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Einstein-Barbarossa velocity or resistance equation (1952) is widely used to find resistance to flow in al-
luvial channel. In order to validate the equation in all ranges (smooth to rough); they introduced a correction 
factor based on the Nikuradse measurement. This correction factor is determined from the graphical 
method, which can be erroneous. Present work reanalyzes the Nikuradse measurements and gives an ana-
lytical formulation for the correction factor. 
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Einsteinova–Barbarossova rovnica (1952) sa často používa na určenie odporu voči prúdeniu v kanáloch. 

Autori do nej zaviedli korekčný faktor, založený na meraniach Nikuradzeho, aby overili platnosť rovnice v 
celom rozsahu drsností (od hladkých stien po drsné). Tento korekčný faktor sa určuje grafickou metódou, 
ktorá môže viesť k chybným výsledkom. V tejto práci sa znova analyzujú výsledky Nikuradzeho meraní a 
je navrhnutá analytická formulácia na výpočet korekčného faktora. 

 
KĽÚČOVÉ SLOVÁ: aluviálny kanál, Einsteinova-Barbarossova rovnica, logaritmický profil rýchlosti, hy-
draulicky drsné  hranice, hydraulicky hladké hranice, transport sedimentov. 

 
Introduction 
 

One of the most important aspects in open chan-
nel flow computations is the estimation of hydraulic 
flow resistance. Knowledge about the hydraulic 
resistance is important for the understanding and 
handling of engineering and environmental prob-
lems involving rivers and streams. Its estimation 
has direct or indirect consequences in the planning, 
design, and operation of water resources projects 
including flood control, erosion control and channel 
stabilization.  

In an alluvial stream, the mobile bed formed by 
cohesionless alluvium is seldom flat; rather, it is 
covered by periodic bed deformations, known as 
bed forms. These bed forms change in type and size 
depending on the flow conditions. They constitute 
an important obstacle to the flow, and thus, the 
resistance of alluvial channels changes as bed forms 
change.  

Einstein and Barbarossa (EB) in 1952 provided a 
semi-analytical method for the computation of flow 
resistance in alluvial channels. Although the tech-
nique is very old, it is still probably the most widely 
quoted of any existing techniques. They suggested 
that the resistance of an alluvial stream consists of 
bed resistance and bank resistance. Furthermore, 
the bed resistance consists of grain friction and bed 
form resistance. According to EB (1952), the shear 
stress or drag force acting along an alluvial bed can 
be divided into two parts, i.e, 

) ,        (1) 

where τ – the total drag force acting along an allu-
vial bed, τ' and τ'' – the drag force due to grain 
roughness and form roughness, respectively, γ – the 
specific weight of water, S – the energy or channel 
slope, and 
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bR′  and "
bR  – the hydraulic radii due to 

grain roughness and form roughness, respectively. 
The grain friction denotes the resistance to a two-
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dimensional flow, which is not affected by side 
banks, with a plane bed. The grain friction can be 
described by the following equation (EB 1952):  
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where ū – the average velocity, u* – shear velocity 
due to grain roughness = (gR’

b S)0.5, ks – a represen-
tative roughness, which is taken as D65, the particle 
size of bed material of which 65 per cent by weight 
is finer and χ – a function of ks/δ, where δ is the 
thickness of laminar sublayer (= 11.6υ/u*). The 
relationship between χ and ks/δ (= R*/11.6,  
R*= u*ks/γ and is called particle Reynolds number) 
has been presented through a graph based on the 
measurement of Nikuradse’s experimental data on 
sand roughened pipes.  

Although the EB (1952) equation was intended 
to be universal, embracing all sediment sizes and 
depth of flow, in practice it has on occasions given 
results which have been clearly very considerably 
in error (Smith, 1970). It may be or may not be, but 
the authors feel that can be attributed to the graphi-
cal determination of the parameter χ. Although 
Smith (1970) has presented the modified bed-form 
resistance diagram, he kept the same correction 
factor as devised by the EB (1952). Brownlie 
(1981) has analyzed the Nikuradse measurements 
and presented the three different and distinct equa-
tions in order to measure the χ analytically or ex-
plicitly.  

