine learning meth-
ods have forced the application of alternative data-
driven methods in hydrology applications, e.g., 
radial basis function networks (Tamari et al., 1996; 
Kumar et al., 2010) or support vector machines 
(Lamorski et al, 2008; Twarakawi et al., 2009). The 
foundations of support vector machines (SVMs) 
were developed by Vapnik (1995) and are gaining 
in popularity due to their attractive features and 
promising empirical performance. A support vector 
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machine was proposed by Vapnik (1995), as a sta-
tistical learning method with a promising ability to 
generalize. It maps the training vectors into a high 
dimensional feature space and constructs a hyper-
plane that maximizes the margin (i.e. maximizes 
the distance between the hyperplane and the closest 
training vector in the feature space). The SVMs 
formulate a quadratic optimization problem for 
finding such a hyperplane, which ensures a global 
optimum for a given parameter set. The formulation 
embodies the structural risk minimization (SRM) 
principle in addition to the traditional empirical risk 
minimization (ERM) principle employed by con-
ventional neural networks. SRM minimizes the 
upper boundary on the risk expected, as opposed to 
ERM, which only minimizes an error on the train-
ing data. It is this difference which gives SVMs a 
greater ability to generalize, which is the goal of 
statistical learning.  

The objective of this work is to verify the 
abovementioned advantages of SVMs while devel-
oping PTFs for the Záhorská lowland, which was 
selected as a representative region for the investiga-
tion (e.g., while solving the regression task of de-
termining the water retention curve from easily 
available soil properties). The data used in this 
study were obtained from previous work (Skalová, 
2001).  

In the following part of the paper (“Methodolo-
gy”) the three methods used in this study – multiple 
linear regression, ANN and SVM are briefly ex-
plained. Then the data acquisition and preparation 
is presented. In the “Result” part, the settings of the 
experimental computations are described in detail, 
and the “Conclusion” of the paper evaluates these 
experiments on the basis of the statistical indica-
tors. 
 
Materials and methods 
 
Methods used to fit the PTFs 
 

The most common method used in estimating 
PTFs is to employ multiple linear regression. Mul-
tiple linear regression (MLR) analysis is generally 
used to find the relevant coefficients in the model 
equations. For example: 
 

Y = aX1 + bX2 + cX3 +…+ Xn, (1) 
 

where Y denotes a dependent variable, Xn – an in-
dependent variable.  

 
 
Fig. 1. ANN model for evaluating a pedotransfer function. 
Each connection is characterized by its weight, by which the 
data flow is transformed from the inputs to the outputs.  
 

The second approach for modeling the PTFs 
used in this paper is the application of artificial 
neural networks (ANNs). This approach has been 
described in various previous works, and infor-
mation about the subject can be found in Schaap et 
al., 1998; Minasny et al., 1999; Minasny and 
McBratney, 2002, etc. Briefly summarized, a neural 
network consists of input, hidden and output layers, 
all containing “nodes” or “processing elements 
(PE)” (Fig. 1). The number of nodes in the input 
layer (e.g., the soil’s bulk density, the soil’s particle 
size data, etc.) and output layer (various soil prop-
erties) correspond to the number of input and out-
put variables of the model. So-called “learning” 
involves adjustment of the coefficients (i.e., the 
synaptic connections that exist between the neurons 
or weights), which are used for the transformation 
of the inputs to the outputs. For that reason, an im-
portant step in developing an ANN model is the 
training (computing) of its weight matrix. A type of 
ANN known as a multi-layer perceptron (MLP), 
which uses a back-propagation training algorithm, 
was used for generating the PTFs in our study. The 
training process was performed by the NeuroSolu-
tion neural network simulator, which includes a 
number of training algorithms, including a back 
propagation training algorithm of an MLP. This is a 
gradient descent algorithm that has been successful-
ly and extensively used in training feed-forward 
neural networks. The basic information about the 
application of an ANN to regression problems is 
available in the literature and is well known, so we 
will not provide a more detailed explanation here.  

