
J. Hydrol. Hydromech., 59, 2011, 3, 145–156 
DOI: 10.2478/v10098-011-0012-x 

145 

 
 
 
 
A NON-LINEAR RAINFALL-RUNOFF MODEL WITH A SIGMOID GAIN FACTOR 
TO SIMULATE FLOW FREQUENCY DISTRIBUTION CURVES  
FOR AMAZON CATCHMENTS 
 
MARCO VALÉRIO A. VINAGRE, CLAUDIO J.C. BLANCO,  
ANDRÉ L. AMARANTE MESQUITA 
 
Doctoral Program in Natural Resources Engineering in the Amazon – PRODERNA/ITEC/UFPA – Federal University of Pará,  
Rua Augusto Corrêa, 01, 66075-110, Belém-Pará-Brazil; Mailto: vinagre@ufpa.br; blanco@ufpa.br; andream@ufpa.br 
 

The objective of this paper is to simulate flow frequency distribution curves for Amazon catchments with 
the aim of scaling power generation from small hydroelectric power plants. Thus, a simple nonlinear 
rainfall-runoff model was developed with sigmoid-variable gain factor due to the moisture status of the 
catchment, which depends on infiltration, and is considered a factor responsible for the nonlinearity of the 
rainfall-runoff process. Data for a catchment in the Amazon was used to calibrate and validate the model. 
The performance criteria adopted were the Nash-Sutcliffe coefficient (R²), the RMS, the Q95% frequency 
flow percentage error, and the mean percentage errors ranging from Q5% to Q95%.. Calibration and validation 
showed that the model satisfactorily simulates the flow frequency distribution curves. In order to find the 
shortest period of rainfall-runoff data, which is required for applying the model, a sensitivity analysis was 
performed whereby rainfall and runoff data was successively reduced by 1 year until a 1.5-year model 
application minimum period was found. This corresponds to one hydrological year plus the 6-month long 
"memory". This analysis evaluates field work in the ungauged sites of the region. 
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Marco Valério A. Vinagre, Claudio J. C. Blanco, André L. Amarante Mesquita: NELINEÁRNY 
ZRÁŽKOODTOKOVÝ MODEL SO SIGMOIDÁLNYM ZDROJOVÝM FAKTOROM NA SIMULÁCIU 
ČIAR ROZDELENIA PRIETOKOV PRE POVODIA AMAZONKY. J. Hydrol. Hydromech., 59, 2011, 3; 
11 lit., 10 obr., 5 tab. 

 
Cieľom tohto príspevku je simulácia čiar rozdelenia prietokov pre povodia rieky Amazonka pre potreby 

hodnotenia premeny energie v malých hydroelektrárňach. Preto bol vyvinutý jednoduchý nelineárny 
zrážko-odtokový model so sigmoidálne sa meniacim zdrojovým faktorom v závislosti od obsahu vody        
v povodí, ktorý závisí od infiltrácie a je považovaný za faktor, spôsobujúci nelinearitu zrážkoodtokových 
procesov. Pre kalibráciu a validizáciu modelu boli použité údaje z povodí rieky Amazonka. Použili sme 
tieto hodnotiace kritériá: Nashov-Sutcliffov koeficient (R²), RMS, Q95%, chyba určenia odtoku v percentách, 
a priemerná percentuálna chyba v rozsahu od Q5% do Q95%. Kalibrácia a validizácia ukázala, že model 
simuluje čiary rozdelenia prietokov uspokojivo. Aby bolo možné nájsť najkratšie obdobie pre nájdenia 
závislosti zrážky – odtok, ktorá je potrebná pre aplikáciu v modeli, použili sme citlivostnú analýzu tak, že 
údaje  zrážky – odtok boli postupne redukované o jeden rok, až kým nebolo nájdené minimálne obdobie pre 
aplikáciu vzťahu zrážky – odtok 1,5 roka. Toto obdobie zodpovedá jednému hydrologickému roku, plus 6 
mesiacov dlhá „pamäť”. Touto analýzou boli vyhodnotené výsledky terénnych meraní v oblastiach, kde 
neboli k dispozícii merania odtoku.  

 
KĽÚČOVÉ SLOVÁ: hydrologické modelovanie, čiara rozdelenia prietokov, malé povodia riekyAmazonka. 

 
1. Introduction 
 

Rainfall-runoff modeling constitutes an im-
portant tool for projects in hydroelectric power 
plant reservoirs (Kachroo, 1992). However, one 
must consider the problem of over-configuration of 

models, a topic that has occupied the attentions of 
many researchers, with cases in which thirteen pa-
rameters were effectively replaced by only four 
(Jakeman and Hornberger, 1993). 

