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Abstract 
Rapid development in the field of tissue engineering 
necessitates implementation of monitoring methods for 
evaluation of the viability and characteristics of the cell 
cultures in a real-time, non-invasive and non-destructive 
manner. Current monitoring techniques are mainly 
histological and require labeling and involve destructive 
tests to characterize cell cultures. Bioimpedance 
measurement technique which benefits from measurement 
of electrical properties of the biological tissues, offers a 
non-invasive, label-free and real-time solution for 
monitoring tissue engineered constructs. This review 
outlines the fundamentals of bioimpedance, as well as 
electrical properties of the biological tissues, different types 
of cell culture constructs and possible electrode 
configuration set ups for performing bioimpedance 
measurements on these cell cultures. In addition, various 
bioimpedance measurement techniques and their 
applications in the field of tissue engineering are discussed.  

Keywords: Tissue Engineering, Bioimpedance Measurement, 
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Problem Definition 
Tissue engineering is the science of generating tissues for 
replacing the malfunctioning tissues or organs in the body. 
Advances in biotechnology and material science has led to 
rapid developments in the field of tissue engineering (1, 2). 
Polymers, hydrogels and decellularised animal tissues are 
different types of biomaterials that are used to generate 

tissue engineered constructs in combinations with cells (3, 
4).  

Due to the potential of generating differentiated cells, 
the tissue engineered constructs are commonly, first 
cultured in vitro before their in vivo transplantation (3).  

In order to evaluate tissue-engineered constructs, 
methods should be employed which would be able to 
provide information regarding the morphological and 
functional behavior of the cell cultures in a real-time and 
non-invasive manner (5). Due to the high costs and small 
number of donors, the monitoring methods should be 
ideally non-destructive to the cell cultures. Currently used 
technique for the purpose of investigating tissue 
engineered cultures provide helpful information about the 
characteristics of the tissue engineered constructs. 
However, these methods such as histology staining, are 
destructive and time-consuming and require fixing and 
cutting the tissue cultures (6). 

Therefore, there is a need for real-time and non-
invasive monitoring techniques to evaluate the quality of 
the tissue engineered constructs before implanting them in 
the body, without the need to use fluorescents or 
radioactive labels or destructive methods. This in addition, 
would reduce the number of animals required for this 
purpose (5, 6).  
 
Bioimpedance Measurements 
Basics of bioimpedance 
Bioimpedance is defined as the ability of the biological 
tissue to impede (oppose) electrical current and is 
considered a passive electrical property. Bioimpedance can 
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be measured by detecting the response to electric 
excitation (either current or potential) which is applied to a 
biological tissue. In bioimpedance measurements, applying 
the excitation signal and picking up the response is 
performed by the same or other electrodes which convert 
the electronic charge to ionic charge and vice versa (7).  

Electrical Impedance (Z) which is the ratio of the voltage 
(V) and current (I), applies to alternating current (AC). 
Resistive (R), capacitive (C) and inductive (L) components of 
the tissue, all contribute to the measured impedance;  

Z=V/I   [1] 

As Z is a complex function, it can be expressed by the 
modulus |Z| and the phase shift Φ or by the real part R 
which represents resistance, and the imaginary part X 
representing capacitance. Important to note that the 
imaginary part would be zero when direct current is 
applied. 

Admittance (Y) is the inverse of impedance which means 
admitting current flow. Impedance and admittance are 
basically both AC parameters and frequency dependent (7).  

Electrical Properties of biological tissues 
It was shown in early 1900s that cells viability could be 
evaluated by measuring the electrical properties of cells (8). 
Electrical properties of the biological tissues depend on 
physiological, morphological, and pathological conditions of 
the tissue, as well as the frequency of the electrical signal 
applied (9, 10). 

Electrical properties of biological tissues based on the 
source of the electricity, can be either active (endogenous) 
or passive (exogenous). Active properties (bioelectricity) 
arise from the ionic activities inside cells (typical for nerve 
cells), such as electrocardiograph (ECG) signals from the 
heart and electroencephalograph signals (EEG) form the 
brain. Passive properties occur due to simulation by an 
external electrical excitation source (8, 11). In this article, 
the passive properties of the biological tissues would be 
discussed.  

Biological tissues are comprised of cells with 
membranes, surrounded by extracellular fluids (12). This 
way the extra and intracellular spaces are separated by cell 
membranes, which creates two electrically conducting 
compartments: extra and intracellular media. The 
intracellular and extracellular fluids provide resistive paths. 
The lipid bilayer cell membrane, on the other hand, is very 
thin (around 7 nm) and semi-permeable, which due to its 
insulating nature, gives the membrane a high capacitance 
and produces capacitive reactance (7, 13, 14).  

