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3D NUMERICAL MODEL OF THE SPHERICAL PARTICLE SALTATION
IN A CHANNEL WITH A ROUGH FIXED BED
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The paper describes a 3D numerical model of the spherical particle saltation. Two stages of particle salta-
tion were distinguished — the particle free motion in water and the particle-bed collision. The particle mo-
tion consists of the translational and rotational particle motion. A stochastic method of calculation of the
particle-bed collision was developed. The collision height and the contact point were defined as random
variables. Impulse equations were used and the translational and angular velocity components of the mov-
ing particle immediately after the collision were expressed as functions of the velocity components just be-
fore the collision. The dimensionless coefficients of the drag force and drag torque were determined as
functions of both translational and rotational Reynolds numbers. The model is in good agreement with
known experimental data. Examples of calculation of the particles’ lateral dispersion and the mean absolute
values of the deviation angle of the particle trajectory are presented.

KEY WORDS: 3D Saltation Model, Bed-Load Transport, Particle-Bed Collision, Particle Rotation, Particle
Lateral Dispersion.

Nikolaj Lukerchenko, Siarhei Piatsevich, Zdengk Chara, Pavel Vlasak: 3D NUMERICKY MODEL SAL-
TACE KULOVITE CASTICE V KORYTE S PEVNYM DRSNYM DNEM. J. Hydrol. Hydromech., 57,
2009, 2; 37 lit., 7 obr.

Studie popisuje 3D numericky model saltaéniho pohybu kulovité ¢astice, v némz jsou uvazovana dveé
faze saltacniho pohybu — volny pohyb céastice v proudici vodé a kolise ¢astice se dnem. Model pocita
s translacnim 1 rota¢nim pohybem castice. Byla vyvinuta stochastickd metoda vypoctu kolise Castice se
dnem. Kolizni vyska a kontaktni bod byly definovany jako ndhodné proménné. Byla pouzita soustava
momentovych rovnic a slozky translacni a rotacni rychlosti pohybujici se ¢astice po kolizi byly vyjadieny
jako funkce slozek rychlosti tésné pred kolizi. Bezrozmérné koeficienty odporu ¢astice a odporu rotujici
Castice byly urceny jako funkce translacniho i rotacniho Reynoldsova cCisla ¢astice. Vysledky modelu jsou
v dobré shodé se zndmymi experimentdlnimi daty. Studie presentuje piiklady vypoctu pficné disperze
Castice a stiedni absolutni hodnoty deviacniho thlu trajektorie castice.

KLICOVA SLOVA: 3D model saltace, pohyb splavenin, kolise ¢astice-dno, rotace &astic, pti¢na disperze
Castic.

1. Introduction

Numerical models of the bed-load transport, in-
cluding its saltation mode, are usually two-
dimensional (e.g. Reizes (1978); Murphy and
Hooshiari (1982); Van Rijn (1984); Wiberg and
Smith (1985); Nino and Garcia (1994); Lee et al.
(2000); Kholpanov and Ibyatov (2005); Luker-
chenko et al. (2006)). However, from the physical
point of view, the saltation process is essentially
three-dimensional. In particular, particle-bed colli-
sion is the main mechanism producing the lateral

dispersion of the saltating particles (Nino and Gar-
cia, 1998; Chara and Viasak, 2000), which can be
described only by the 3D pattern of particle motion.
Similarly, the particle motion in a channel with a
laterally sloping bed can be calculated only using a
3D model (Lukerchenko et al., 2008b).

Sekine and Kikkawa (1992), Schmeeckle and
Nelson (2003) and Lee et al. (2006) developed 3D
models, which do not take into account particle
rotation. However, the experiments of Lee and Hsu
(1994) showed that the particle angular velocity
could reach values of a few tens of revolutions per

100


mailto:vlasak@ih.cas.cz

3D numerical model of the spherical particle saltation in a channel with a rough fixed bed

second during the saltation. The rotation of a parti-
cle moving in a fluid leads to an additional lateral
force — the Magnus force. As shown below, in some
cases, the Magnus force reaches values that are
comparable with values of the drag force.

However, even for small values of the Magnus
force, it plays an important role in the migration of
particles towards or from the bed, because the par-
ticles travel relatively very short distances in order
to approach the bed and even a weak force would
be sufficient to induce them to travel such short
distances (e.g., Michaelides, 2003). Kurose et al.
(2001) showed experimentally that “the effect of
particle rotation should be taken into account in
predicting the particle trajectory in the turbulent
boundary layer, especially for the high particle
Reynolds number”.

In the present paper, a 3D numerical model of a
single spherical particle saltation in a channel with
a fixed rough bed is developed. The particle rota-
tion is taken into account. This model is based on
the well-known 2D model of Nino and Garcia
(1994). They, using the Mei et al. (1991) form of
the Lagrangian governing equations (introduced by
Maxey and Riley, 1983) for the motion of a small
spherical particle in an unbounded fluid, proposed
the system of equations for 2D motion of a sedi-
ment particle in a turbulent boundary layer. Luker-
chenko et al. (2006) introduced the particle rotation
and the vector form of this system of equations,
which also allows the use of this system for the 3D
case.

The particle rotation changes the boundary layer
on the particle surface and thereby also the values
of the drag force. In the present model, the correc-
tion of the drag force coefficient as well as the drag
torque coefficient is performed according to the
experimental data of Lukerchenko et al. (2008a),
which expressed the effect of both the translational
and rotational Reynolds numbers on these coeffi-
cients.

Let us suppose that the particle contacts the
channel bed only at one point during the collision
and define the contact point as the point of the par-
ticle surface, which is in contact with the bed at the
moment of the relevant collision. The particle-bed
collision is a random process because the bed sur-
face is irregular. Therefore, the coordinates of the
particle centre at the moment of collision as well as
the contact point coordinates are also random vari-
ables. A new stochastic method for their calculation
in the 3D case is proposed in this paper.