According to experience obtained from a number 
of seminars on river flow forecast, which were held 
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at University College Galway, Ireland (Ahsan, 
1994) using linear components with constant gain 
factors, the efficiency of the model was shown to 
be more sensitive to the magnitude of the gain fac-
tor than to the actual shape of the impulse response 
function. Moreover, the non-linearity of the rain-
fall-runoff process has been known for so long due 
to infiltration, which is dependent upon soil mois-
ture and evaporation, among other factors (Jun, 
2001). 

The Amazon region presents problems with re-
spect to obtaining data for conducting proper hy-
drological modeling and for quantitative assessment 
of the main components of the hydrological cycle. 
In addition to data shortage, another complicating 
factor for hydrological modeling is the complexity 
of the watershed's hydrological processes such as 
evapotranspiration, soil moisture and runoff genera-
tion (Ribeiro Neto, 2008). 

In this context, Blanco et al. (2005) found that 
the data commonly available for small catchments 
in the Amazon are those related to rainfall, and they 
thus investigated a rainfall-runoff cause-and-effect 
relationship. To do that, the simple linear model 
was applied, calibrated, and validated and had its 
sensitivity analyzed over a catchment in the Ama-
zon. The model was used to simulate flow frequen-
cy distribution curves required for hydro-energy 
studies, and had satisfactory results, with errors of 
less than 9% in the range between Q10% and Q95%. 

Thus, the objective of this paper is to contribute 
to the simulation of flow frequency distribution 
curves of catchments in the Amazon through a non-
linear, calibrated, validated hydrological model of 
an Amazon catchment, with an aim of sizing the 
power generation of small hydroelectric power 
plants. 
 
2. Test catchment  
 

Fig. 1 shows the test catchment used to calibrate 
and validate the hydrological model that was ana-
lyzed. 

The test catchment is located 160 km east of Be-
lém, in Pará State, Brazil, and has a drainage area 
of 82 km². The fluviometric station 31600000F, 
known as Marambaia, in that catchment, is located 
at latitude –01º39'06" and longitude –47°07'03" 
with altitude equal to 50m, within the limits of the 
municipality of Capitão Poço. It is the only station 
in the region that has long series of flow data; how-
ever, it lacks rainfall data. For that reason, data was 
taken from the nearest rainfall station, 00147016P 

with altitude equal to 40m, in the city of Ourém 
(latitude –1º33'02", longitude –47°07'01"), some 15 
km distant from the fluviometric station of the 
catchment under study. The difference in altitude 
between the rainfall and fluviometric station is 
equal to 10m. That is the same catchment analyzed 
by Blanco et al. (2005). The authors analyzed rain-
fall correlation in the region and concluded that the 
data from the Ourém rainfall station (Fig. 1) can be 
used as data for the Marambaia fluviometric station 
(Fig. 1). 

Fig. 2 shows the flow frequency distribution 
curves (raw and smooth) observed for the test 
catchment. 
 

 
 
Fig. 1. Test catchment. 
 

It can be seen that the smooth curve adequately 
represents the raw curve, and, henceforth, the 
smooth curve will be used in the comparison of the 
results of simulated flows for the test catchment. 

-2o 

Brazil 

Atlantic 
Ocean 

-50o -48o -46o 

Stream 
Gauge 
Station 

Rain 
Gauge 
Station 

Equator 



A non-linear rainfall-runoff model with a sigmoid gain factor to simulate flow frequency distribution curves for Amazon 

147 

 
 
Fig. 2. Raw and smooth flow frequency distribution curves. 
 
3. Methodology 
 
3.1 Simple Linear Rainfall-Runoff Model (SLM) 
 

Since the introduction of the unit hydrograph 
theory by Sherman (1932), the non-parametric form 
of linear time-invariant model has occupied a sin-
gular niche in the history of the development of 
deterministic rainfall-runoff models. In time do-
main, the relationship between input x(t) and output 
y(t), of a linear time-invariant system in the contin-
uous non-anticipative, initially relaxed, time is ex-
pressed by the convolution integral of the form, 
 

  
y(t) = U(τ )

0

t
∫ x(t −τ )dt , (1) 

 

where U(τ) is the unit impulse response function of 
the system. Since the input variable x(t) is the effec-
tive rainfall in the basin, with the dependent output 
variable y(t) being the effective flow resulting from 
the rainfall (that is, the stream discharge minus the 
base flow) at the mouth of the basin, the impulse 
response of the system is conceptually identical to 
the unit hydrograph of the basin, as introduced by 
Clark (1945), generalizing the theory of unit hy-
drograph. By definition, the total effective rainfall 
should equal the volume of runoff; therefore, the 
instantaneous unit hydrograph of a basin must meet 
the following equality: 
 