Biological tissues can also demonstrate inductive 
properties, but when compared to their resistance and 
reactance, inductance is very low at frequencies below 
10MHz, therefore it can often be neglected (15). Thus, the 
complex electrical impedance produced by biological 
tissues which can also be called bioimpedance, is the result 

of contribution of both capacitance and conductance of the 
tissues which are both frequency-dependent (9, 16-20). 

Permittivity (Ꜫ) is also one of the electrical properties of 
the biological tissues. Schwan was the first to study the 
dielectric properties of biological tissues in 1957 and 
realized that both permittivity (Ɛ) and conductivity (σ) are 
frequency dependent factors (21). Permittivity is the ability 
to permit storage of electric energy (7) and is a measure of 
the system response when an electric field is applied (16, 
22). 

Under linear conditions for a biological tissue, cell 
admittance (Y), cell impedance (Z = 1/Y) and permittivity (Ɛ) 
all provide the same information (7). Permittivity is mostly 
expressed as relative permittivity and decreases with the 
increase in frequency. This is because of the inability of the 
tissue to react to the quick changes in the applied electrical 
field (9, 23, 24).  

While analyzing the properties of biological tissues over 
a large frequency range, Schwan realized that these 
dielectric properties are characterized by three dispersions 
including: 𝛼-dispersion, 𝛽-dispersion, and 𝛾-dispersion, 
which occur respectively at low frequency, radiofrequency, 
and microwave frequency (21, 25);  

 

1. 𝛼-dispersion (10Hz to a few kHz): associated with 
tissue interfaces, such as membranes (21).  

2. 𝛽-dispersion (1kHz to several MHz): caused by the 
polarization of cellular membranes and protein and 
other organic macromolecules  

3. 𝛾-dispersion (≥ 10GHz): associated with the 
polarization of water molecules  

 

At low frequencies, cell membranes act as insulating 
barriers demonstrating resistive pathways, therefore little 
or no current would be able to pass the cell membranes, 
while at higher frequencies, the capacitive pathways of the 
membrane would be demonstrated and the current would 
be able to pass through the cells due to the high 
capacitance of the cell membrane (Figure 1) (26). At very 
high frequencies, resistive or capacitive pathways do not 
have much contribution as the current does not have time 
to flow and it would only bounce back and forth between 
membrane surface of the cells (18, 27).  

 

Figure 1. Flow of electrical current through biological tissue: A) At 
lower frequencies, current flows between the cells and through the 
extracellular fluid, B) At high frequencies, current penetrates the 
cell membranes and flows through intracellular and extracellular 
fluid. 
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In order to study the behavior and activity of cells in a 
tissue engineered cell construct, the evident method would 
be applying an AC electric field to the cell culture and 
measuring the passive electrical response of the cells, i.e. 
electrical properties of the cell construct (14, 28, 29). This 
can be considered as a practical method for monitoring cell 
growth and differentiation in a non-invasive and label-free 
manner for tissue engineering applications (30, 31). 

Common electrode configurations for bioimpedance 
measurements 
In bioimpedance measurements, when an alternating 
current is applied, electrode demonstrates an impedance at 
its interface with the tissue/solution which is highly 
dependent on frequency (Electrode polarization 
impedance). Changes in the type of material (tissue or 
solution) which is in contact with the electrode, influence 
the magnitude and phase of the electrode impedance. 
Therefore the final measured impedance by the system, is 
the sum of electrode polarization impedance and the 
impedance of the tissue or solution (7). For a given 
electrode material and type, impedance would be 
determined by the magnitude of the excitation signal as 
well as the electrode dimensions and geometrical structure 
(32). In order to perform bioimpedance measurements, a 
minimum number of two electrodes are needed which 
would create a closed circuit for the passage of the 
electrical current (7). 

To monitor the characteristics of a tissue engineered 
construct, different electrode configurations can be used. 
Impedance at the interface between the electrode and 
electrolyte or the cell culture (electrode polarization 
impedance) is more reflected by two and three electrode 
configurations and influences the measurements (33). 
While combining the two and four electrode configurations, 
different volume layers of the same tissue engineered cell 
culture with less contribution from the electrode 
polarization impedance can be studied (34, 35). This 
combined electrode configuration can be used to provide 
structural information during the growth and 
differentiation process of the stem cells in a non-
destructive way (36, 37). Moreover, by benefitting from the 
combinations of two, three and four electrode 
configurations, more electrode pairs with various spatial 
distributions can be applied to study the spatial distribution 
of cells in a 3D cell construct. It should be noted that factors 
such as movement and wrong positioning of electrodes, can 
be the source of error in bioimpedance measurements (32). 