In the present model, similarly to most models of
saltation, the turbulent fluctuations are neglected
since, according to Bagnold (1973) and Francis
(1973), the effect of turbulent fluctuations doesn’t
play any considerable role in the saltation mode of
bed-load transport. It was also confirmed by the
recent experiments of Ancey et al. (2002) with glass
and steel beads with diameters of 3 mm and 6 mm
that “the trajectory shape is fairly smooth and is
apparently not affected by turbulent variations in
the surrounding fluid.”

In the present paper, the comparison of the calcu-
lated data with experiments of Nino and Garcia
(1998) conducted with natural sand of 0.5 mm in
diameter shows that, even for such relatively small
particles, the turbulent fluctuations’ effect on the
saltation parameters is insignificant.

In agreement with the physical nature of salta-
tion, the numerical model contains two successive
stages. The first one consists of the free particle
motion in water above the channel bed; the second
one is the particle-bed collision. The vectors of the
translational and angular velocities of the particle
immediately after the collision are used as the ini-
tial conditions for the calculation of the trajectory
of the particle moving freely in water and therefore
they must be calculated from their values immedi-
ately before the collision. The impulse equations at
the contact point can be used for this purpose if the
contact point is known (e.g. Matsumoto and Saito,
1970; Tsuji et al., 1985a; Oesterle, 1989; Crowe et
al., 1998; Schmeeckle et al., 2001; Lukerchenko et
al., 2006).

2. The 3D mathematical model of the spherical
particle motion in fluid

If the particle concentration in fluid is suffi-
ciently low, a single particle motion can represent
the motion of all particles and the influence of the
particles on the fluid flow as well as mutual parti-
cle—particle interaction can be neglected.

Let us consider a saltation process of a single
solid spherical particle in an open channel with a
rough bed. A homogeneous spherical rotating parti-
cle of diameter d, and density p, moves in the fluid
of density p and kinematic viscosity v in the chan-
nel with the bed roughness k. The system of equa-
tions for the calculation of the spherical particle
motion in fluid in the 2D case (Lukerchenko et al.,
2006) was written in the vector form and, therefore,
it can also be used in the 3D case with only the
minor differences listed below.
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The downstream, upward, and transverse coordi-
nates are denoted as x, y, and z, respectively. The
following vectors are three-dimensional: the radius-
vector of the particle centre of mass rg,(xy, ¥y, 2,),
the vector of the velocity of the particle centre of
mass v (Vy, vy, v2), the vector of the fluid velocity vy
(V& Vi, Vve), the vector of angular velocity of the
particle rotation around its diameter @ (w,, w,, ®.),
the drag force Fp, the force due to added mass F,,,
the submerged gravitational force F,, the Basset
history force Fp, the Magnus force F),, and the drag
torque of viscous forces acting on the particle M.

The particle motion in fluid is determined by two
dimensionless parameters: translational Reynolds
number (or Reynolds number) Re = |vg| d,/v and
rotational Reynolds number Re,, = |wg| rzp/v, where
vg = v — vy is the vector of particle—fluid relative
velocity, wg = @ — 0.5 rot vy is the particle relative
angular velocity, and 7, = 0.5d, is the particle ra-
dius.

For the description of the translational and rota-
tional particle motion in fluid, another pair of the
independent dimensionless parameters is some-
times used: the Reynolds number Re and particle
dimensionless angular velocity I” = |wg| 7,/|vk| (€.g.
Oesterle and Dinh Bui, 1998; Tsuji et al., 1985b).
Both pairs are equivalent since /"= 2 Re,, /Re.

The formulas for the drag force Fp and drag
torque M are defined using the dimensional analy-
sis and contain the dimensionless drag force coeffi-
cient Cp and drag torque coefficient C,, respec-
tively. If a spherical particle moves in fluid and
simultaneously rotates around its diameter, these
dimensionless coefficients depend on both the Rey-
nolds number Re and the rotational Reynolds num-
ber Re,, (Lukerchenko et al., 2008a):

Cp = Cpy (140.065 Re,,™), (1)
C,, = Cuy (140.0044 Re?), ()

where Cpy= Cpy(Re) is the drag force coefficient of
a not rotating spherical particle — a well-known
function of Re (see e.g. Nino and Garcia, 1994),
and C,= C,o(Re,) is the drag torque coefficient of
a spherical rotating particle in the calm fluid. It is a
function of the rotational Reynolds number (Sa-
watzki, 1970).

The translational movement of the solid sphere
with a simultaneous rotation in the viscous fluid
induced the lateral force known as Magnus force:

Fy=CyQ p [wg, vr], 3)

where C), is the dimensionless Magnus force coef-
ficient, and £ is the particle volume.

The theoretical analysis of the Magnus force was
performed by Rubinov and Keller (1961) for Re <<
1, Re, << 1. They deduced that C), = 3/4. Goldshtik
and Sorokin (1968) derived theoretically that Cy, =
= 2 for Re >> 1, Re, >> 1. However, the experi-
mental values of this coefficient were found more
than order less than the theoretical ones (e.g. Barkla
and Auchterlonie, 1971; Tsuji et al., 1985b).

For the intermediate Reynolds numbers 10 < Re
< 140 and 1.25 < Re, < 105 (i.e. 1 < I < 6), the
following convenient relationship for the Magnus
force coefficient was suggested by Oesterle and
Dinh Bui (1998) based on the experimental investi-
gation:

Cy= (3/81) [0.45 + (2I"— 0.45)
exp (— 0.075 " Re *7)]. 4)

In the present model, this expression is used for
the calculation of the Magnus force coefficient.

3. The 3D numerical model of the particle-bed
collision

Let us consider a spherical homogeneous particle
(see Fig. 1) moving in a channel with a rough bed
and at the given moment having the translational
velocity v (vy, v, v;) and the angular velocity o (w,,
o,, ®;). The particle centre is at the point O,(x,, y,,
z,), and the rough bed is characterized by the bed
roughness k;, which represents the largest size of
the local protrusions and depressions that have the
unordered and random nature. The plane L in Fig. 1
represents the bed level — the level of the local de-
pressions, or, in other words, the surface spaced
through the lowest points of the local bed depres-
sions. Let us consider a part of the bed in which this
surface can be considered as flat.