  
U (τ )

0

∞
∫  dτ = 1.0 = unit_volume.  (2) 

However, when a linear system is non-
conservative, i.e., considering the loss in the input 
volume due to infiltration and evaporation, the 
above-stated equality does not exist, and the area 
between the time axis and the impulse response 

function is often called steady gain factor of system 
G, which can be represented by: 
 

  
G = U(τ )

0

∞
∫  dτ  (3) 

 

i.e., the Gain Factor is smaller than the unit, as it 
incorporates the effects of infiltration and evapora-
tion, which in the case of catchments in the Ama-
zon are not known, allowing the model to be appli-
cable to the available data. 

Normalizing the unit impulse response function, 
using the gain factor, as follows: 
 

  h(τ ) =U (τ ) / G  (4) 
 

from (1) above the following is obtained: 
 

  
y(t) = G h(τ )

0

t
∫ x(t −τ )dτ , (5) 

 

where the kernel is called the normalized unit im-
pulse response function. 

In rainfall-runoff modeling, the relationship ex-
plained by the Eq. (5) with G ≠ 1 occurs when a 
linear and time-invariant relationship is established 
between the total rainfall and the total discharge of 
a basin, rather than between effective rainfall and 
effective runoff. The resulting model is the contin-
uous form of the Simple Linear Model (SLM) 
(Blanco et al., 2005). The SLM, though simple, is 
an important starting point in modeling rainfall-
runoff, as opposed to the application of the unit 
hydrograph theory, which requires considerable 
effort in determining the effective rainfall and sepa-
rating the base flow from total flow. The SLM can 
be applied to raw data and as such, can serve as an 
expeditious verification of linearity existing in the 
rainfall-runoff relationship. 

In the absence of a perfect linear relationship be-
tween rainfall (total) x(t) and runoff (total) y(t) , it is 
more appropriate to rewrite Eq. (5) defining the 
SLM with the inclusion of a model output error e(t) 
term, as follows: 
 

  
y(t) = G h(τ )

0

t
∫ x(t −τ )dτ + e(t) . (6) 

 

Assuming that the error term e(t) has an expected 
value of zero and that both the input x(t) and the 
output y(t) have non-zero expected values, it is 
verified that the gain factor G satisfies the relation-
ship of the form: 
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G = T −>∞lim

y(t)dt
0

T
∫

x(t)dt
0

T
∫

, (7) 

 

where a mathematically relaxed system at the be-
ginning and the end was assumed. Within the con-
text of the SLM, the above equality implies that for 
a sufficiently long period of rainfall-runoff data, the 
gain factor G of the SLM is approximately equal to 
the relationship between the total runoff volume 
and the total rainfall accumulated in the period. 

Throughout the SLM adjustment process using 
real rainfall-runoff data, the gain factor estimated 
by Eq. (3) is often verified to be approximately 
equal to the long-term runoff coefficient for the 
basin being considered, as estimated by Eq. (7) 
with T set as the calibration period instead of the 
infinite (Kachroo and Natale, 1992). This merely 
reflects the linearity and time invariance assumed 
and inherent to the formulation of the SLM. At any 
rate, it is not plausible that in nature the constant 
proportion of rainfall would always be transformed 
into runoff. Rather, it is known that the higher the 
moisture of the basin, the greater the proportion of 
rainfall that would become runoff. Since the formu-
lation of the SLM does not accept this intuitive 
concept, the flow simulated in the SLM is expected 
to overestimate the dry season flows and to under-
estimate the rainy season flows, as found in Blanco 
et al. (2005) and Labat and Mangin (2000). The 
application of the SVM model aims to improve the 
simulation of the dry season flows that characterize 
high frequency flows in the flow frequency distri-
bution curves. Such flows are used to size the pow-
er generation of small hydroelectric power plants. 
 
3.2 Sigmoid-Variable Gain Factor Model (SVM) 
 

For the proposed model, the following input-
output relationship is assumed: 
 

  
y(t) = G(τ )

0

t
∫ h(τ )x(t −τ )dτ + e(t) , (8) 

 

where G is the sigmoid-variable gain factor. 
 
3.2.1 Sigmoid function 
 

An input-output relationship of the form given 
by Eq. (8) where G(t) presents the function in a 
sigmoid form will be hereinafter referred to as 
Sigmoid-Variable Gain Factor Model or simply 

SVM, the input of which is the total rainfall x(t) and 
whose output is the total flow y(t). 

