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The paper by Jaruskova and Hanek (2006) advocated application of the peaks over threshold method
(POT method) for estimating the probability that a precipitation or discharges series exceeds a chosen high
level. If daily precipitation amounts or average discharges are obtained at several stations one might be
interested in estimating the probability that in the same time all variables of interest, e.g. precipitation
amounts measured at several stations, exceed some chosen high levels. The paper explains how the method
based on the point process approach may be used to get good estimates of such probabilities. Moreover, it
presents some useful parametric models that were successfully applied by the author to some precipitation

and discharges series of northern Moravia.
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Clanek navazuje na préaci Jaruskovd, Hanek (2006), kde autofi doporudovali pouzivani metody $picek
nad prahem k odhadu pravdépodobnosti, s jakou srazkova nebo prutokova fada prekroci danou vysokou
uroven. V piipadé, ze se denni srazkova ¢i prutokova fada méfi ve vice stanicich, miize nas zajimat, s jakou
pravdépodobnosti soucasné (to znamena ve stejny den) vSechny studované fady, to je napfiklad srazkové
fady méfené v nékolika stanicich, prekro¢i n&jaké predem stanovené vysoké urovné. Clanek vysvétluje, jak
lze k odhadu takovych pravdépodobnosti pouzit metodu zalozenou na bodovém procesu. Zaroven uvadi
nekteré parametrické modely, které byly uspé$né pouzity autorkou ¢lanku pro odhady pravdépodobnosti
prekroceni pro srazkové a prutokové fady na severni Morave.

KLICOVA SLOVA: srazkové a pritokové fady, pravdépodobnosti prekro¢eni vysoké trovng, modelovani
chvostll vicerozmérného rozdéleni, metoda Spicek nad prahem, modelovani struktury zavislosti, funkce

zavislosti chvostil dand v inverznich argumentech.

Introduction

Estimating high annual return levels of precipita-
tion and discharges series is one of the basic prob-
lems of statistical hydrology. The problem has its
parallel in estimating the probability that some
given level is exceeded. The first problem consists
in finding an appropriate level u, for a given a so
that P(X > u,) = a, the second one consists in esti-
mating P(X > x) for some real x. The variable X
corresponds to a quantity of interest, e. g. a daily
precipitation amount or a daily average discharge.

If daily measurements during several years are
available, we may try to create a reasonable prob-
abilistic model for the distribution of the studied
variable. If we are interested in the probability of
exceedance of some large value x, the method of
peak over threshold (POT method) described in
Jaruskova and Hanek (2006) may be applied. The
basic idea of the POT method is that the domain of
possible values of the variable is split into two
parts, i.e. below and above a chosen threshold. The
tail above the threshold is estimated by a tail of
extreme value distribution, i.e. by a generalized
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Pareto distribution. The POT method belongs to a
field of mathematical statistics known as “statistics
of extremes”. The overview of stochastic methods
suggested for studying different extremal problems
in hydrology has been presented by Katz et al.
(2002).

Extreme weather conditions are often character-
ized not only by a very heavy rain at one site, but
rather by a heavy rain on a vast area so that daily
precipitation amounts at several meteorological
sites across the area are large. Here we may be in-
terested in estimating the probability

P(Xl >x1,...,Xk >xk)=S(x1,...xk), (1)

where X; represents a daily precipitation amount at
the i-th station. Similarly, supposing that a river has
k tributaries, we may be interested in estimating (1),
where X; represents a daily average discharge of the
i-th tributary.

In the language of mathematical statistics we
suppose that our observations are realizations of
independent & dimensional vectors {(X;, ..., Xi), i =
=1, ..., n} with a distribution function F(xy, ..., xx).
The goal of the statistical inference is to estimate
(1) for large values xi, ..., xx. We would like to re-
call that for any dimension k there exists a relation-
ship between the exceedance probability (survival
function) S(xi, ..., x;) and the corresponding distri-
bution function F(xi, ..., x;) given by a so called
union-intersection formula. For instance for a two
dimensional vector (X;, X5) it holds:

S(XI,XZ)ZP(XI >x1,X2 >XZ)=
=1-F(x)—F(x)+F(x,xp). (2)

Similarly, for a three dimensional vector (X, X3, X3)
it holds:

S(xl,xz,x3)=P(X1 >x1,Xp >x,X3 >x3,)=
=1-F(x)=F(x) = F3(x3) + Ry (xg,0p) +
+Fi3(x1,x3) + Foz (xp,%3) = F (%32, 33), 3)
where Fy, F», F3, F1,, F13, F»; are the distribution
functions corresponding to the lower dimensions.