The collision height 4. is defined as the distance
between the particle centre and the bed level at the
moment of the collision. The collision height can
change from r, to (r, + k). A random-number gen-
erator can be used to define its value. The calcula-
tion of the particle trajectory is made until y, > A..
The condition y, = A. corresponds with the moment
of the collision and then the calculation of the parti-
cle-bed collision should be carried out. The compo-
nents of vectors of the translational v (vy, v, v.) and
angular @ (wy, oy, o.) particle velocities immedi-
ately before the collision, known from the calcula-
tion of the particle free motion in fluid, are used to
calculate their values immediately after the colli-
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sion, which become the initial conditions for the
calculation of the next particle trajectory.

The particle-bed collision can be calculated un-
ambiguously if a contact point is known. The con-
tact zone is the set of all the contact points that are
possible for the given collision. The contact zone
should be determined and the contact point should
be chosen from the contact zone in a random way;
then the transformation of the coordinate system
Oxyz should be made to obtain the impulse equa-
tions in the simplest form. The means of defining
the final collision coordinate system are described
below.

The angles 6 and ¢ (see Fig. 1) can be calculated
from the following equations:

tg ¢ = v./v, and cos § = vy/(vzx + vzy +v7, )0'5.
(5 and 6)

The transformation from the Oxyz coordinate
system to the collision coordinate system, Ctny,
with the origin at the contact point C, will be
achieved through five elementary transformations
of the coordinate system. After each transforma-
tion, the vectors v and  are recalculated in the new
coordinate system.

Fig. 1. The particle and the channel bed level before the colli-
sion.
Obr. 1. Castice a dno kanalu pied kolizi.

3.1 Definition of the contact zone

The contact zone will be defined in the case
ky= O(d,). For the saltation of natural sand particles
in water, the mean value of the incident angle to the
bed level is usually about 8—15 degrees (e.g. Nino
et al., 1994; Nino and Garcia (1998)), and the bed-
particle collision is most often oblique.

For the 2D collision pattern (Lukerchenko et al.,
20006), it was supposed that the contact with the bed
is possible only at any point of the arc EO,D (see
Fig. 2a) on the particle surface. The particle-bed
contact at the point D corresponds with a central

impact and at the point £ corresponds with a tan-
gential impact.

Similarly, let us suppose for the 3D case that the
points of the spherical segment EO,D (see Fig. 2a)
are the points at which the particle can contact the
bed, i.e. this segment is the contact zone.

3.2 The first transformation

First, if the coordinate system Oxyz is turned
through angle ¢ around the y axis (Fig. 1), it is
changed to Ox’y’z’. In the new Ox’y’z coordinate
system, the translational velocity vector v is parallel
to the coordinate plane Ox’y’. Since the compo-
nents of a vector are generally independent of the
coordinate origin, let us transfer the coordinate
origin from the point O to point O, and the coordi-
nate system changes to O, x'y z” (see Fig. 2a).

3.3 The second transformation: calculation
of the contact point

Let us turn the O,x’y’z’ coordinate system
around axis O,z by angle y = 37/4 — 0 (see Fig.
2a). In the new coordinate system O,x"y”z", the
contact zone is symmetrical with respect to the Oy”
coordinate axis.

The arbitrary point C of the contact zone, i.e. of
the spherical segment £O,D, is determined by two

angles — y=/ZFOD (0 < y < 2m) and
y=4£C0,0, (0<y<y=nr/4). Since there is a

certain probability that each point of the contact
zone will be the contact point, both angles are ran-
dom variables and can be determined using a ran-
dom-number generator.

3.4 The third and fourth transformations

Let us turn the O,x"y”z” coordinate system
around axis O,y” by the angle y and then turn the
new O,x’"’y’"’z""" coordinate system around axis
O,z’"’ by angle y. If the coordinate origin is moved
to the contact point C, the new coordinate system
Ct’n’n’ is established (see Fig. 2b). The coordinate
vectors 7' and 5’ are in the plane tangent to the
particle surface in the contact point C and the coor-
dinate vector n' is normal to it. In the Ct’n 5’ coor-
dinate system, the particle translational velocity
vector is v’ (v, v', V') and the particle angular
velocity vector is @’ (0", ®',, ®';). The components
of the velocity vectors can be determined from the

formulas describing the above-mentioned transfor-
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Fig. 2. The definition of the contact zone and the collision coordinate system.

Obr. 2. Definice kontaktni zény a kolizniho systému soutadnic.
mations and the velocity of the contact point C is
given by Euler’s formula:

V'C:V'+[w', r'], (7)

where r' = 0,C = (0, —r,, 0). Hence, the compo-
nents of velocity vector v'c are

V/Cr:V,r_'—rp w,n: (8)
V/Cn = V,n 5 (9)
Vi, =V —r, 0" (10)

They define the angle f as tg f=v'c,/V'ce.

3.5 The fifth transformation: definition
of the collision coordinate system

When the Ct’n’y’ coordinate system is turned
around the axis Cn’ by the angle B (see Fig. 2b), the
new coordinate system, Ctnm, is defined and the
contact point velocity vector v¢ becomes part of the
Ctn coordinate plane. Its tangential component is
parallel to the coordinate axis Ct and its normal
component to the contact surface is parallel to the
axis Cn. In the Cny coordinate system, the particle
translational velocity vector immediately before the
collision is v" (v;, v,, v,) and, similarly, the particle
angular velocity vector before the collision is
o (o;, w,, ®;). The Ctny coordinate system is the
collision coordinate system in which the impulse
equations can be written in the simplest form.