A third approach called support vector machines 
(SVM) for estimating the pedotransfer functions 
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used in this study is explained hereinafter, with 
explanations of its principles only to such an extent 
considered necessary for understanding its possible 
advantages versus ANN and for explanation of the 
various settings of this methodology, which are 
necessary for its application. A more detailed de-
scription of the methodology can be found, e.g., in 
Vapnik, 1995.  

The architecture of a SVM is similar to that of an 
ANN, but the training algorithm is significantly 
different. The basic idea is to project the input data 
by means of kernel functions into a higher dimen-
sional space called the feature space, where a linear 
regression can be performed for an originally non-
linear problem, the results of which are then 
mapped back to the input space. The linear regres-
sion is maintained by quadratic programming, 
which ensures a global optimum and an optimal 
generalization. The uniqueness of this solution is 
often emphasized, but the actual truth is that this 
solution is only unique for a given set of perfor-
mance parameters, which should be chosen and will 
be described later.  

Suppose we are given training data {(x1, y1),…, 
(xl, yl)}, where xi ∈ X = Rn denotes the input pattern 
for the i-th sample, and yi is the desired model’s 

output. A non-linear transformation function Φ(.) is 
defined to map the input space to a higher dimen-
sion feature space. The important idea is to fully 
ignore small errors (by introducing the “tube” vari-
able ε, which defines what the “small” error is) to 
make the regression sparse, that is, dependent on a 
smaller number of inputs (called the support vec-
tors), which makes the methodology much more 
computationally treatable. In an ε-SVM regression 
(Vapnik, 1995), the goal is to find a function f(x) 
that at most has an ε deviation from the actually 
obtained targets yi (or f(x)) for the training data: 
 

f(x) = w.Φ(x) + b    w ∈X, b ∈ R, (2) 
 

where f(x) is the model’s output, and input x is 
mapped into a feature space by a nonlinear function 
Φ(x) with weight vector w and bias b. According to 
the structural risk minimization principle, solving 
the optimal fitting function f(x)= yi can be ex-
pressed as the following optimization problem: 

minimize    
  

1

2
w 2 +C (ξi +ξi

*

i=1

n
∑ )   (3) 

 

subject to     yi – (w.Φ(x) + b) ≤ ε + ξi 
 

(w.Φ(x) + b) − yi ≤ ε + ξi* 
 

ξi, ξi* ≥ 0 
where ξi, ξi* are slack variables that specify the 
upper and lower training errors, subject to an error 
tolerance ε, and C is a positive constant that deter-
mines the degree of the penalized loss when a train-
ing error occurs. In (3), the first term of the objec-
tive function indicates the model’s complexity, and 
the second term is the empirical risk. That is why 
this objective function simultaneously minimizes 
both the empirical risk and the model’s complexity; 
the tradeoff between these two goals is controlled 
by parameter C. An important characteristic of 
SVMs as a consequence of this fact is that a better 
ability to generalize could be expected, compared, 
e.g., with ANNs (the better results for the data 
which were not used for building the model), be-
cause unnecessarily complex models usually suffer 
from overfitting. 

Moreover, an SVM can be solved by transform-
ing the optimization problem into its dual form via 
a quadratic programming algorithm (utilizing La-
grange multipliers), and the solution to the quadrat-
ic programming is unique and optimal. Therefore, a 
support vector machine analytically obtains the 
optimal network architecture, which partially 
avoids the problem with the local minima which 
arises in training the ANNs. 

The radial basis function was chosen on a trial 
and error basis as the kernel function for this work 
(the function used to transform a nonlinear problem 
from an input space to a high dimensional space for 
the sake of the possibility of solving a linear prob-
lem instead of a nonlinear problem, which is a 
characteristic feature of an SVM). This function has 
the following form: 
 

K(xi, xj) = exp(-γ|| xi - xj||2), γ  > 0. (4) 
 