Point process approach method

One of the methods for estimating (1) may be
based on the point process approach. Joe et al.
(1992) and Coles and Tawn (1991, 1994), who used
the theoretical results by De Haan and Resnick
(1977), worked out a procedure for application of

this approach to real data. The method has been
also explained in details by Beirlant et al. (2004).
Its advantage consists in the fact that for a good
estimates of (1) we do not need to estimate the dis-
tribution function F(xy, ..., x;), respectively the sur-
vival function S(xy, ..., x;), in its whole domain but
it is sufficient to find a good estimator for large
values of arguments only.
Estimating is made in two steps.

Step 1

In the first step the one-dimensional distribution
functions F, ..., I are estimated. Usually we esti-
mate the marginal distribution functions Fi, i = 1,
..., k, by the peak over threshold method, i.e., we
choose subjectively a threshold «; and we estimate
the distribution function below u;, i.e. x < u;, by a
non-parametric estimate, e.g. by an empirical dis-
tribution function (or by its continuous version),
while above u;, i.e. for x > u;, by a generalized
Pareto distribution:

£ -/¢
I-{1+=(x- , 0,
{Jrﬂ(x u)+j E#

l—e_(x_u)+/ﬂ,

FP(x)z
=0, 4)

where the parameters f; > 0 and &; are estimated by
their maximum likelihood estimates. (We denote a-
= max(a,0)). The detailed description of the POT
method may be found in Jaruskovd and Hanek
(2006).

Using the above procedure we get the estimates
of the one-dimensional marginal distribution func-
tions for all coordinates i =1, ..., k.

Step 11

In the second step we estimate the “dependence
structure”. If we supposed for a while that all the
one-dimensional marginal distributions would have
been known we could transform the variables into
the variables with any desired marginal distribu-
tions. One possibility would be to transform them
into variables with standard normal marginals and
to model the dependence structure by their correla-
tion matrix. Clearly, in reality we do not know the
right marginal distributions, but on the other hand,
we can suppose that our estimates from the step I
are so good that they differ from the right marginal
distributions only negligibly. Fig. 1 shows a scatter
plot of daily precipitation amounts at two chosen
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stations and Fig. 2 shows a scatter plot of the trans-
formed values

(qs—l (B (i) @7 (B (xi2)) ) i = Lo, (5)

where @' denotes the inverse standard normal dis-
tribution function and 1:“1 and ]:“2 — empirical dis-
tribution functions that serve as estimates of the
distribution functions F;, F>,. We can see that the
scatter plot in Fig. 2 does not look as a scatter plot
of realizations of bivariate normal distributions
with standard normal marginals. The transformed

Instead of transforming the variables into the
normally distributed variables we suggest that the
variables are transformed into the variables distrib-
uted according to the standard Fréchet distribution
with the distribution function G(x) = exp (-1/x) for
x > 0 and the inverse distribution function G™'(f) =
= —1/log(¢) for 0 < ¢ < 1. Theoretically, we use the
transformation 2, = -1/log(Fi(X1)), .., Z;y =
=—1/1og(F(Xy)). Practically, it means that we trans-
form the data vectors (x;1, ..., X), £ = 1, ..., n into
the vectors

data exhibit stronger dependence in the upper tail ( Zip o Z‘k)= _ 1 o 1 ‘
than we would expect from realizations of a bivari- e 10g( 131 ( Xj )) T 10g( ﬁk ( Xik ))
ate normal vector. Clearly, the idea to transform the
variables into the variables distributed according to (6)
the normal distribution is not good.
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Fig. 1. Scatter plot of daily precipitation amounts measured in two stations.
Obr. 1. Rozptylovy graf dennich srazkovych thrnti métenych ve dvou stanicich.
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Fig. 2. Scatter plot of daily precipitation amounts measured at two station after transforming the data into standard normal variates

using (5).