Although the rating for the variable gain factor 
G(t) in (8) and in subsequent equations contains the 
time t as an argument, it should be understood that 
G(t) cannot be generally expressed in the paramet-
ric form as a variable equation at time t. Instead, 
G(t) should be viewed as a time function whose 
instantaneous value depends on the moisture u(t) of 
the drainage basin soil. This assumption holds the 
concept of temporal SVM variability. 

The following considerations are relevant to the 
selection of the appropriate function to represent 
the gain factor: 
- The gain factor varies between zero and the unit. 

This condition reflects the equation of mass con-
servation, as reflected in the physical impossibil-
ity of surface runoff volume larger than the rain-
fall volume. 

- The gain factor should increase monotonically 
with increasing moisture in the basin. 
While many other functions may be considered 

for describing the variation of the gain factor with 
respect to the function of soil moisture in the basin 
u(t), this paper focuses on the sigmoid function, 
which is: 
 

  
G(u(t)) = 1

(1+ e−u(t) )
. (9) 

 

Fig. 3 shows the behavior of the sigmoid func-
tion adopted for the variable gain factor of the pro-
posed model. 
 

 
 
Fig. 3. Sigmoid function graph. 
 

Adoption of this function takes into account the 
behavior of the rainfall-runoff phenomenon in na-
ture, as the rainfall volume is divided and seeps into 
the soil, runs off on the surface and evaporates. If 
the soil has low moisture, infiltration is facilitated 
to the detriment of the runoff and evaporation. As 
moisture increases, infiltration decreases and the 
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portion that runs on the surface increases, covering 
the natural terrain depressions, and exposing the 
water to the action of evaporation. 

It can be observed that the gain factor G(u(t)) in 
Eq. (9) varies depending on the soil moisture u(t), 
which may not be a simple function of time and 
may depend upon the inputs and/or outputs of the 
system. As such, Eq. (8) can be considered as a 
nonlinear input-output ratio. Thus, the nonlinearity 
of the input-output ratio of (9) is simple in nature 
and there is the possibility of submitting the SVM 
to a linear treatment through transformation of the 
gain factor function as per below. 

Eq. (9) states that: 
 

  
(1+ −u(t)e ) = 1

G(t)   
−u(t)e = 1

G(t)
−1

  
−u(t)e = 1−G(t)

G(t)   
u(t)e = G(t)

1−G(t)
           (10) 

 

whence  
 

  
u(t) = Ln G(t)

1−G(t)
⎡

⎣
⎢

⎤

⎦
⎥ .           (11) 

 

This is equivalent to rendering of the sigmoid 
function linear by the 'logarithmization' of Eq. (10), 
formed from the sigmoid variable gain factor G(t), 
so as to simplify its use in the estimation of flows, 
as will be seen below. 
 
3.2.2 Auxiliary function –  
weighted daily rainfall z(t) 
 

For Kachroo and Liang (1992), the "system 
memory" is the time interval between the occur-
rence of precipitation and the moment when their 
influence on the flow ceases. In determining the 
non-linear gain factor, ranging between zero and 
the unit, it is necessary to determine the rain-
fall/runoff ratio and then its normalization, dividing 
it by its peak during the period. It turns out that for 
daily rainfall/runoff data, there may be days with-
out precipitation, in which, the daily rainfall, x(t) = 
= 0, brings about singularities that preclude the 
determination of the rainfall/runoff ratio and, there-
fore, the gain factor. To avoid that condition, this 
study employed the auxiliary function z(t), assumed 
as the weighted daily rainfall for the period com-
prising the past m days, which represent the "sys-
tem memory". The function zi = z(t) (Eq. 12) is 
obtained from the convolution of the weights by the 
daily precipitations, as follows: 
 

  
iz = 1

d
[ jwj=1

j=e∑ (n=i− j.k+1)xk=1
k=d∑ ] ,            (12) 

 

where 
  jw = 100%j=1

j=e∑             (13) 
 

and the "memory" being m = e.d            (14) 
In Eq. (12), xn is the total daily rainfall of day n. 

Therefore, the "memory" period with a duration of 
m days shown in the Eq. (14) is subdivided into e 
subintervals j of d days, the variance of k from 1 to 
d scans each subinterval, which receives the impact 
of the weights Wj. Such weights have amplitudes 
ranging from 0% to 100%, and their sum is equal to 
100%, according to Eq. (13). 
 