The parameter γ of this kernel function, the tube 
size ε for the ε-insensitive loss function, and pa-
rameter C should be found, which is the basic task 
when SVMs are applied to any practical problem. 
The harmony search methodology, which was pro-
grammed in a Matlab environment, was used for 
this purpose instead of the usual trial-and-error 
principle, which is more efficient. A harmony 
search is a metaheuristic search algorithm intro-
duced by Geem (Geem et al., 2002) and is inspired 
by the improvisational process of musicians. In an 
HS algorithm, each musician corresponds to one 
decision variable. A musical instrument’s pitch 
range corresponds to a decision variable’s value 
range; the musical harmony at a certain time corre-
sponds to a solution vector at a certain iteration; 
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and the audience’s aesthetics corresponds to an 
objective function. Just as a musical harmony is 
improved time after time, a solution vector is im-
proved iteration by iteration by the application of 
the improvisation’s operators (the random selection 
of a tone, a musician’s memory considerations or a 
pitch adjustment). This methodology is described in 
more detail in the various works of Geem (Geem, 
2001) or other authors (e.g. Čistý, 2010). 

For each combination of the parameters (γ, C, ε) 
generated in the iterations of this search process, an 
SVM model using this actual combination of pa-
rameters based on the training data is created. As a 
criterion for selecting the appropriate combinations 
of the parameters, the correlation coefficient could 
be used in regression task of determining PTF as 
the value of the objective function of the harmony 
search methodology. 
 
Study area and data collection 
 

It should be noted that when modeling empirical 
data by the means described hereinbefore, a process 
of induction is used to build up a model of the sys-
tem, from which it is hoped to deduce responses of 
the system that are unknown. Ultimately, the quan-
tity and quality of the observations made while 
obtaining the training data will govern the perfor-
mance of these empirical models. This paper is 
aimed at a situation when there is not enough data 
available, which could often be the case; and this 
has some impact which is described in results of 
this work. 

The data used in this study were obtained from a 
previous work (Skalová, 2001). An area of the Zá-
horská lowland was selected for testing the methods 

described. A total of 140 soil samples were taken 
from various localities in this area (Tab. 1). 

The soil samples were air-dried and sieved for a 
physical analysis. A particle size analysis according 
to the Kopecký grain categories from 1st to 4th was 
performed utilizing Cassagrande’s methods. 1st 
category means the percentages of the clay (diame-
ter < 0.01 mm), 2nd cat. – silt d∈(0.01–0.05 mm), 
3rd cat. – fine sand d∈(0.05–0.1 mm) and 4th cat. – 
sand d∈(0.1–2.0 mm). The Kopecký grain catego-
ries are very often used in Slovakia for the soil tex-
ture classification. The dry bulk density, particle 
density, porosity and saturated hydraulic conductiv-
ity were also measured on the soil samples. The 
points of the drying branches of the WRCs for the 
pressure head values of –2.5, –56, –209, –558,         
–976, –3060 and –15300 cm were estimated using 
overpressure equipment (set for pF-determination 
with ceramic plates). 

A full database of the 140 samples and their 
properties was used for creating the input data for 
the modeling from which the three subsets of the 
data were produced: 
− Training data: 88 data samples; 
− Validation data: 22 data samples; 
− Test data: 30 data samples. 

The training and validation data were both used 
in calibrating the models, e.g., the data set was ac-
tually divided into two subsets for the calibration 
(110 samples) and testing (30 samples). A practical 
way to find a better generalization model is to set 
aside a small percentage (around 20%) of the train-
ing set and use it for the cross validation. When the 
error in the validation set increases, the training 
should be stopped because the best generalization 
has been reached.  
 

 
 
T a b l e  1.  Classification of soil samples taken from Záhorská lowland (expressed by total number and %) and land area of soil 
types (expressed by %) 
 

Soil type  
[%] of I. grain category  

(< 0.01 mm) 
Soil samples Land area 

Number [%] [%] 

1. Sandy soil      0–10% 56 40 47 
2. Loam sandy soil  10–20% 34 24 15 
3. Sandy loam soil  20–30% 21 15 6 
4. Loam soil     30–45% 22 16 27 
5. Clay loam soil   45–60% 4 3 3 
6. Silty clay soil    60–75% 3 2 1 
7. Clay      > 75% 0 0 0 

Total  140 100 100 
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Fig. 2. Ensemble data-driven model (DDM) for evaluating a pedotransfer function. 
 