Obr. 2. Rozptylovy graf dennich srazkovych uhrni métenych ve dvou stanicich po transformaci na normalné rozdélené veli¢iny

za pouziti (5).

The idea to approximate the upper tail of a mul-
tivariate vector (Z1, ..., Z;) by a tail of extreme value
distribution comes from De Haan and Resnick
(1977). They proved that a subset of the trans-
formed data with all coordinates exceeding high
thresholds form a point process that can be ap-
proximated by a Poisson process defined on R* with
a nonhomogeneous intensity measure 4. The con-
nection between the measure 4 and the distribution
function of the transformed variables Z, ..., Z; for
(z1, ..., zx) large can be expressed with the help of a
so-called inverse arguments tail dependence func-
tion 4 as follows:

P(Zl < Zl""’Zk < Zk) ~ e_A(Zl,,..,zk),
A(Zl,...,Zk)ZA(((O,Zl)X...x(()’Zk ))c), o

where ((0, z;) x ... X (0, z;))* is a complement of the
multidimensional rectangle ((0, z;) X ... x (0, z)).
For more information see Beirlant et al. (2004).

The advantageous property of 4 is the following.
If we transform the Cartesian coordinates (zi, ..., zx)
into the coordinates (7, w1, ..., w;) (that resemble the

spherical coordinates) by the transformation » = z,
+ ...+ z, 0] = 7)/r, ..., w; = z;/r then the intensity
measure A factorizes:

A(dr,dw)=R(dr)H (dw) (8)

with the measure R having a density function g(r) =
= 1/#* for r > 0. The measure H, usually called the
spectral measure, is given on the set S, = {(w, ...,
wp), 0;>20,i=1,...k o +.+tw,=1},eg. fork=
= 2 the measure H is given on the vertex { (0, 1),
(1, 0) }; for k= 3 the measure H is given on a trian-
gle {(1,0,0), (0,1,0), (0,0,1) }. The factorization (8)
means that for any Q < §;

A{(r,a));r >nNoe Q}
{A(r,a));r>r1} B
A{(r,co);r > ﬂa)eQ}
- {A(r,a));r>r2} '
The goal of the statistical inference in the step 2
is to estimate the spectral measure H. We know that

a Poisson process with an intensity measure A is a
good approximation for the subset of data that are

)
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far away from the origin. In practice it means that
we choose subjectively some threshold ro, trans-
form the values {( zj,..., z&), i =1, ..., n } into {(r;,
Wiy ...y @), I =1, ..., n} by the above introduced
transformation and deal with the subset of data ©2,,
= {(r,wi, ..., @), ¥>ro } only. Factorization (8) of
A enables to find an estimate of the spectral mea-
sure H or its density 4 if it exists. Instead of dealing
with A(w, ..., w;) on the set S; we often estimate
hS(Cl)l, ceey a)k—l) = h(a)1, cees 1 - |1— ... — C!)k_1), 1.e. for
k =2 we estimate i, (w) = h(w,1— w), for k=3 we
estimate A (w1, @2) = h (w1, @y, 1— W — w,) etc.
Most frequently we model the function /4, by a
known mathematical function with unknown pa-
rameters (0, ..., 6,) and estimate these parameters
by their maximum likelihood estimators. More
precisely we search such values of parameters that
maximize

. > log A (a)l-l,...,a)l-’k_l;Hl,...,Hp).
{z,(r,-,a),-l,...,a)l-k)eQm}
(10)
After having estimated the spectral density we
may proceed by estimating the inverse arguments
tail dependence function 4 by replacing the true
density function / by its estimate h in the expres-
sion (11). For some models there exists an explicit

formula for the integral (11), for some others the
integral has to be calculated numerically.

A(Zl,...,Zk):ISk ma){ﬂ,...,%Jx

%
(1D

Replacing the tail dependence function 4 in (7)

xh(ay,...w)doy....day.

by its estimate A the multivariate distribution func-
tion may be approximated for large values of argu-
ments by

Is'(xl,...,xk) &
P —1 -
tog (£ ()" log (A ()

Finally, the exceedance probability may be cal-
culated using the union-intersection formula.

~ expy —

(12)

Models

We present here several models that belong to a
family of so-called logistic distributions. It is con-

venient that the inverse arguments tail dependence
function has an explicit expression so that no nu-
merical integration (11) is needed.