3.6 Calculation of the translational and angular
velocities immediately after the collision

In the collision coordinate system Cny, the im-
pulse equations are

where v' (v, v, v,,+) is the particle translational
and 0" (0., ®, , w,") — the particle angular velocity
immediately after the collision, respectively. (1, I,,
1,) is the impulse of the forces acting on the particle
during the collision, m — the particle mass, and A,
is the added mass of the moving particle. The con-
stant e is the restitution coefficient, which depends,
particularly, on the materials of the moving particle
and of the bed surface and varies from 0 to 1.

The first four formulas of Eq. (11) are equivalent
to those valid for the 2D case (Lukerchenko et al.,
2006) and the last four formulas are trivial. There-
fore, the system of equations for the 2D model can
also be used for the 3D model.

After the calculation of the vectors of transla-
tional and angular particle velocities immediately
after the collision and backward transformations of
them to the coordinate system Oxyz, these vectors
can be used as the initial conditions for the next
particle trajectory calculation.

The numerical solution of the system of equa-
tions describing the particle motion, particle-bed
collisions and particle trajectory is described in the
Appendix A: Algorithm of the particle trajectory
calculation.
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4. Results of calculations

The calculations were carried out for the sal-
tating particles of sizes varying from relatively
small particles of about 0.5 mm in diameter (for the
comparison with the experimental data of Nino and
Garcia, 1998) to relatively large particles of 6 mm
in diameter.

The initial conditions were: x = z = 0; y = hy
(usually, kg =3d,); vi=vs; v, =v. = 0; 0, = 0,= 0;
W, = 0.5‘ rotvf‘ = L N =

: 2 oy 2ky
(where u- is the shear velocity; £ = 0.4 is the Kar-
man constant). In this case, the drag force, drag
torque, and Magnus force are zero in the initial
moment. The number of particle hops in the calcu-
lations was from a few hundreds to a few thousands
and therefore the initial conditions do not play any
role in the mean values of the saltation parameters
and their standard deviations.

For the restitution coefficient, the formula

e=0.75 - 0.25 tu1s, (12)

derived experimentally by Nino and Garcia (1998),
was used. Here, the ratio 7«7+ is the transport stage,
T = u*z/[gdp (pp — p)p ]1s the dimensionless bed
shear stress, 7+, 1s the dimensionless critical shear
stress for the sediment motion, and g is the gravita-
tional acceleration.

4.1 The distribution of the forces
acting on the particle

The magnitudes of the drag force Fp, added mass
force F,, Magnus force Fy, and Basset history
force Fp acting on the particle during one arbitrary
hop and the typical particle trajectory are illustrated
in Fig. 3. Since the submerged gravitational force
F, is constant during the saltation process, it was
used as a parameter suitable for setting up dimen-
sionless forms of the remaining forces whose val-
ues change with respect to the saltation phase.

It is clear from Fig. 3 that the greatest effect on
the particle movement is due to the drag force and
the submerged gravitational force. In addition, the
Magnus force is relatively large, especially imme-
diately after the collision when the angular velocity
reaches the maximum. The Basset force is less than
other forces for this particle size. The results of the
forces’ calculation reveal the important role of the
particle rotation on the particle movement and
prove that the particle rotation cannot be ignored.

2-0 L) L] L] L) T T v T v T
. - f; 'IJ[FQ' ] 2 0
15 4 Trajectory f;, a'"Fg : .
- *5F, 16
‘-:H ]U’ .y + f‘;f J'[ F;, . _\_ﬂ\
8 112 =
E_ 0.5 1 °
10.8
0.0 - i
T 0.4
0 2 4 6 8

xidp

Fig. 3. The distributions of the forces acting on the particle
during its typical trajectory (d, = 6 mm, p,/p = 1.38,
u« =0.00542 m s7).

Obr. 3. Pribé¢h sil plisobicich na ¢astici béhem jeji typické
saltaléni trajektorie (d, = 6 mm, p,/p = 1,38, ux = 0,00542
ms).

4.2 The comparison of the 3D and 2D model results

The results of the 3D and 2D models were com-
pared for identical conditions. For this reason, the
new 2D model was developed by simplifying the
presented 3D model. The value of the angle y is
equal to zero if its value belongs to the intervals [0;
7/2) or [37/2; 2x) and is equal to x if its value be-
longs to the interval [#/2; 37/2). Then, the contact
zone is transformed from the spherical segment to
the arc U EO,D (see Fig. 2a), which corresponds to
the contact zone for the 2D model. The values of all
the other parameters and coefficients in the 3D and
2D models are identical. This approach makes it
possible to evaluate the effect of the model dimen-
sionality alone.

The dimensionless mean values and standard de-

viations of the saltation length L, =L,/ d, and

height H, = H, /d, are shown in Fig. 4, where L;

and H, are the saltation length and height, respec-
tively. The results of simulations calculated accord-
ing to the 3D and 2D models are compared with the
experimental data of Nino and Garcia (1998) for
the natural sand particles in water for six values of
the transport stage s+t

The calculations for both 2D and 3D numerical
models were carried out under the initial physical
conditions corresponding with the experiments of
series S1 of Nino and Garcia (1998). The dimen-
sionless mean values of saltation length and height
of the 3D model simulation agree well with the
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experimental data, whereas the 2D model overesti-
mates the saltation length and height. This is ex-
plained by the fact that, as a result of the particle-
bed collision, the particle impulse is transformed
partly in the lateral direction, which cannot be de-
scribed in the framework of the 2D approximation.

4.3 The lateral particle dispersion

The 3D model makes it possible to gain the val-
ues of saltation parameters, which cannot be calcu-
lated using 2D models. The lateral dispersion of
particles can play an important role in some fluvial
processes, for example, the development of a stable
channel cross section (lkeda et al., 1988), or the
formation of longitudinal streaks observed in wide
erodible-bed channels (Colombini, 1993).

a) 501 i Nino and Garcia [1998]

-

40 4 ; 3D model .