Statistically similar data should be in all three da-
ta subsets, but this is not easy to accomplish, espe-
cially in this case, when the data set is relatively 
small. That is why an ensemble of data-driven 
modeling was used in the present work, which 
means a collection of a finite number of data-driven 
models that are trained for the same task (Fig. 2). 
This is meant as a simple variant of bootstrapping 
(the bootstrap scheme involves generating subsets 
of the data on the basis of random sampling with 
replacements as the data are sampled). Five data-
driven models are trained independently, and their 
predictions are combined for the sake of obtaining a 
better generalization. For this reason the mentioned 
training fraction of the data (110 samples) was di-
vided into the training and validation data sets al-
ternatively in five different versions. This led to 
five models both for the ANN and SVM, the results 
of which were combined for the given type of mod-
el – final result is average value from all five mod-
els. Through this approach the authors intended to 
avoid obtaining a model based on a wrong data 
division in the data sets.  
 
Results 
 

A multi-linear regression for assessing the PTFs 
was used in the form: 
 

θhw = a * 1st cat. + b * 2nd cat. + c * 4rd cat. + d * ρd 
+ e, (5) 
 

where θhw is the water content [cm3.cm-3] for the 
particular pressure head value hw [cm], 1st cat., 2nd 
cat., and 4th cat. – the percentages of the clay (d < 
0.01 mm), silt d∈(0.01–0.05 mm), and sand (0.1–
2.0 mm), ρd – the dry bulk density [g cm-3], and a, 
b, c, d, e are the parameters determined by the re-

gression analysis. In the case of the multi-linear 
regression it was not possible to use ensemble 
models, because in this case no iterative process is 
applied which involves cross validation, so all 110 
training samples were used as a whole for the de-
velopment of the model. Fine sand (3rd cat. ) was 
not included in regression equation because of 
avoiding correlation between independent varia-
bles. 

The PTFs designed were evaluated on a testing 
dataset, which consisted of 30 soil samples. The 
results of the multi-linear regression are listed in 
Tab. 2. The correlation coefficients (R) for each of 
the PTFs testify also less degree of the relationship 
between the correlated elements in some cases 
(with smallest value 0.63).  

The second approach used in determining the 
water retention curves in the presented work was an 
application of ensemble neural networks. The same 
network architecture for every ANN in the network 
was determined. In this work the multilayer percep-
tron (MLP) with 2, 3, and 4 neurons in the hidden 
layer was tested; an MLP with 3 neurons in the 
hidden layer was finally chosen for the ensemble 
neural network model. A neuron with a bias and 
tanh activation function was used. The Levenberg-
Maquardt method was used in the context of the 
back propagation method. 

The networks were trained for computing the 
water content at the pressure head value hw = –2.5, 
–56, –209, –558, –976, –3060, –15300 cm. Then 
the testing dataset was computed with the ensemble 
ANN. The results with the regression coefficients 
are summarized in Tab. 3. As can be seen, the en-
semble ANN provides significantly better results 
compared with the multi-regression analysis. 
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Lastly, we solved the given regression problem 
using ensemble support vector machines. The esti-
mation of the steps of the SVM regression (de-
scribed in the methodology part of this paper) are 
the following: 1. the selection of a suitable kernel 
and the appropriate kernel’s parameter (γ in eq. 
(4)); 2. specifying the ε parameter (eq. (3)); and 3. 
specifying the capacity C (eq. (3)).  

As was noted in the methodology part, the radial 
basis function was chosen as the kernel function on 
a trial and error basis, and the harmony search 
methodology was used for finding the parameters 
of the SVM.  

As a criterion for selecting the appropriate com-
binations of the parameters, the correlation coeffi-
cient for the training and cross-validation data is 
calculated within the objective function of the har-
mony search, where the correlation coefficient of 
the cross-validation data was weighted by the coef-
ficient 1.2 for the sake of a better generalization. 
This combination of correlation coefficients is gen-
erally not necessary (only the correlation coeffi-
cient of the cross-validation data is usually used), 
but due to the relatively small data set, this was 
shown to be more effective.  
 