Bivariate logistic distribution

The spectral density function % has the form:

h(o, ;)=
1/p-2

(1Y (1Y
o o (13)
while for the function 4 it holds:

FORN (7% oUW, .

Z )

(14)

The model has one parameter ¢ > 1 that ex-
presses the dependence between the variables. The
larger the value of ¢ the stronger the dependence.
Sometimes instead of the parameter ¢ the parameter
o =1/ is used.

Multivariate symmetric logistic distribution

The model is a generalization of the preceding
bivariate logistic model for £ > 2. It has one pa-
rameter 7 > 1 that expresses the over-all depen-
dence. The larger the value of » the stronger the
dependence. The assumption that the dependence
between any couple of variables X;, X;, i #j,i,j =1,
..., k 1s the same, seems to be too restrictive but the
model gives very often reasonable results and is
easy to deal with. The spectral density has a follow-
ing form:

h(ay,....0p )=
k-1 o YUk Yrk
=H(jr—1)(Ha’jJ 2 — (15)
j=1 j=1 j=10j
The function 4 may be expressed as follows:
_ A\
A(zl,...,zk)z(zlr+...+zkr) . (16)

Trivariate asymmetric logistic distribution

To capture the dependence between any pair of
variables is not an easy task. It is possible to do it
for the three dimensional case by the following
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model. We applied this model to estimate the ex-
ceedance probabilities for the precipitation series
measured at three meteorological stations. The
spectral density has a following rather complicated
form, see Eq. (17):

where

1

h( @y, @, 05)=

_16{1 1 1} o1 -
Y 0’ 0° 0| 611 6+ o+1°
2 &) 207 3 Jo " )" @f"

1
137

a(1:72.73) =(0-1)(20-1)| (35 + 97 1 + (552 + 57 )2

2 1

1 2

) — - <
5 &, 3 Si-1 d-1. 51 (.81, & 52 5 Si-1_Sp-1_5p-1
(yzl +y151)51 (y22 +y32)52 e +(y21 +y11)51 (y2 +y32)52 yayoat ot

1
1 1 Vg2

+(6-1)0. (yfl +y§1 )El +(y§2 +y352 )572

1 1

. )
5 & 5 & 1 5y-1_Sy-1
(52—1)(y21+y11)51 (y22+y32)52 3’151 oSS

1 1

L L)
1) o O -1 o1-1
H(E D2 w22 (s e

The function 4 may be expressed as follows:

A(ZI,ZQ,Z3)=

S

(19)

The model has three parameters 6 > 1, J, > 1, d,
> 1. The parameter 6 expresses the baseline de-
pendence between the variables Z;, Z;, while the
parameters 0, and J, add some dependence to the
respective pairs Z;, Z, and Z3, Z,.

Applications

The studied data are daily measurements, i.e. the
daily precipitation amounts or the average dis-
charges. We are interested in the probability that in
the same day the measurements in all stations ex-

(18)

0p-1
3 .

ceed certain given levels. Of course, we are espe-
cially interested in high levels that are on the border
of the domain where the values were observed, or
even beyond it, it means in such levels where it is
unreasonable to use relative frequencies as estima-
tors.

There are two aspects that should be considered
when studying daily measurements. The first one is
the dependence between the neighboring observa-
tions and the second one is the seasonality. It was
shown by Jaruskova and Hanek (2006) that if these
aspects are not taken into account then exceedance
probabilities are usually slightly overestimated. The
problem of seasonality may be solved by splitting
the series into more homogeneous parts corre-
sponding to different seasons. The problem of de-
pendence is more difficult to solve. If we are inter-
ested in the probability that a daily measurements
exceed some given levels we can use a declustering
technique to get a good estimate. However, the
probability that during a year the measurements in
all stations will exceed in the same day the given
levels may be affected by this dependence. Despite
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suggestions of different authors a simple way how
to incorporate the dependence into the model does
not exist .

Example 1

The data describes daily average discharges [m’
5] of Opava and Opavice measured at Krnov in the
period 1. 11. 1963 — 31. 10. 2003, i.e. the both se-
ries consist of n = 16 071 observations. We denote
by X, a daily average of Opava while by X, a daily
average of Opavice. Suppose that we are interested
in P(X,> x1, X5 > x,) for (x1, x,) = (40, 20), (45, 25),
(55, 30), (100, 50).