3.2.3 Auxiliary function of soil moisture u(t) 
 

This function, which has a simple mathematical 
structure, is based on the weighted daily rainfall of 
day i, zi = z(x(t)), from the assumption that the gain 
factor of day i depends on the function ui = u(x(t)), 
which represents the state of soil moisture on the 
day. Thus, Gi = G(u(x(t))), and, therefore, can be 
written as Gi = G(ui). Henceforth, for the sake of 
simplicity, ui = u(x(t)) is called simply moisture. 
Since the input data for the model are numerical 
rainfall-runoff pairs, the inputs of function ui are the 
rainfall data of day i, xi, ordered in time, so as to 
provide a function ui, whose domain and codomain 
are consistent with the sigmoid function adopted for 
the gain factor G of SVM. 
Thus, function u(x(t)) = ui, adopted to represent the 
basin's soil moisture, must incorporate the 
"memory" of the effect of recent and past rainfalls, 
so as to provide an appropriate indicator of soil 
moisture on day i. For this, the moisture function ui 
was assumed, given by 
 

 iu = ix − iz

x
,            (15) 

 

where ui, dimensionless, is the soil moisture func-
tion for day i, xi is the rainfall on day i, zi is the 
weighted daily rainfall on day i and  is the daily 
average rainfall for the entire period, either for cali-
bration or validation. 

Therefore, the procedure adopted for estimating 
ui and Gi is parsimonious, these two functions being 
dependent only on rainfall events that make up the 
"memory" of the system, given that the problem 
under study is the development of a simple rainfall-
runoff model whereby evaporation data and explicit 
components of water balance are not considered. 
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3.2.4 Impulse response 
 

After adopting the auxiliary functions (Eqs. (12) 
and (15)) and through some algebric refinement, 
Eq. (8) becomes: 
 

  y(t) = G[u(x(t))]z(x(t)) .            (16) 
 

Thus, from the daily rainfall impulse x(t), which 
determines the values of the auxiliary functions 
z(x(t)) and u(x(t)) and the impulse response G[u 
(x(t))], we have the daily runoff Qi, which can simp-
ly be rewritten as 
 

 iQ = iG iz             (17) 
 

i.e., the daily runoff is equal to the product from the 
gain factor by the daily weighted rainfall. 
 

3.2.5 SVM flowchart 
 

Fig. 4 shows the SVM flowchart applied to rain-
fall and runoff data for the test catchment. The in-
dex o represents the observed values, index s is the 
simulated values, such as, in the runoff rate Qo (ob-
served) and Qs (simulated). 

It is observed in Fig. 4 that from the data of ob-
served daily rainfall-runoff, one may determine the 
values of the auxiliary functions z and u, as well as 
the Gain Factor G and Ln[G/(1–G)]. After that, 
using the non-linear/linear transformation, by loga-
rithmization, u is estimated and then finally the 
values of Qs, from which the flow frequency distri-
bution curve is generated. 
 

 

 
 
Fig. 4. Flowchart representing the application of SVM. 
 
3.3 Performance criteria 
 

Since the objective of this study is the simulation 
of flow frequency distribution curves, with Qo and 
Qs being the observed and simulated flows at time i, 

oQ  the average flow observed and n being the total 

number of observations for assessing SVM perfor-

mance, the following performance criteria are sug-
gested: 

i) The Nash-Sutcliffe coefficient (R²) calculated 
between the observed and simulated flows, defined 
by 
 

  

2R = 1−
( oiQ − siQ )2

i=1
n∑

( oiQ − oQ )2
i=1
n∑

.             (18) 
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The closer one is to the unit, the better the perfor-
mance. 

ii) The square root of mean square error, RMS, 
measured between the observed and simulated 
flows, given by 
 

  
RMS =

( oiQ − siQ )2
i=1
n∑

n
.            (19) 

 

The closer to one is to zero, the better the perfor-
mance. 

iii) The percentage errors for the flow rate of 
95% frequency flow, given by 
 

  
Q95%e = s95%Q − o95%Q

o95%Q
.100%.             (20) 

 

The closer one is to zero, the better the perfor-
mance. 

iv) The average of the percentage errors in the 
interval between the flow rates from Q95% to Q5% 
frequency, given by 
 

  
mediumQ95%toQ5%e = siQ − oiQi=5%

i=95%∑

n
,                       

 (21) 
 

where n is the number of Qi values in the interval, 
and the closer to zero, the better the performance. 
 
 
4. Results and discussion 
 
4.1 Model calibration 
 

In this case, the data period ranges from 
06/05/1993 through 12/31/1999. The seven months 
of 1993 were used as system memory, simulating 
the flow frequency distribution curve for the six 
remaining years of the rainfall and runoff data sam-
ples, that is, between the years 1994 and 1999. One 
of the steps of the calibration process is the optimi-
zation of system memory m, whereas optimizing it 
also means optimizing e and d and weights w (Eqs. 
(12), (13) and (14)). The objective functions used 
were R2 (Eq. (18) and RMS (Eq. (19)), which also 
were used as performance criteria. The method 
employed was that of trial and error. Fig. 5 shows 
the optimum value of m by maximizing R2 and 
minimizing RMS. 
 