As said earlier, the graphical relationship be-
tween χ and ks/δ has been derived based on the Ni-
kuradse measurement, by carefully analyzing the 
Nikuradse measurement one distinct and unique 
semi-empirical relationship can be obtained, which 
can hopefully replace the graphical determination 
of χ.  
 
 

Analytical approach 
 

The wide acceptance of the log law of velocity 
distribution could be due to the fact that it can be 
justified with certain theoretical arguments, for 
example, Prandtl’s mixing length assumption, von 
Karman’s dimensional reasoning or Millikan’s 
asymptotic analysis (Kundu et al., 2004). However, 
these arguments can be considered theoretically 
correct  only  in a limited  region  of  flow, although 

 

the log law may apply practically beyond the re-
gion. Generally, it is believed that wall-bounded 
turbulent flows are characterized by two kinds of 
length scales. In the inner region near a smooth 
boundary, fluid viscosity is important, and thus the 
acceptable length scale is the viscous length scale. 
In the outer region that is sufficiently far from the 
boundary, flow inertia is significant. In addition, it 
is assumed that the shear velocity is a global veloc-
ity scale applicable both for the inner and outer 
region (Nezu and Nakagawa, 1993). 

The established laws of velocity distribution for 
turbulent flows can be expressed as: 
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  for rough pipes,        (4) 

where A – the inverse of Von-Karman’s constant (= 
2.45), a’ and b’ are constants, u – the velocity at a 
distance y measured from the pipe wall, u* – the 
friction velocity, ks – the Nikuradse’s sand rough-
ness height and ν is the kinematic viscosity of the 
fluid. 

As seen from the Eqs. (3) and (4), the character-
istic length l for non-dimensionalizing the depth y 
is ν/u* for smooth turbulent flows and ks for rough 
turbulent flows. So it is proposed that l is actually a 
linear combination of both (ν/u* and ks) with a cor-
rection function, φ covering the all ranges i.e., 
smooth, transition and rough regimes of turbulent 
flows. Thus  
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,        (5) 

where R* – equal to ks u*
 /ν and the correction func-

tion φ is assumed to be a function of R*. At R*→0, 
pipe is said to be in smooth condition and for rough 
pipe R*→∞. 

For large values of ν/u*
 the term a’ν/u* domi-

nates making the second term b’ ks negligible in 
comparison with it. So also for small values of ν/u*, 
the second term becomes important allowing the 
neglect of the first term. Thus the velocity laws 
covering all the three regimes can be summa-   
rized as, 
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Now, if a condition that *(R )φ = 1 for both when 
R*→0 and ∞ is imposed due to established physical 
conditions of hydraulically smooth and rough re-
gions, Eq. (6) reduces to Eqs. (3) and (4) respec-
tively. 

By assuming Eq. (6) valid for the entire pipe ra-
dius (r), an expression for ū/u* can be obtained by 
integrating Eq. (6).  
 

* *ln sr ku A
u B

⎛
= ⎜

⎝ ⎠
 

⎞
⎟ ,        (7) 

where  
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Resistance equation for free surface flows can be 
obtained by Eq. (7) by suitably adjusting the terms 
in it depending upon the geometry of flow region 
between pipes and free surface flows. If logarithmic 
law of velocity distribution is assumed to be valid 
throughout the radius, r, in case of pipes and the 
flow depth, D, in case of free surface flows; then r 
is to be replaced by D and a multiplying factor e-0.5 

is to be introduced to B* in Eq. (7) as shown in   
Fig. 1. 
 

 
 
Fig. 1. Velocity profile in channel and pipe. 
Obr. 1. Profily rýchlostí v kanáli a v potrubí. 
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For free surface flows, it can be written as:  
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Or the resistance equation for free surface flows 
can be written as: 
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It is of interest to express Eq. (11) in a form given 
by EB (1952) as: 
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where χ – a correction factor roughness introduced 
by EB (1952) and it is a function of ks/δ or R*/11.6. 
Thus the expression for χ can be expressed as: 
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Now re-analyzing Nikuradse experimental data 
(1937) on pressure drop measurements in sand 
roughened pipes, the following values of a = 0.444 
and b = 0.135 are obtained and an expression for 
φ(R*) is given by 
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Substituting the values of a, b and φ(R*) in Eq. (13), 
χ can now be analytically determined from the fol-
lowing equation: 
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In order to compute χ, EB (1952) have given a 
curve relating χ and 11.6R*. However, one can now 
use Eq. (15) for the determination of χ instead of 
their curve. The validity of the expression for χ in 
Eq. (15) is shown in Fig. 2 by using the Niku-
radse’s experimental data. 
 