Two electrode configuration 
The most evident set up for impedance measurements is 
the two electrode configuration (Figure 2), where the same 
electrode pair is used for both current-carrying (CC) and 
voltage pickup (PU).  

The impedance which is measured this way consists of 
the polarization impedance at the surface of the electrodes, 
as well as information regarding the volume of the tissue 
around the electrodes (7). This electrode configuration, can 
also be used for unipolar measurements where one very 
small and one large electrode are used (38).  

Two electrode configuration is the simplest set up that 
can be used for impedance measurements in perfusion 
based systems (33-35). It is also typically used for 
impedance measurements in monolayer cell cultures where 
the electrodes are inserted at the bottom of the cell culture 
vessel (39). Electric Cell substrate Impedance Spectroscopy 
(ECIS), is the example of one the impedance measurement 
methods on cell monolayers which applies two electrode 
configuration set up. In this method cells would be grown 
on the surface of the sensing electrode and changes in the 
impedance is measured between the sensing and the 
counter electrode. The measured impedance would be very 
dependent on the coverage of the electrode surface by 
cells. The results achieved this way, although interesting, 
but do not provide accurate measurement of the tissue 
volume grown on the surface of the electrode (40). One 
alternative can be using several electrode pairs and 
changing the distance between the electrodes to be able to 
achieve different penetration depth in the layers of cell 
culture (41).  

Main limitation of the two electrode configuration 
systems is presence of electrode polarization impedance in 
the output signal which should be considered and extracted 
while analyzing the measured signal (34, 42).  

 

Figure 2. Schematic of a two electrode configuration set up, 
where both electrodes are used for current carrying (CC) and 
voltage pick up (PU).  

Three electrode configuration 
In three electrode configuration (Figure 3), an external 
voltage is applied between the reference (RE) and the 
working electrode (WE), and electric current is passed from 
the counter electrode (CE) to the working electrode (WE). 
The potential of the reference electrode is considered 
constant as no current flows through this electrode. 
Therefore changes in the potential of the working electrode 
is the same as the change in the applied voltage (7). Canali 
et al., applied a combination of two and three plate 
electrode configurations to study the spatial distribution of 
cells in large gelatin scaffolds (43).  
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Figure 3. Schematic of a three electrode configuration set up, 
where an external voltage is applied between the reference (RE) 
and the working electrode (WE), and electric current is passed 
from the counter electrode (CE) to the working electrode (WE).  

Four electrode configuration 
Four electrode configuration was introduced in late 1800’s 
to measure materials resistivity (44). In this set up, a pair of 
electrodes are used for applying the current into the tissue 
sample (CC) and the other electrode pair is used for 
detecting the changes in the voltage (PU) as the result of 
changes in the conductivity of the tissue (Figure 4) (34, 35). 
In four electrode configuration set up, increasing the 
distance between the CC and PU electrode pairs would lead 
to decrease in the magnitude of the measured impedance 
(7, 45).  
 

 
 
Figure 4. Schematic of a four electrode configuration set up. CC1 
and CC2 are the current carrying electrodes while PU1 and PU2 
are the voltage pick up electrodes.  

One of the advantages of four electrode configurations 
in comparison to two electrode configuration is that as the 
PU electrodes are non-current carrying, the polarization 
impedance would be eliminated and therefore the effect of 
the contact impedance at the electrode and tissue or 
electrolyte interface would be minimized. This way only the 
electrical properties of the biological tissue would be 
detected (46).  

Moreover, measurements with four electrode 
configuration can have a higher sensitivity and accuracy in 
measuring the density of the biological tissues and 
providing morphological information. While with two 
electrode configuration, the measurements can often be 
dominated by the electrode polarization impedance which 
can make it difficult to extract the contribution from the 
tissue with sufficient sensitivity or accuracy (36, 37). In 
general, the influence of electrode polarization impedance 
is dependent on electrode material, size, measurement 
frequency, sample impedance, etc. Hence, it is important to 
be aware of this effect and if necessary, employ different 
techniques to reduce it. Using a four electrode set-up is a 
well-known method for reducing the influence of electrode 

polarization impedance, but other methods have also been 
suggested (47). 