 
T a b l e  2.  Results of the multi-linear regression – regional parametres of pedotransfer functions (a, b, c, d, e, f) for calculation of 
points of drying branch of water retention curve for Záhorská nížina soils (hw – pressure head, R – correlation coefficient) 
 

hw [cm] a b c d e R 
–2.5 0.044 –0.16 –0.135 –37.288 106.632 0.907 
–56 0.091 –0.269 –0.33 –25.314 91.044 0.88 
–209 0.253 –0.123 –0.233 –17.902 63.167 0.877 
–558 0.291 –0.116 –0.203 –19.969 61.745 0.876 
–976 0.259 –0.146 –0.219 –18.668 59.757 0.876 
–3060 0.314 –0.153 –0.178 –17.386 51.733 0.877 
–15300 0.252 –0.215 –0.231 –15.185 50.415 0.866 

 
 
T a b l e  3.  Results of the ANN for determining PTFs (hw – pressure head, R1 – R5 partial correlation coefficients for members of 
ANN ensemble and R – final correlation coefficient by ANN for given pressure head)  
 

hw [cm] R1 R2 R3 R4 R5 R 
–2.5 0.914 0.921 0.937 0.934 0.888 0.930 
–56 0.925 0.928 0.938 0.899 0.889 0.925 
–209 0.898 0.926 0.934 0.905 0.878 0.921 
–558 0.883 0.927 0.943 0.879 0.877 0.912 
–976 0.872 0.923 0.937 0.871 0.865 0.905 
–3060 0.888 0.920 0.930 0.866 0.918 0.914 
–15300 0.882 0.901 0.935 0.871 0.915 0.910 

 
 
T a b l e  4.  Results of SVM (hw – pressure head, R1 – R5 partial correlation coefficients for members of SVM ensemble and R – 
final correlation coefficient by SVM for given pressure head) 
 

hw [cm] R1 R2 R3 R4 R5 R 
–2.5 0.916 0.914 0.908 0.916 0.897 0.913 
–56 0.887 0.880 0.885 0.869 0.873 0.883 
–209 0.891 0.888 0.898 0.893 0.886 0.894 
–558 0.870 0.868 0.871 0.871 0.862 0.871 
–976 0.879 0.888 0.892 0.886 0.880 0.892 
–3060 0.876 0.878 0.883 0.877 0.868 0.882 
–15300 0.856 0.881 0.878 0.873 0.876 0.874 

 
 

The analysis and calculation of the SVM were 
performed using the LIBSVM library in C++ de-
veloped by Chang and Lin (2001), which was 
called from the Matlab code of the harmony search 
written by the authors of this paper. In the training 

phase, SVM models for a pressure head value of hw 
= –2.5, –56, –209, –558,   –976, –3060, –15300  cm 
were created. This was repeated five times because 
of the five divisions of the data used to train the 
model on the training and validation data set. A 
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total of 35 computations were run. Then the testing 
dataset was computed five times with the models 
obtained, and the final result is the average of the 
outputs from these five models; the results are 
summarized with the regression coefficients in Tab. 
4. As can be seen, these results are clearly better 
compared with the multi-linear regression and 
somewhat worse compared with the ANN. 

From these results, it seems that ANNs are more 
resistant to an insu cient amount of data (which is 
the case in this work), because, on the other hand, 
better results with the application of the SVM than 
with the ANN for the PTF evaluation were reported 
in the literature (Lamorski et al, 2008; Twarakawi 
et al., 2009). It should be mentioned that the au-
thors of these papers worked with larger data sets 
(806 and 2134 soil samples). For this reason the 
authors of the present paper hypothesize that it is 
advisable to use combined SVM/MLP models, 
because of the variability of an adequate methodol-
ogy, but this should be verified in future work. 

On the basis of this work the authors also have 
some remarks on the effectiveness of the manipula-
tion with these two data-driven models. Both MLP 
and SVM training involves searching for some 
parameters which should be set properly for the 
sake of obtaining good quality results from the 
model. Heuristic searching (which is more comfort-
able and objective) of such parameters could be 
applied to both of them, but in the case of SVMs 
this application is easier. This is due to the deter-
ministic type of training of the SVM algorithm, 
which is faster and offers unique results for a par-
ticular combination of the parameters, which is not 
true in the case of iterative MLP training. On the 
other hand, from the point of view of manipulating 
the SVM and ANN models, the advantage of ANNs 

versus SVMs is that a multiple output (more varia-
bles) is possible to obtain from an ANN, whereas it 
is necessary to build different SVM models for the 
different pressure head values of hw. 