 
 
Fig. 5. System memory optimized for six years. 
 
T a b l e  1.  w in function of n interval for the calibration 
model. 
 

Interval for n w [%] 
i to i-14 

2.40 
i-15 to i-29 
i-30 to i-44 

4.00 
i-45 to i-59 
i-60 to i-74 

17.5 
i-75 to i-89 
i-90 to i-104 

2.40 
i-105 to i-119 
i-120 to i-134 

17.5 
i-135 to i-149 
i-150 to i-164 

6.30 
i-165 to i-179 

 
Thus, for m = 180, d = 15 and e = 12, the weights 

w are given in Tab. 1. Fig. 6 shows the flow fre-
quency distribution curves for the observed and 
simulated flows, as well as the error between them 
for the calibration period of the test catchment. 

In Fig. 6, it can be verified that for the frequency 
range between 5% and 95%, the percentage errors 
have a mean value of 6.9%. It can be observed that 
for Q95%, the simulated flows in relation to the ob-
served ones differ by only 0.4%. It is also observed 
that at high frequencies in the range of Q98% to 
Q100% there is a distance of 40% between the simu-
lated flows and the observed ones. However, for the 
purpose of this research, which is scaling of power 
generation, this does not represent an obstacle. 
 
4.2 Model validation 
 

In this case, the data period ranges from 
07/05/2000 through 12/31/2006. It is observed that, 
after the model calibration and subsequent system 
memory optimization, the period of the rainfall and 
runoff data sample is exactly 6 years and 180 days, 
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and the 180 days of year 2000 were used as the 
optimized system memory. Fig. 7 shows the flow 
frequency distribution curves observed and simu-
lated and the error between them for the validation 
period. As with calibration, the flow frequency 
distribution curves were simulated for the remain-
ing six years of the validation period, that is, from 
2001 to 2006. 

Through Fig. 7, it can be verified that in the fre-
quencies between 5% and 95%, the percentage 
errors are limited to 10%, having a mean value of 
5.5%. As occurred with calibration, it is also ob-

served that at high frequencies in the range of Q98% 
to Q100% there is a gap of 40% between the simulat-
ed and observed flows. Tab. 2 displays the results 
for the performance criteria of the application of 
SVM to the data for the small catchment. 

According to Tab. 2, it can be observed that the 
estimates made by the SVM are significantly close 
to the observed values. The average errors are low-
er than 5.5% in the intervals between Q5% and Q95%, 
both in the calibration and validation periods. 
 

 

 
 
Fig. 6. Observed and simulated flow frequency distribution curves and the error in the calibration period. 
 

 
 
Fig. 7. Observed and simulated flow frequency distribution curves and the error in the validation period. 
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T a b l e  2.  Performance Criteria of the SVM for the test catchment. 
 

Period Nash-Sutcliffe RMS eQ95% emedium Q95% to Q5% 
Calibration 0.97 0.08 1.7% 3.9% 
Validation 0.99 0.10 7.7% 5.5% 

 
 
4.3. Comparison of SVM results and SLM results 
 

The SVM was applied to data for the period from 
January 1, 1993 and December 31, 1999 for the test 
catchment. Fig. 8 shows the flow frequency distri-
bution curves for the observed and simulated flows 
and the errors for the SVM and SLM models of 
Blanco et al. 2005. 

Fig. 8 shows the improvement of estimates in the 
range from Q90% to Q100% of the SVM in relation to 
the SLM. Since this range is the one containing the 
high frequency values, particularly Q90% and Q95% 
broadly used for design and scaling of hydropower, 
the contribution of this research to the hydrology of 
catchments in the Amazon is thus demonstrated. It 
is further verified that the SVM simulates droughts 
better than the SLM of Blanco et al. (2005). In the 
remaining frequency ranges, the performance of 
both models was very similar, with the SLM having 
a slight advantage. 

Tab. 3 shows the results for the performance cri-
teria for the application of SVM and SLM to the 
test catchment data. 

 
T a b l e  3.  SVM and SLM performance – from 1993 to 1999. 
 