Different types of tissue engineered constructs 
Two dimensional (2D) or monolayer cell cultures are 
typically used for the purpose of research on biological 
tissues at the cellular level (48, 49). Due to cellular 
heterogeneity, it is important to study single cells as cells 
are not necessarily a representative of the features of the 
whole tissue they are extracted from. However, a 2D cell 
culture, provides an artificial environment which lacks 
characteristics such as concentration gradient which can be 
provided by a three dimensional (3D) in vitro cell culture 
system. Therefore, there is still a gap between the two and 
three dimensional cell culture systems and a proper 
functioning biological tissue. As a solution, chip based 3D 
culture systems are developed to overcome the limitations 
of the 2D and 3D cell culture models (50-52). 

Two-Dimensional (2D) cell culture 
In 2D cell culture systems, cells are seeded into a cell 
culture vessel (Figure 5), which contains a volume of cell 
culture medium with a height ranging from mm to cm 
above the cells. This cell culture medium contains the 
nutrients and gasses needed for cells growth and takes up 
waste products (52). 2D cell cultures provide a simple 
system for observation and evaluation of cellular behavior 
and has been employed in different studies such as cancer 
drug screening (48, 49).  

The morphological evaluation of the cell monolayer or 
2D cell cultures, is usually performed using an optical 
microscope. Optical methods based on fluorescent staining 
are commonly used for studying cell activities. However, 
fluorescent staining normally kills the cells. On the other 
hand, the penetration depth of the commonly employed 
techniques for 2D cell cultures such as confocal and 
fluorescence microscopies, are limited (<50 micrometers) 
(53). Therefore, as an alternative approach for real-time 
and non-invasive and label-free measurements, 
bioimpedance measurement techniques can be applied 
(54).  

 

Figure 5. Schematic representation of the 2D cell culture where 
cells are seeded as individual cell into a cell culture dish. 

Three-Dimensional (3D) cell culture 
Cells in vivo, are in interaction with extracellular matrix and 
neighboring cells which provides them with a three-
dimensional environment. Therefore when removed from 
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this native three- dimensional environment (3D) and limited 
to a monolayer (2D), cells would show unnatural behavior 
(48, 49). Due to the resemblance to in vivo situations and 
the ability to provide a physiologically relevant 
environment, three-dimensional (3D) cell cultures have 
been developed (48, 55). To mimic the in vivo environment, 
cells are encapsulated within 3D scaffolds (56), where the 
properties of the scaffolds such as stiffness, composition 
and porosity have an important influence on cell physiology 
(57-59).  

There are different 3D cell cultures based on the type of 
Extra Cellular Matrix (ECM), including:  

1. Artificial ECM (synthetic polymers, alginate …)  
2. Natural ECM (collagen, hyaluronic acid…)  
3. None ECM or scaffold-free (3D spheroids or 

microtissues) (Figure 6) (60, 61) 

Encapsulation of the cells in the scaffold in a 3D cell 
culture system, makes direct evaluation of cellular growth 
and behavior difficult and time consuming (62). Techniques 
such as histopathology, scanning electron microscopy and 
transmission electron microscopy, can be employed for 
studying the cells but are destructive in nature as the cells 
need to be frozen and fixed to be evaluated by these 
methods (63). Thus, bioimpedance measurement 
techniques can provide non-invasive monitoring of 3D 
tissue engineered constructs by applying different 
electrode geometries and configurations.  

Long-term and real-time monitoring of cell growth and 
differentiation leading to tissue formation in 3D scaffolds is 
of high importance in tissue engineering applications, as the 
cell cultivation process is performed over time (53). For 
impedance measurements in 3D culture systems, cells are 
not seeded as a monolayer on the surface of the electrode 
but are encapsulated in a 3D scaffold which is in contact 
with a conductive medium (52). Thus, the electrodes can be 
placed for example outside the extracellular matrix and in 
the middle to provide impedance measurements. 
Therefore, the ionic variations of the medium over time 
would lead to changes in conductivity which would affect 
the measured impedance (43).  

 

Figure 6. Schematic representation of a scaffold free 3D cell 
culture in the form of spheroids.  