The quality of SVM models depends on the 
proper setting of their parameters. If parameter C 
(Eq. (3)), (which determines the trade-off between a 
model’s complexity and the degree to which devia-
tions larger than ε are tolerated) is too large, the 
rate of accuracy of the estimation is high in the 
training phase, but may be low in the testing phase. 
If C is too small, the accuracy of the estimation is 
unsatisfied, and the model is useless. The kernel 
parameter γ (eq. (4)) also has a great influence on 
any estimates. An excessively large value for pa-
rameter γ results in overfitting, while a dispropor-
tionately small value leads to underfitting. The 
complexity of the data-driven model (the number of 
free parameters) has a strong influence on the mod-
el’s ability to generalize. The complexity of an 
ANN model is setting directly (as the number of 
neurons in the hidden layer), but the complexity of 
an SVM is defined by the number of support vec-
tors, which is the aim of the computation on the 
basis of the abovementioned parameters. Conse-
quently, there is a lower possibility of setting the 
complexity of the SVM model intuitively on the 
basis of some trials as in the case of an ANN. Alt-
hough this necessity for setting the parameters of an 
ANN on the basis of a modeler’s know-how is of-
ten criticized, it can be seen that it was advanta-
geous in this work (on the basis of the results in 
Tabs. 3, 4). In Tab. 5 the parameter settings and 
number of support vectors in the first of the five 
SVM models working as an ensemble is displayed 
as an illustration of the ideas in this paragraph. 

  
 
 
T a b l e  5.  Parameters of the SVM for the R1model (C, γ, ε, number of SV – parameters of SVM explained in methodology part 
of the paper). 
 

hw [cm] C γ ε 
Number of 

SV 
R1 

–2.5 16.939 0.004 0.5 8 0.916 

–56 9.6417 0.195 0.104 44 0.887 

–209 29.045 0.0948 0.104 50 0.891 

–558 9.155 0.08 0.129 45 0.870 

–976 29.837 0.096 0.097 59 0.879 

–3060 5.128 0.239 0.085 63 0.876 

–15300 3.88 0.099 0.082 66 0.856 
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Conclusions 
 

The results of this paper contain a description 
and evaluation of the models of an ensemble of 
multi-layer perceptrons and an ensemble of support 
vector machines for the development of pedotrans-
fer functions for the point estimation of the soil-
water content for the seven pressure head values hw 
from the basic soil properties (particle-size distribu-
tion, bulk density). Both ensemble data-driven 
models were compared to a multiple linear regres-
sion methodology.  
− The accuracy of the predictions was evaluated 

by the correlation coefficient (R) between the 
measured and predicted parameter values. The 
R varied from 0.866 to 0.907 for the multi-
linear regression for various pressure heads, 
from 0.905 to 0.930 when using MLP, and 
from 0.871 to 0.913 for the SVM. The MLP 
models perform somewhat better than the SVM 
models. Nevertheless, the results from both da-
ta-driven models are quite close, and the results 
show that they provide a more precise outcome 
than traditional multi-linear regression. 

− Although SVM training is faster, the whole 
process of ANN training for evaluating PTFs is 
accomplished in less time, because of the abil-
ity of ANNs to produce more outputs (Fig. 1), 
which is the advantage versus SVMs. 

Because other authors have reported the better 
regression ability of SVMs compared with ANNs 
(Lamorski et al, 2008; Twarakawi et al., 2009), the 
authors of the present paper hypothesize that it is 
advisable to use combined SVM/MLP models, 
because of this variability in suitable methodology. 
This should be verified in future work. The authors 
of the mentioned papers worked with larger data 
sets (they used 806 and 2134 soil samples; 140 
samples were used in our work), and the influence 
of the amount of data or other statistical data set 
properties on the choice of the methodology suit-
able to use should be evaluated.  
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