Model R² RMS eQ95% emedium Q95% to Q5% 

SVM 0.97 0.08 1.7% 3.9% 
SLM 0.90 0.14 9.4% 3.7% 

 
It is observed again in Tab. 3 that the SVM simu-

lates high frequency flows better than does the 
SLM, represented by Q95%. Regarding the mean 
error in the interval Q95% to Q5%, this was smaller 
for the SLM than for SVM. This is explained by the 
fact that the SLM develops its projection around the 
mean value for the period, whereas the SVM oper-
ates considering the weighted daily rainfall function 
z(t) and soil moisture in the basin u(t) with 
memory, so that the simulated flows incorporate the 
effect of the rainfall that occurred during the 
memory of the previous 180 days. 
 

 

 
 
 
Fig. 8. Observed and simulated flow frequency distribution curves by the SVM and SLM and errors for the calibration period. 
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4.4 Sensitivity analysis for the SVM 
 

A sensitivity analysis for the model in relation to 
the size of the rainfall/runoff samples was carried 
out. The flow frequency distribution curves simu-
lated with the truncated samples should be similar 
to the validation curves. The analysis allows for 
estimating the time required for applying the model 
to catchments having no flow data. The data used in 
model calibration were progressively reduced by 1 
year, whereas at each reduction, model calibration 
was conducted and applied to the 6 years (2001–
2006) of rainfall data used in the model validation 
for simulation of the flow frequency curve. Tab. 4 
shows the calculated values for the performance 
criteria according to the extended calibration peri-
od. By analyzing the table, it was verified that the 
quality of the performance criteria that were con-
sidered decreases considerably when the data sets 
are reduced to 1 year. Thus, it was concluded that 
1.5 years is the minimum data set needed for apply-
ing the model. 
 
T a b l e  4.  Performance criteria for sensitivity analysis. 
 

Period 
(years) 

Nash-
Sutcliffe 

RMS eQ95% emediumQ95% 

to Q5% 

6.5 0.99 0.10 7.7% 5.5% 
5.5 0.98 0.18 2.6% 5.2% 
4.5 0.98 0.18 3.2% 5.0% 
3.5 0.99 0.15 4.5% 5.7% 
2.5 0.98 0.16 5.3% 5.5% 
1.5 0.99 0.13 5.4% 6.8% 
1.0 0.47 0.88 23.1% 68.5% 

 

 
 
Fig. 9. System memory optimized for 1.5 years. 
 

In the case of optimizing m for the truncated se-
ries, Fig. 9 shows the results for the optimization of 
m related to the minimum series, that is, 1.5 years, 
for the period ranging from July of 1998 to Decem-
ber of 1999. For the other truncated series of 1.5 

years within the 6.5 years that were analyzed, the 
results were also equal to m = 180 days. 
 
T a b l e  5.  w in function of n interval for the sensitivity anal-
ysis. 
 

Interval for n w [%] 
i to i-14 

8.00 
i-15 to i-29 
i-30 to i-44 

14.0 
i-45 to i-59 
i-60 to i-74 

11.0 
i-75 to i-89 
i-90 to i-104 

8.00 
i-105 to i-119 
i-120 to i-134 

6.00 
i-135 to i-149 
i-150 to i-164 

3.00 
i-165 to i-179 

 
Thus, for m = 180, d = 15 and e = 12, the weights 

w are given in Tab. 5. Fig. 10 compares the simu-
lated flow frequency distribution curves with cali-
bration periods of 6.5 years (maximum) and 1.5 
years (minimum). It shows that the maximum per-
centage errors are lower than 15% for flow rates 
between Q5% and Q95%,, the average errors being 
lower than 6.8%. This comparison demonstrates 
that the model satisfactorily simulates the flow 
frequency distribution curve for the test catchment 
except for the flood flows, whether with the 6.5-
year sample or with that of 1.5 years. This analysis 
also determined that the flow frequency distribution 
curves are comparable, whenever the month of July 
is taken as origin for the period between 1993 and 
1999. However, only the results for the period be-
tween July 1998 and December 1999 are presented 
(Fig. 10). In that case, this paper established two 
periods of drought in order to position the floods in 
the region, which occur between the months of 
January and June. As for Blanco et al. (2005), they 
established two flood periods to position the 
droughts and thus establish the sample that simu-
lates the entire hydrograph. The difference between 
these two results stems from the difference between 
the sources taken by the two models: that of Blanco 
et al. (2005) takes as its source the month of Janu-
ary; whereas the optimized model of this paper 
takes the month of July as the source. Nevertheless, 
from the hydrological viewpoint, the results are 
similar, since both models require a full hydrologi-
cal year plus the repetition of a period of flood or 
drought to establish the minimum sample that is 
characteristic of the hydrology of the test catch-
ment. 



A non-linear rainfall-runoff model with a sigmoid gain factor to simulate flow frequency distribution curves for Amazon 

155 

 

 
 
Fig. 10. Simulated flow frequency distribution curves and errors for calibration periods of 6.5 years and 1.5 years. 
 