Microfluidic 3D cell culture or Lab-on-chip  
The development of microfluidic 3D cell culture systems 
was originally based on the concept of scaling down cell 
culture systems (64, 65). Microfluidic 3D cell culture 

systems or devices, also called organ-on-chip, bio-chip, 
body-on-chip or micro-total-analysis-system (66, 67) are 
devices containing microfluidic channels and chambers for 
culturing living cells. Their purpose is to provide 
microenvironments which mimic in vivo conditions and 
provide measurement of cell performance by benefiting 
microfabricated chips (Figure 7) (64, 68, 69). In LOC 
systems, components of a 3D culture system such as 
natural extra cellular matrix as the substrate and 3D gels for 
filling the microfluidic chambers are combined with the 
microfluidic design (70). These systems are considered a 
miniaturized and automatized version of the conventional 
laboratory as they incorporate most of the necessary and 
functional components of a laboratory in to a small chip 
(71). 

The advantages of LOC systems such as higher reliability 
and increased sensitivity and specificity, and lower costs 
due to less material consumption, are mostly due to their 
miniaturized sized and automation. In addition, microfluidic 
systems also take into consideration the fluid transport that 
is usually neglected in other cell culture systems (72). In 
addition, the microfluidic systems which is an in vitro cell 
culture systems of high complexity, provides the possibility 
to assess the permeability of the cellular barriers (73, 74).  

Evaluation of cell adhesion, spreading, growth, motility 
and death for any adherent cell type is possible in LOC 
systems by monitoring the impedance changes at the 
contact between the cells and electrodes (75). Impedance 
measurements can also be used in studying cytotoxicity 
which provides an alternative method for slow and invasive 
traditional cytotoxicity assays (14). 

Cells that are attached to the substrate of cell culture 
systems are considered the sensing elements and 
therefore, monitoring their viability and functionality is of 
high importance. Changes in cell differentiation, motility, 
morphology, adhesion and etc., all characterize cell 
viability. On the other hand, drastic changes in behavior of 
the cells, such as morphology, integrity of extracellular 
membrane, as well as changes in intracellular structure 
would characterize cell death (76). These changes all have 
an important influence on the measured impedance which 
can be detected quickly and inexpensively by impedance 
electrodes (75). 

A fully integrated physical, biochemical and optical 
sensing platform interfaced with a multi-organ-on-a-chip 
system was developed by Zhang et al. This system provided 
automated, and on-line sensing of biophysical and 
biochemical parameters of a microfluidic environment (51). 
Moreover, there are reports of microfluidic devices which 
provide automated and cost effective cell culture systems 
by using an array of microchambers inside which cells are 
cultured and continuous perfusion of medium is provided 
(62, 77). 
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Figure 7. A) Organ on chip device showing an extra cellular matrix 
(ECM) coated flexible porous membrane with epithelial cells 
through the middle of the central microchannel and vacuum 
chambers on both sides; B) Picture of the organ on a chip device 
(directions indicated by arrows visualize perfusion of the red and 
blue dyes). Copied with permission (78). 

Common bioimpedance measurement techniques applied 
in tissue engineering 
Real-time and non-invasive monitoring and characterization 
of tissue engineered constructs during their development 
process is essential. The complex structure of 3D cell 
cultures makes this evaluation process more difficult. 

 Many studies have been performed in order to find the 
reliable non-invasive technique to study the characteristics 
of different tissue engineered cell cultures and for different 
research objectives such as evaluating stem cell 
differentiation protocols (32, 62, 79, 80). Optical-based 
methods based on fluorescence, density, light absorbance 
and scattering can be considered as reliable methods for 
cell suspensions, but are difficult to be incorporated for 
evaluations of cells in microporous scaffolds (6). Scanning 
electron microscopy is destructive to the tissue engineered 
construct as it needs slide cuts of the cell culture for its 
evaluation. Nuclear and magnetic resonance imaging 
although offer a reliable monitoring method, but can 
damage the cell culture due to their ionizing nature and are 
in addition costly and of low portability (5). The biomass 
monitor which is based on capacitance measurements, is a 
good method for monitoring immobilized cells in 
bioreactors, although measurements within microporous 
scaffolds are not possible with this method due to its design 
(81).  

As a result, indirect methods for evaluation of cell 
growth, which measure the metabolic/protein content such 
as ATP, DNA, or the rate of oxygen-uptake are being 
employed. MTT assay that culminates in cell death, and 
Alamar blue dye are examples of indirect measurements 
used for the evaluation of cytotoxicity (82), but these 
methods should be performed in several stages and are not 
proper for on-line monitoring of cell cultures.  