A -

- T O

30 @ 2D model - o
i |f A
* 20 R

=
=B
X
H—e < k-

0 1 2

T,/ Ty

The particle trajectories have a random character
and thus a bundle of them, which start from the
same point named the bundle origin, was studied.
Fig. 5a) illustrates such a bundle that gives an idea
about the lateral dispersion of particles. A few tens
of trajectories starting from the point with coordi-
nates x = 0, y = hy, and z = 0 were calculated. Let us
define the bundle axis or its centreline as the mean
deviations of the trajectories from the coordinate
plane Oxy. The bundle axis coincides with the co-
ordinate axis Ox due to the flow symmetry. Let us
also define the bundle boundaries (see Fig. 5b) as
two standard deviations of the particle trajectories
from the bundle axis in the cross sections. In this
case, 95% of the particle trajectories lie between the
bundle boundaries. The calculations show that the
bundle boundaries are nearly the straight lines.

b) 51 i Nino and Garcia [1998]
4{v 3D model o |
A R
31 El 2D model - mm
H o |” . w0
2 5 B WY
X A ARA

0 : .

0 1 2 3 4
T,/ T,

Fig. 4. Dimensionless saltation length (a) and height (b) (symbols represent mean value; vertical lines segments represent range of

two standard deviations, i.e. + o).

Obr. 4. Zavislost bezrozmérné délky (a) a vysky saltace (b) (symboly representuji stiedni hodnotu; svislé ise¢ky oblast dvou stan-

dardnich odchylek, tj. + o).

) 200
-100 downstream direction
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8]
100 = . v .
0 500 1000 1500 2000
x/ dp

200 bundle axis
1 u X1
-100. bundle boundaries
= TSPV
X 100 L . dowrllstre:’ir'n"(ﬁrection
0 500 1000 1500 2000
x/d,

Fig. 5. The calculated lateral dispersion of saltating particles (d, = 1 mm, p,/p = 2.65, k; =1 mm, u» = 0.025 m s1); a) The bundle of
saltating particles trajectories (view from the above), b) The bundle axis and bundle boundaries (symbols represent mean value;
vertical lines segments represent range of four standard deviations, i.e. £ 2 o).

Obr. 5. Vypocet pficné disperze, trajektorie ¢astic pohybujicich se saltaci (d, = 1 mm, p,/p = 2,65, k, = 1 mm, u= = 0,025 m sh;
a) hranice svazku trajektorii ¢astic pohybujicich se saltaci (pohled shora), b) osa a hranice svazku trajektorii ¢astic pohybujicich se
saltaci (symboly representuji stfedni hodnotu, svislé Gsecky oblast Ctyt standardnich odchylek, tj. + 2 ¢); (bundle axis — osa svazku
trajektorii, bundle boundaries — hranice svazku trajektorii , downstream direction — smér proudu).
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The disperse angle Ao between the bundle
boundary and its axis characterizes the particle
lateral dispersion. For the simulation illustrated in
Fig. 5, the disperse angle 4a is about 2.2°. It corre-
sponds well to the value of 2.4° published by Chara
and Vlasak (2000).

The present 3D model was also used for the
simulation of Nino and Garcia’s (1998) experi-
ments S21, S22, and S23, where particle motion
was recorded from above. The calculated cumula-
tive probability distribution of the absolute value of
the instantaneous deviation angle, a, from the
downstream direction of the particle trajectories is
shown in Fig. 6, where the experimental curve of
Nino and Garcia (1998) is also introduced.

1.0

Nino and Garcia [1998] |
—o—simulation S21 ]

0.2 —o— simulation S22 1
—v—simulation S23
0.0 1 L
0 10 20 30

|0(d|, degrees

Fig. 6. Cumulative probability distribution function of absolute
value of instantaneous deviation angle, a,, of particle trajecto-
ries with respect to the downstream direction (3D simulation of
experiments S21, S22, S23 of Nino and Garcia (1998)).

Obr. 6. Kumulativni pravdépodobnostni distribuéni funkce
absolutni hodnoty okamzitého deviacniho uhlu trajektorie
Castice, o, od sméru osy proudu (3D simulace experimental-
nich hodnot S21, S22, S23, Nino and Garcia, 1998).

The agreement of the calculated and experimen-
tal data is satisfactory, but for experiments the dis-
tribution seems to be independent of the dimen-
sionless bed shear stress 7+, whereas the calculated
curves have the clear-cut deviation for different
values of z+.

The mean absolute values of the deviation angle
resulting from the experiments and simulation are
plotted in Fig. 7. The absolute mean experimental
values seem to be independent of 7« and equal to
about 7.5 degrees. In contrast, the dependence of
the calculated mean absolute values on 7« can be
expressed as |ay = 12.5 — 100 7z« in the studied
range.

25 ——
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Fig. 7. Comparison of the measured and simulated absolute
value of deviation angle |a,].

Obr. 7. Srovnani métenych a vypoétenych absolutnich hodnot
devia¢niho Ghlu |ay).

The differences between the results of the calcu-
lated and experimental values can be explained in
the following way. Nino and Garcia (1998) state:
“The deviations of the particle trajectories from the
downstream direction seem to be caused by two
mechanisms; the first is associated with the initial
condition imparted by a collision with a bed parti-
cle, while the second would be related to cross-flow
turbulent events.” However, the model takes into
account only the first mechanism.

The influence of the first mechanism on the de-
viation angle decreases with the increasing flow
velocity (increases also in u« and 7+), since, after the
particle rebounds from the bed, the higher water
velocity straightens the particle trajectory to the
downstream direction more intensely. The effect of
the second mechanism increases the deviation angle
since the turbulent fluctuations also increase with
an increase in the flow velocity. If the change of
both the mechanisms’ contributions is nearly equal,
then the mean value of the deviation angle does not
change, and the experimental values seem to be
independent of z«. The numerical model does not
take into account the turbulent velocity fluctuations,
i.e. the effect of the second mechanism is not in-
cluded, but the first one decreases the deviation
angle when u~ increases.