We proceed in two steps. In the first step we es-
timate the marginal distributions of X; and X, by
the POT method. The thresholds are chosen to be
equal to the 95% quantiles of the observations.

Table 1. The chosen thresholds and the estimates of the
parameters of the generalized Pareto distributions for estimat-
ing the marginal distribution functions of daily discharges of
Opava and Opavice.

Tabulka 1. Vybrané hodnoty prahi a odhady parametri
Paretova rozdéleni pro odhady marginalnich distribuénich
funkcei dennich prutokd Opavy a Opavice.

A A

River u; Jy ¢,
Opava 11.50 4411 0.404
Opavice 4.58 2.430 0.425

In the second step we transform the observed
values and maximize (10) with the spectral density
function % given by (13). The max-likelihood esti-
mate of the parameter ¢ of the bivariate logistic

distribution is 2.627. The histogram of the angular
components {w;;, i = 1, ..., n} together with the
spectral density function Ayw;) = h(w;, 1 — w;)
given by (13) is shown in Fig. 3. We see that the fit
is not bad.

Tab. 2 presents the estimated exceedance prob-
abilities using the bivariate logistic model (column

Table 2. The exceedance probabilities P(X; > x;, X; > x,)
estimated by the suggested method and by the relative frequen-
cies.

Tabulka 2. Pravdépodobnosti pfekroc¢eni P(X| > xi, X5 >
x;) odhadnuté navrhovanou metodou a relativnimi ¢etnostmi.

(x1, x2) Estimates of Relative frequencies
probabilities
(40, 20) 0.00153 0.00161
(45, 25) 0.00103 0.00118
(55, 30) 0.00065 0.00062
(100, 50) 0.00017 0.00012

2). Column 3 shows the estimates of the same
probabilities by simple relative frequencies. It
seems that the estimates based on the stochastic
model agree well with the relative frequencies.
However, for larger values of arguments they
slightly overestimate the probabilities of interest.

Example 2

To assess the probability of extreme wet weather
conditions we have chosen three station in northern
Moravia with different precipitation characteristics
located not extremaly close to each other: Heft-
manovice (HE), Albrechtice — Zary (ZY), Lichnov
(LI). The data set consists of n = 15131 daily pre-
cipitation amounts [mm] measured at each of these
stations from the period 1/1/1960 — 6/2/2005 (some
data are missing).

In the first step we estimate the marginal distri-
bution functions using the POT method with the
thresholds equal to the 95% quantiles of all obser-
vations. Tab. 3 presents the threshold values and
the parameters of the Pareto distribution.

Table 3. The chosen thresholds and the estimates of the
parameters of the generalized Pareto distribution for estimating
the marginal distribution functions of daily precipitation
amounts at Hefmanovice, Albrechtice — Zary and Lichnov.
Tabulka 3. Vybrané hodnoty prahii a odhady parametrt
Paretova rozdéleni pro odhady margindlnich distribu¢nich
funkei dennich srazkovych uhrnii ve stanicich Hefmanovice,
Albrechtice — Zary a Lichnov.

N A

Station u,; yiy &,
HE 12.4 9.17 0.24
Y 11.0 7.80 0.08
LI 9.5 7.50 0.04

In the second step we transform the data and
model the dependence structure by a trivariate
asymmetric logistic distribution. Fig. 4 presents a
scatter plot of two first angular components calcu-
lated from the studied data.

The estimates of the parameters of the asymmet-
ric logistic distribution obtained by the maximum
likelihood method, i.e. by maximizing (10) with 4

defined by (17) are equal to 0 = 1.773, 51 =
= 1235, 5, = 1.221. For comparison we also

model the dependence structure by a trivariate
symmetric logistic distribution with the spectral
density (15). The maximum likelihood estimate 7
=1.81.
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TOR

2

Fig. 3. Histogram of the angular components corresponding to daily average discharges of Opava and Opavice and the estimated
spectral density of bivariate logistic model.

Obr. 3. Histogram uhlové slozky spoctené z dennich primérnych pritokd Opavy a Opavice a odhadnuta spektralni hustota logis-
tického rozdéleni pro dvé proménné.