Conclusions 
 

1. In sediment transport, the curve given by 
EB (1952) can now be replaced by the analytical 
expression of Eq. (14). 

2. Eqs. (7) and (11) are valid for all the three 
roughness regions, can now be used as a unique 
equation to find the resistance characteristics of 
smooth as well as sand roughened pipes and open 
channels respectively. 
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Fig. 2. Validity of χ. 
Obr. 2. Platnosť χ. 
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List of symbols 
 
A – inverse of Von-Karman’s constant, 
a’ – constant, 
a – constant, 
b’ – constant, 
b – constant, 
B* – function of R*, 
D – flow depth in open channel [m], 
D65 – the particle size of bed material of which 65 per cent by 

weight is finer [m], 
ks – representative roughness scale = D65 [m], 
r – pipe radius [m], 
R – Reynolds number, 
R* – particle Reynolds number, 
R'b – the hydraulic radius due to grain roughness [m], 
R”

b – the hydraulic radius due to form roughness [m], 
S – the energy or channel slope, 
ū – the average velocity [m s-1], 
u* – shear velocity due to grain roughness = (g R’

b S) 0.5
            

[m s-1], 
χ – correction factor = a function of ks/δ, 
δ – 11.6υ/u*, the thickness of laminar sub layer, 
ν – kinematic viscosity [m2 s-1], 
τ – the total drag force acting along an alluvial bed [N], 
τ' – the drag force due to grain roughness [N], 
τ'' – the drag force due to form roughness [N], 
γ – specific weight of water [N m-3]. 
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ANALYTICKÁ FORMULÁCIA KOREKČNÉHO 
FAKTORA APLIKOVANÉHO V EINSTEINOVEJ– 
–BARBAROSSOVEJ ROVNICI (1952) 
 
Achanta Ramakrishna Rao, Bimlesh Kumar 
 
1. Krivky, charakterizujúce transport sedimentov v rov-

nici EB (1952) môžu byť nahradené analytickým 
výrazom, vyjadreným rov. (14). 

2. Rov. (7) a (11) sú platné pre všetky tri oblasti drsností 
a môžu byť použité na získanie charakteristík odporu 
voči prúdeniu pre všetky tri oblasti drsností, t.j. pre 
hladké, ako aj pieskom zdrsnené potrubia, aj pre 
otvorené kanále.  

 
Zoznam symbolov 
 
A – invezná Von-Karmanova konštanta, 
a’ – konštanta, 
a – konštanta, 
b’ – konštanta, 
b – konštanta, 
B* – funkcia R*, 
D – hĺbka prúdu v otvorenom kanáli [m], 
D65 – veľkosť častíc v materiáli koryta, od ktorých 65 % častíc, 

vyjadrených v hmotnostných percentách, je menších [m], 
ks – reprezentatívna charakteristika mierky drsností = D65 

[m], 
r – polomer potrubia [m], 
R – Reynoldsovo číslo, 
R* – Reynoldsovo číslo pre častice, 
R'b – hydraulický polomer, spôsobený drsnosťou častíc [m], 
R”

b – hydraulický polomer, spôsobený drsnosťou tvaru [m], 
S – energia alebo sklon kanála, 
ū – priemerná rýchlosť [m s-1], 
u* – trecia rýchlosť, spôsobená drsnosťou častíc (g R’

b S) 0.5
    

[m s-1], 
χ – korekčný faktor, funkcia ks/δ, 
δ – 11.6υ/u*, hrúbka laminárnej subvrstvy, 
ν – kinematická viskozita [m2 s-1], 
τ – celková sila trenia pôsobiaca pozdĺž kanála [N], 
τ' – sila trenia spôsobená drsnosťou častíc [N], 
τ'' – sila trenia spôsobená, drsnosťou tvarovou [N], 
γ – merná hmotnosť vody [N m-3]. 
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