Nevertheless, the discrepancies between the cal-
culated and experimental data even for particles
with a size of 0.5 mm are small; therefore, the ef-
fect of turbulent fluctuations of the fluid velocity
can be neglected, and the presented 3D model is
acceptable.
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5. Conclusions

A 3D numerical model of spherical particle salta-
tion in a channel with a rough fixed bed has been
developed as an extension of the previous 2D
model (Lukerchenko et al., 2006).

The spherical particle motion in the saltation
process consists of translational motion in a fluid
with simultaneous rotation around one of its diame-
ters. During the saltation, the drag force, submerged
gravitational force, Basset history force, force due
to added mass, Magnus force, and drag torque act
on the particle. The mutual influence of the transla-
tional and rotational motion is taken into account
by means of the dependences of the drag force co-
efficient, drag torque coefficient, and Magnus force
coefficient on both the translational and rotational
Reynolds numbers.

A stochastic method is proposed for the calcula-
tion of the particle-bed collision in the 3D case. The
collision height was determined as a random func-
tion of the particle radius 7, and the channel bed
roughness k. The contact zone was defined as the
set of particle surface points at which the contact
with the bed is possible during the relevant colli-
sion and the method for its calculation was pro-
posed. The contact point was determined as the
point with a random position in the contact zone.

The collision coordinate system was defined as a
system in which the impulse equations have the
simplest form, and the method of the coordinate
system transformation from the initial coordinate
system is proposed. In this coordinate system, the
solution of the impulse equations for the 2D case
can also be directly used for the 3D case.

The distributions of the forces, acting on the par-
ticle along its typical trajectory, are calculated for
the saltation of the particle of 6 mm diameter in
water. It is shown that, in this case, the drag force
and the submerged gravitational force produce the
main contributions to the saltation motion. The
effect of the Magnus force is also significant, espe-
cially immediately after the collision, i.e. in the
period when the angular velocity reaches its maxi-
mum value. This result confirms that the particle
rotation plays an important role during the saltation
and cannot be neglected.

The comparison of the calculated mean values of
the saltation length and height with the experimen-
tal data of Nino and Garcia (1998) shows a good
agreement and reveals that the 2D model overesti-
mates the saltation length and height. This can be
explained by the fact that the particle impulse re-

sulting from the particle-bed collision is trans-
formed partly in the lateral direction, which cannot
be described by the 2D approximation.

For the study of the lateral dispersion of saltating
particles, the concept of the bundle of particle tra-
jectories starting from the same point was intro-
duced and the disperse angle was defined as the
angle between the bundle boundary and its axis. For
the simulation of the saltation of particles with a
diameter of 1 mm, it was shown that the disperse
angle is about 2.2°.

The deviation angles of the particle trajectory
with respect to the downstream direction were cal-
culated and compared with the experimental data of
Nino and Garcia (1998) for the saltation of natural
sand particles of size 0.5 mm in water. The calcu-
lated results agree well with the experimental data.

The present 3D model was developed for a fixed
bed and its possible extension for a mobile bed can
be a subject for further study.

Appendix A: Algorithm of the particle trajec-
tory calculation

The physical parameters of the particle and the
channel are defined:
— particle diameter d,
— particle density p,,
— fluid density p,
— fluid kinematic viscosity v,
— channel bed roughness &;,
— shear velocity u-.
In time ¢ = 0 the initial conditions are:
— the coordinates of the particle center O, (x,, yp,
Zp),
— the vector of the translational v (vy, v,, v.) ve-
locity,
— the vector of the angular o (., oy, ®.) velocity.
A.1. The system of ordinary differential equations
of the particle saltatory motion in the channel
(see Egs. (AS5) —(A15)), Lukerchenko et al.,
20006), together with Egs. (1), (2) and (4) of
the present paper is solved numerically using
a fourth-order Runge-Kutta scheme.
The collision height 4. is defined using the
random-number generator in time ¢ = 0 (for
first particle — bed collision) or, for the next
hops, immediately after the previous colli-
sion.
The calculation of the particle motion in fluid
flow is finished in the moment when the co-

A2

A3.
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ordinate y, of the particle center becomes less
or equal to the collision height 4.

A.4. The vector of the particle translational veloc-
ity in this moment is used to define the con-
tact zone for the particle — bed collision.

A.5. The contact point is calculated (see section
3.3).

A.6. The vectors of the particle translational v (v,,
vy, v-) and angular velocities o (wy, w,, ©.)
are calculated in the collision coordinate sys-
tem using the set of transformations of the
coordinate systems specified in the section 3.

A.7. The set of Eq. (11) is used to calculate the
vectors of translational and angular particle
velocities immediately after the collision.

A.8. After transformations of the vectors to the
original coordinate system Oxyz, they can be
used as the initial conditions for the calcula-
tion of the subsequent trajectory of the parti-
cle; the calculation continues, see step A.1.
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List of symbols

C — contact point [—],

Cp — drag force coefficient [-],

Cu — Magnus force coefficient [],

C, — drag rotation coefficient [—],

d, — diameter of the moving particle [m],

e — restitution coefficient for particle-bed collision
[_]7

Fp — Basset history force [N],

Fp — drag force [N],

F,y — submerged gravitational force [N],

F, — force due to added mass [N],

Fy — Magnus force [N],

he — collision height [m],

H; — saltation height [m],

H s — dimensionless saltation height [-],

IU,1,1,) —the vector of impact impulse in the collision
coordinate system [N s],

I, — tangential component of the impact impulse
[Ns],

1, — normal component of the impact impulse [N s],

I, — lateral component of the impact impulse [N s],

J — particle moment of inertia [kg m?],

k — Karman constant [],

ks — bed roughness [m],

Ly — saltation length [m],

L — dimensionless saltation length [],

M — drag torque of viscous forces acting on a rotat-
ing particle in fluid [N m],

m — mass of the moving particle [kg],

O,(x,, yp, z,) — particle centre [],

7y — radius of the moving particle [m],

rop (Xp, ¥p» 2,) — radius-vector of the particle centre of mass [m],

Re — translational Reynolds number [—],

Re, — rotational Reynolds number [—],

Ux — fluid shear velocity [m s'],

vr(V, Vji» V) — vector of the fluid velocity [m s,

v(ve, vy, v.)  — vector of velocity of the particle centre of mass
[ms™],
VR — vector of the particle relative velocity [m s™'],

vi(v;,v,,v,)—vector of the particle translational velocity
immediately before collision in the collision
coordinate system Crny [ms™'],

v'(v.",v,",v,") — vector of the particle translational velocity
immediately after collision in the collision co-
ordinate system Crny [ms™'],

oy — angle of the particle trajectory deviation from
the downstream direction [degree],