Fig. 4. Scatter plot of the first two angular components corresponding to the daily precipiation amounts measure at the stations HE,
RE, LL

Obr. 4. Rozptylovy graf prvnich dvou thlovych slozek pocitanych z dennich srazkovych tthrnti métenych ve stanicich HE, RE, L1.
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Tab. 4 shows the estimated exceedance prob-
abilities for several triples of levels. The real ex-
ceedance frequency was equal to O for all consid-
ered triples.

Table 4. The estimated exceedance probabilities P(X; > x,,
X, > x5, X3 > x3) when the dependence structure was modeled
by the asymmetric logistic distribution (column 4) and by the
multivariate symmetric distribution (column 5).

Tabulka 4. Odhadnuté pravdépodobnosti piekroceni P(X;
> x1, Xo > x5, X3 > x3), jestlize byla zavislost mezi proménnymi
modelovana pomoci asymetrického logistického rozdéleni
(sloupec 4) nebo pomoci vicerozmérného symetrického roz-
déleni (sloupec 5).

X X5 X3 Estimated Estimated

probability probability
75.0 833 34.5 56.9 10° 30.0 10°
1089 509 51.1 162.6 10 183.1 10°¢
196.5 1250 519 3.9 10° 2.3 10°
1333 57.0 20.0 117.3 10 102.6 10

Conclusion

We have described a method for estimating the
probability that several series exceed at the same
time, e.g. in the same day, some chosen levels. The
method is a generalization of the peak over thresh-
old method for a multivariate case. The method is
based on the idea that a tail of a multivariate distri-
bution may be approximated by a tail of a multi-
variate extreme value distribution. Unlike as in a
one-dimendional case, in the multivariate case the
tail of an extreme value distribution cannot be de-
scribed by a parametric family of distributions but
there exists a relationship between a multivariate
extreme value distribution and an intensity measure
of a point process. The goal of the statistical infer-
ence is to estimate an angular component of this
measure. For estimating the spectral density we
recommend a parametric family of distributions
that is called a multivariate logistic distribution
family.

Our experience with application of multivariate
logistic distributions for modelling a dependence
structure between discharge series as well as pre-
cipitation series is good. However, we have to ad-
mit that exceedance probabilities for very high lev-
els were usually slightly overestimated. Moreover,
while the method is not difficult to apply when we
deal with two or three variables, modelling the de-
pendence structure for a vector with more than
three components is a rather complicated problem.
In such a case we have to simplify the situation, e.g.
to suppose that the dependence between any two

variables is the same and to use a multivariate
symmetric logistic distribution.

The hydrologists like to estimate the probability
given in years rather than in days. The quality of
estimates is affected by seasonality and dependence
between observations in subsequent days. The ef-
fect of these two factors in one-dimensional case
was discussed by Jaruskova and Hanek (2006). In
the multivariate case the situation is similar. Ac-
cording to our experience, despite the mentioned
problems the method yields reasonable results.
Acknowledgemen. The study presented was partly
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MSM6840770002, GACR 201/09/0775.
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ODHADOVANI{ PRAVDEPODOBNOSTI
PREKROCENI VYSOKYCH UROVNI POMOCT
METODY BODOVEHO PROCESU S APLIKACEMI
PRO SRAZKOVE A PRUTOKOVE RADY

NA SEVERNI MORAVE

Daniela Jaruskova

Metoda popsana v ¢lanku umoznuje odhad pravdépo-
dobnosti, s jakou n¢kolik ¢asovych fad ve stejnou dobu
prekroci stanovené vysoké hodnoty. Jedna se o statistic-
kou metodu, kterd na zakladé naméfenych dat a vhodné
zvoleného modelu odhaduje pravdépodobnosti prekroce-
ni velmi vysokych trovni, to znamend napitiklad i tako-
vych arovni, které béhem doby méfeni nikdy nebyly
ptekroceny.
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Z matematické teorie extrému plyne, Zze vhodnym sto-
chastickym modelem pro modelovani distribu¢ni funkce
vicerozmérného rozdé€leni pro velké hodnoty argumentd,
tj. pro modelovani takzvanych ,,chvostd rozdéleni®, jsou
,,chvosty* vicerozmérnych extremalnich rozd¢leni. Vice-
rozmérna extremalni rozdéleni vsak netvoii jednu para-
metrickou tfidu, pouze maji urcité charakteristické vlast-
nosti, které musi mit i hledany model. Vhodny model je
tieba vybrat na zakladé zkuSenosti s podobnymi typy
problémi. Pfi volbé modelu je tieba vzit v tvahu jak
shodu modelu s daty, tak i vypocetni slozitost tilohy.