5. Conclusions 
 

The concept of Sigmoid-Variable Gain Factor 
Model (SVM) adopts the physically realistic as-
sumption of a gain factor varying in a sigmoid form 
with the prevailing moisture in the basin soil; it is 
assumed as the function of the weighted daily rain-
falls for the previous 180 days. The result is a sim-
ple non-linear model, which satisfactorily repre-
sents the rainfall-runoff phenomenon, considering 
the nonlinearity caused by infiltration and evapora-
tion, making it adequate in terms of the reality of 
the available data (mostly rainfall data) for catch-
ments in the Amazon. 

The results from the application of the model be-
gan with the optimization of the system memory, 
m, which had as objective functions R² and RMS, 
which were also used as performance criteria for 
the model, resulting in an optimized memory, m =   
= 180 days. Optimization of memory m = 180 days, 
beginning in July, coincides with the dry season, 
from July to December in the region, thus strength-
ening the simulation of high frequency flows. 

With the optimization of the system's memory, 
the data for the catchment could be applied in the 
SVM, resulting in a satisfactory simulation of the 
frequency distribuition curve, which showed mean 
errors of less than 3.9%, when compared with the 
frequency distribuition curve observed, in the inter-

vals between Q5% and Q95% during the calibration 
period, and less than 5.5% in the validation period. 

It can also be observed that the SVM has im-
proved performance in relation to the SLM in the 
range of from Q90% to Q100%. This range contains 
the high flow frequency values, particularly Q90% to 
Q95% widely used for sizing designs of hydroelectric 
projects. Thus, the contribution of this paper to the 
hydrology of catchments in the Amazon, as pre-
sented here, is demonstrated by the fact that the 
SVM simulates droughts more adequately than the 
SLM of Blanco et al. (2005), as mentioned herein. 
In the remaining flow frequency ranges, the per-
formance of both models was very similar, with a 
slight advantage for the SLM. 

In the sensitivity analysis, the performance crite-
ria adopted were the Nash-Sutcliffe coefficient (R²), 
the RMS, the errors of Q95%, and the mean errors 
between Q5% and Q95%. R² was always observed as 
being greater than 98%, except during the calibra-
tion period of 1.0 year, which was considered un-
satisfactory. The mean errors are all lower than 
6.8%, except during the calibration period of 1.0 
year, which was also considered unsatisfactory. 
Therefore, 1.5 years is the minimum time for apply-
ing the model to Amazon catchments lacking data, 
which are located in hard-to-access areas, making it 
important to estimate that time in planning the work 
site. 
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The application of SVM in the test catchment 
under consideration shows that this approach is 
promising, as it presents results for the simulated 
flow frequency distribuition curve significantly 
close to the observed flow frequency distribuition 
curve, thus providing realistic results for the sizing 
designs of hydropower production using Small 
Hydroelectric Power Plants in the Amazon. 
 
List of symbols 
 
dt – time derived, 
dτ – time derived, 
e – exponential function, 
e – subintervals j of d days, 
e(t) – output error in function of time, 
e% – percentage errors, 
emediumQ5%toQ95% – average of percentage errors in the interval 

between the flow rates from Q95% to Q5% frequency, 
G – gain factor, 
Go – observed gain factor, 
Gs – simulated gain factor, 
h(τ) – normalized unit impulse response function, 
Fo – observed effective flow rate/weighted rain factor, 
Fs – estimated effective flow rate/weighted rain factor, 
m – system memory [day], 
n – total number of observations, 
Qb – basic flow rate [m³ s-1], 
Qo – observed flow rate [m³ s-1], 
Qs – simulated flow rate [m³ s-1], 

oQ  – average observed flow [m³ s-1], 

Q5% – 5% frequency flow [m³ s-1], 
Q10% – 10% frequency flow [m³ s-1], 
Q95% – 95% frequency flow [m³ s-1], 
Q98% – 98% frequency flow [m³ s-1], 
RMS – root mean square [m³ s-1], 
R² – Nash Sutcliffe coefficient, 
SLM – Simpe Linear Model, 
SVM – Sigmoid-Variable Gain Factor Model, 
T – calibration period [day], 
t – time [day], 
U(τ) – unitary impulse response function, 
u(t) – soil moisture function, 
x(t) – basin daily rain [mm day-1], 

y(t) – effective flow rate due to precipitation at the mouth    
of the basin [m³ s-1], 

wj – weight of weighted rainfall and soil moisture functions,  
z(t) – weighted rain function [mm day-1], 
τ – time [day]. 
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