Ao — disperse angle [degree],

r — particle dimensionless angular velocity [],

An — added mass of the moving particle [kg],

v — kinematical viscosity [m® s™],

p — fluid density [kg m™],

Py — density of the moving particle [kg m™],

4 — standard deviation [],

T« — dimensionless bed shear stress [-],

Txc — dimensionless critical shear stress for sediment
motion [—],

Q — particle volume [m’],

o(w,, o, ®.)— vector of angular velocity of the particle rota
tion around its diameter [s'l],
wpr — vector of the particle relative angular velocity
[s'],
o (0;, v, , w,) — vector of the particle angular velocity imme-
diately before collision in the collision coordi-
nate system Czn [s'],
o' (0., ,’, ,") — vector of the particle angular velocity
immediately after collision in the collision
coordinate system Cray [s].
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3D NUMERICKY MODEL SALTACE KULOVITE
CASTICE V KORYTE S PEVNYM DRSNYM DNEM

Nikolaj Lukeréenko, Siarhej Piatsevi¢, Zdenék Chara,
Pavel Vlasak

V predlozené studii je popsan vyvoj 3D numerického
modelu saltaéniho pohybu kulovité ¢astice v kanale
s pevnym drsnym dnem. Kulovitd castice (pramér d,
hustota p,) se pohybuje translatné¢ a souasné rotuje
v kapalin€ o hustoté p a kinematické viskosité v.

Saltacni pohyb castic je z fyzikalni podstaty tfiroz-
meérny proces a kolize Castice se dnem je hlavni mecha-
nismus vzniku laterarni disperze ¢astic. Model byl vyvi-
nut jako rozsifeni 2D numerického modelu autord (Lu-
kerchenko et al., 2006), nebot’ vektorova forma soustavy
rovnic umoznuje vyuziti tohoto systému i pro 3D piipad.
Predlozeny model ptedpoklada pevné dno, jeho piipadné
roz§ifeni na pohyblivé dno mize byt pifedmétem dalsiho
vyvoje.

Salta¢ni pohyb Castice je mozné rozdélit na dvé faze —
volny pohyb castice v proudici vodé a kolizi Castice se
dnem. Na rozdil od fady jinych modeld predlozeny mo-
del zahrnuje jak transla¢ni pohyb castice, tak i jeji sou-
¢asnou rotaci. Model je zalozen na systému rovnic popi-
sujicich sily a momenty ptisobici na pohybujici se rotuji-
ci Castici, tj. pfi saltacnim pohybu ¢astice v proudu kapa-
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liny plsobi na castici sila odporu kapaliny, gravitacni
sila na ponofenou ¢astici, Bassetova sila, sila pfidavné
hmoty, Magnusova sila a dale moment vazkych sil ptso-
bicich na castici rotujici kolem své osy thlovou rych-
losti w.

Podobné jako ve vétS$iné modeld vliv turbulentnich
fluktuaci na pohyb ¢éstice neni uvazovan, nebot’ bylo jiz
diive prokazano, ze pro ¢astice vétsi nez 0,5 mm je Uci-
nek turbulentnich fluktuaci mozno zanedbat. Je-li kon-
centrace unasenych castic nizkd, lze zanedbat i jejich
vzajemné kolise a vliv ¢astic na proud kapaliny a pohyb
vSech ¢astic mize byt representovan pohybem jednotlivé
Castice.

Vzéjemny vliv translacniho a rotacniho pohybu Casti-
ce je vyjadien pomoci zavislosti koeficientd odporové
sily, odporového momentu a Magnusovy sily (viz rov.
(1), (2) a (4)) na obou Reynoldsovych ¢islech, translac¢-
nim Re = |vg| d,/v a rotaénim Re, = |owg| rzp/v, kde vg je
vektor relativni rychlosti ¢astice a kapaliny, wg — relativ-
ni uhlova rychlost ¢astice.

Byla navrZena stochastickd metoda pro vypocet pro
3D ptipad kolize Castice se dnem. Slozky translacni a
rotacni rychlosti pohybujici se Castice po kolizi byly
vyjadieny jako funkce slozek rychlosti tésné pted kolizi.
Kolizni vyska byla definovana jako néhodna funkce
poloméru ¢astice 7, a drsnosti dna k. Pro 3D model byla
definovana kontaktni zéna jako kulova use¢ EO,D (viz
obr. 2a), tj. mnozina bodd na povrchu ¢astice, v nichz
kontakt ¢astice s drsnym dnem je mozny béhem dané
kolize a byl navrzen zplsob jejiho vypoctu. Kontaktni
bod byl urcen jako bod s ndhodnou polohou v kontaktni
zoné.

Byl navrzen systém transformace pocatecniho sou-
fadného systému Oxyz (viz obr. 1) na kolizni soufadny
systém Crtny (viz obr. 2b), ktery byl definovan jako sys-
tém, v némz ma soustava momentovych rovnic (rov.
(11)) nejjednodussi tvar. V tomto soufadném systému
mize byt pouzito feSeni odvozené pro 2D piipad i pro
3D ptipad.