Metoda bodového procesu je zobecnénim metody Spi-
¢ek nad prahem (POT metody) pro vicerozmérny pfipad.
Odhad distribu¢ni funkce ndhodného vektoru pro velké
hodnoty argumentti probihd ve dvou krocich. V prvnim
kroku se odhaduji distribu¢ni funkce jednotlivych slozek
vektoru pomoci POT metody a v druhém se odhaduje
zavislost mezi slozkami pro velké hodnoty argumenti.
Jednim z moznych modelti pro modelovani zavislosti je
ttida logistickych rozdéleni. Nase zkusenosti ukazuji, Ze
se da tento model Gspésné pouzit pro vektor se dvéma i
tfemi soutfadnicemi.

Z praktického hlediska je modelovani vSech moznych
zévislosti pro vektor s vice nez tfemi slozkami velmi
obtizné. Navrzenou metodu jsme pouzili pro odhad
pravdépodobnosti piekroceni vysokych urovni pro sraz-
kové a pritokové fady zjedné oblasti severni Moravy.
Jedna se o tady, které byly podrobné studovany v ¢lanku
Jaruskové a Haneka (2006). Odhadovali jsme pravdépo-
dobnost, ze dvé, pripadné tfi fady méfené v riznych
stanicich prekro¢i ve stejnou dobu urcité stanovené hod-
noty. Pro hodnoty, které jsou niz$i nez dosazena maxima
jsme porovnavali odhady ziskané pomoci popsané meto-
dy s pouzitim logistickych modeli s relativnimi ¢etnos-
tmi. Zda se, ze shoda mezi obéma odhady je dobra. Ci-
lem statistické inference je vSak predevsim odhadnout
pravdépodobnosti piekroceni urovni, které lezi mimo
oblast naméfenych dat. Kvalitu takovych odhadl vsak
mohou provéfit jen budouci méfeni.

Popsana metoda vychazi z asymptotickych teoretic-
kych vysledkli pro nezavislé stejné rozdélené nahodné
vektory. Je zfejmé, Ze tyto predpoklady nejsou pro denni
srazkové a prutokové fady splnény. ZkuSenost ukazuje,
ze v takovém piipad¢ jsou odhadnuté pravdépodobnosti
obvykle trochu vys$si nez skute¢né hodnoty.

Na zavér bych rada zdlraznila, Ze navrzena metota,
podobné jako POT metoda v jednorozmérném piipade,
by méla slouzit jen jako metoda pomocna.

Seznam symbolii

S(xy, ..., x, ) — pravdépodobnost ptekroceni (funkce preziti),

F(x, ..., x; ) — sdruzena distribu¢ni funkce,

FP(x) — distribucni funkce zobecnéného Paretova roz-
déleni,

u — prah pro zobecnéné Paretovo rozdéleni,

&P — parametry zobecnéného Paretova rozdéleni,

N N

E, B — odhady parametrii zobecnéného Paretova roz-
déleni,

@' —inverze distribu¢ni funkce standardniho nor-
malniho rozd¢leni,

G — distribu¢ni  funkce standardniho Fréchetova
rozdéleni,

2y ey Zy — transformované veli¢iny se standardnim Fré-
chetovym rozdélenim,

A(zy, ..., zy) — funkce zavislosti chvostd,

A — intenzita nehomogenniho Poissonova procesu,

H — spektralni mira,

h — spektralni hustota,

o — parametr spektralni hustoty dvojrozmérného

logistického rozdéleni,
r — parametr spektralni hustoty vicerozmérného
symetrického logistického rozdéleni,
— parametry spektralni hustoty tfirozmérného
asymetrického logistického rozdéleni.
F;(x;),i=1, ..., k — margindlni distribu¢ni funkce,
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A
Fi,i=1,..,k — empirické distribuéni funkce.
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