Pribéh sil pisobicich na ¢astici béhem jednoho skoku
typické salta¢ni trajektorie, ktery byl vypoéten pro ¢asti-
ce pruméru 6 mm ve vod¢ (viz obr. 3) ukazuje, Ze na
Castici pfi saltatnim pohybu ma nejvyznamnéjsi vliv
odporova sila a na ponofenou Castici gravitacni sila.
Utinek Magnusovy sily je vyznamny zejména brzy po
kolizi castice se dnem, tj. v dob&, kdy uhlova rychlost
Castice dosahuje maxima. To potvrzuje vyznamnou roli
rotace Castice na saltacni pohyb i to, ze rotaci Céstice
nelze zanedbat.

Srovnani stfednich hodnot saltatni délky L a vysky

H, vypoétenych na zakladé 3D modelu s vysledky 2D

modelu a experimentalnimi daty (Nino, Garcia, 1998)
ukazuje dobrou shodu experimentalnich dat s vysledky
3D modelu a zarovein potvrzuje, ze 2D model dava navy-
Sené vysledky hodnot saltacni délky a vysky, viz obr. 4.
To Ize vysvétlit tim, ze impuls vyplyvajici z kolize Casti-

ce se dnem je ve skuteCnosti ¢asteéné prenasen do boc-
niho pohybu, coz nemiize byt zahrnuto do 2D simulace.

Pro studium a popis laterarni disperze Castic pii sal-
taénim pohybu byl zaveden piedpoklad svazku trajekto-
rii Castic prochazejicich (pocinajicich sviij pohyb) jed-
nim bodem. Byl definovan disperzni uhel da jako uhel
mezi primétem hranice svazku (obalové kiivky trajekto-
rii ¢astic) a jeho osou do vodorovné roviny. Simulace
saltacniho pohybu ¢éstic priméru d, = 1 mm ukézala, Ze
hodnota disperzniho thlu v proudu charakterizovaném
smykovou rychlosti u« = 0,025 m s™ je ptiblizng 2,2°
(viz obr. 5), coz je v dobré shodé s dfive uréenymi expe-
rimentalnimi hodnotami.

Byl uskute¢nén i vypocet devia¢niho thlu a,, tj. Ghlu
mezi trajektorii ¢astice a osou proudu a jeho porovnani
s experimentalnimi daty pro salta¢ni pohyb pfirodniho
pisku s primérem zrn 0,5 mm v proudu vody (Nino,
Garcia, 1998). Také v tomto ptipadé je shoda vypocte-
nych hodnot s experimentalnimi daty uspokojiva (viz
obr. 6a7).

Seznam symbolii

C — kontaktni bod [],

Cp — odporovy koeficient ¢astice [—],

Cy — koeficient Magnusovy sily [-],

Co — odporovy koeficient rotujici ¢astice pohybujici
se translaéné [—],

d, — prumér pohybujici se ¢astice [m],

e — koeficient restituce pro kolizi ¢astice se dnem

-1
Fg — Bassetova sila [N],
Fp — odporova sila [N],
F, — gravita¢ni sila na ponofenou ¢astici [N],
F, — sila ptfidavné hmoty [N],

Fy — Magnusova sila [N],

he — kolizni vyska [m],

H; — vyska saltace [m],

H B - bezrozmérna vyska saltace [-],

I, 1,1,) - vektor momentu impulsu v koliznim soufad-
ném systému [N s],

I — tangencialni slozka momentu impulsu [N s],

1, — normalni slozka momentu impulsu [N s],

1, — lateralni slozka momentu impulsu [N s],

J — moment setrvacnosti ¢astice [kg m?],

k — Karmanova konstanta [—],

ks — drsnost dna [m],

Ly — délka saltace [m],

L~S — bezrozmérna délka saltace [—],

M — moment vazkych sil plisobici na rotujici ¢astici
v kapaling [N m],

M — hmota pohybujici se ¢astice [kg],

Op(xp, ¥ 2p) — stied (t€7iSt€) pohybujici se Castice [],

7 — polomér pohybujici se ¢astice [m],

rop (X, Vp, 2,) — polomér -vektor t€ziSt€ pohybujici se Castice
[m],

Re — Reynoldsovo ¢islo pii translaénim pohybu
Castice [-],

Re, — Reynoldsovo ¢éislo pfi rotaénim pohybu [—],

Ux — smykova rychlost [m s],

vr(V, Vji» V) — vektor rychlosti kapaliny [m s,
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v(vy, v, v.)  —vektor rychlosti t€zisté Castice [m s,

VR — vektor relativni rychlosti &astice [m s™'],

vi(v;, vy, v,)— vektor translacni rychlosti ¢astice té€sné pied
dopadem castice v koliznim soufadném
systému Conn [ms™'],

v, v, vf)— vektor translacni rychlosti Castice tésné po
dopadu castice v koliznim soufadném systému
Conp [ms'],

0y — deviaéni uhel trajektorie Castice, tj. uhel mezi
osou svazku trajektorii ¢astic a smérem proudu
[stupen],

Ao — disperzni uhel — thel mezi projekci hranice a
osy svazku na rovinu dna [stupeit],

I — bezrozmérna uhlova rychlost rotujici Castice
[_]’

Al — pfidavna hmota pohybujici se ¢astice [kg],

v — souginitel kinematické viskozity [m* s™'],

p — hustota kapaliny [kg m™],

Py — hustota pohybujici se &astice [kg m™],

o — standardni odchylka [-],

Tx — bezrozmérné te¢né napéti na dné kanalu [—],

TsC — bezrozmérné kritické te€né napéti pro fazi
pohybu sedimentu [—],

Q — objem pohybujici se &astice [m’],

o(w,, o,, »;)— vektor tthlové rychlosti rotujici Castice [s'],

wpr — vektor relativni (thlové rychlosti &astice [s™'],

o'(0;, ,, ,) — vektor thlové rychlosti rotujici ¢astice tésné
pfed dopadem castice v koliznim soufadném
systému Cony [s7'],

o' (0., ©,, ®,") — vektor thlové rychlosti rotujici &astice

tésné po dopadu castice v koliznim soufad-
ném systému Crnn [s™'].

112



	List of symbols
	REFERENCES

	Seznam symbolů