On the other hand, electrical impedance measurements 
provide a simple and reliable method for characterization 
and evaluation of cell cultures such as their size and shape, 
the state of cell membranes and the status of intra and 
extra cellular media (18, 83), as due to the nature of the 
impedance measurement technique, small changes in the 
electrical properties of cells can be detected (26). 

As an example, impedance measurements have been 
used for continuous monitoring of tissue spheroids (62, 84, 
85), as well as estimating the cell size (84, 85), proliferation 
(62), evaluation of cell concentration (86) and cell viability 
(87, 88). In addition, this method has been used for 
monitoring cells behavior by application of bulk (89) or thin 
film electrodes (90), on cells attached to a substrate (91), 
on cells in suspension (92) or on trapped single cell (93).  

Microsystems can provide an environment for cell 
cultures where noninvasive monitoring of cell behavior 
through electrical methods is possible (71, 94). These 
microsystems can be used for a variety of applications such 
as detecting changes in electrical properties of cells (75, 
95), counting and discrimination of cell population (96, 97), 
monitoring cellular functions like cell growth and cell death 
(98) and cell cycle (99). Therefore, it can be concluded that 
impedance measurement is a non-destructive and reliable 
technique for monitoring the behavior of cell cultures with 
a high temporal resolution. 

 
EIS (Electrical/ Electrochemical Impedance Spectroscopy) 
Description 
Impedance Spectroscopy (EIS) has been applied to 
biological tissues as early as 1925 by Fricke & Morse (100), 
and is performed by recording the electric impedance of a 
tissue over a frequency range, where frequency-dependent 
electrical properties of biological tissues can be detected. 
Since the electrical properties of biological tissues are 
related to their physiological and morphological properties, 
therefore impedance spectroscopy can be used as a 
method for evaluation of tissue composition (18). 

Changes occurring at the interface between the 
electrode and electrolyte or the tissue are of 
electrochemical nature (101) and are the results of resistive 
or capacitive properties of the materials, which both 
contribute to the measured impedance (102-105). Studying 
impedance of biological tissues across a frequency range 
have shown that the real part of the impedance is 
associated with resistive pathways across the tissues and is 
typically large at low frequencies, such as 10Hz or lower but 
decreases with increasing frequency; whereas, the 
imaginary part of the impedance is associated with 
capacitive pathways and decreased at high frequencies (18, 
27). 

 
Application 
In recent years, EIS has been used for various applications 
including tissue engineering, characterization of biological 
cells and cell culture monitoring (27, 38, 83, 106-113).  

 It is shown that applying an electric field with high 
voltage pulses can cause breakdown in the cell membrane, 
which leads to changes in the integrity and resistivity of the 
cell membrane (110). As the characteristics of the cell 
membrane and intra and extracellular spaces influence the 
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impedance spectrum, therefore measuring electrical 
impedance of a volume of a biological tissue over a 
frequency spectrum provides information with regards to 
the quantitative changes of cells such as cell population 
(111). 

Impedance spectroscopy has been used as a method for 
monitoring the growth and differentiation of stem cells in 
different tissue engineering applications. For example, 
different researchers have studied the development of 
Human mesenchymal stem cells using impedance 
spectroscopy (30, 114). By applying EIS, a significant 
increase in the measured impedance magnitude of 
osteogenic treated human mesenchymal stem cells was 
detected in comparison to the control samples (30). 
Furthermore, an impedance spectroscopy method using 
oscillating circuit for the real-time monitoring of growth 
and differentiation of muscle stem cells has been reported 
(115). 

Other applications of EIS include the quantification of 
cell size, and number and classification of cell type and 
shape (116, 117). Moreover, this method can provide 
information regarding cell toxicity, cell invasion or 
inflammation (79, 118). EIS can also be used for real-time 
monitoring of cell attachment and spreading on substrates 
and studying changes in endothelial monolayers (119). 

Using a single-channel impedance spectroscopy, Wang 
et al., introduced a low cost and reliable position detection 
technology for cell and particles (120).  

Application of EIS for real-time and in-vivo monitoring of 
the healing of bone critical size defects (CSD) as well as 
effectiveness of biomaterials and bone tissue engineering 
for the treatment of CSD, was reported by Kozhenvikov et 
al. Moreover, the possibility of evaluating quantitative 
changes in collagen and Hyaluronic Acid in the fracture site 
using EIS was demonstrated (121). 

Characterizing cell suspensions in a bioreactor or in a 
cell monolayer is another application of EIS (122, 123), 
which aims to evaluate the effect of growth factors and 
culture medium on cell differentiation (116, 117).  

Two different EIS measurement systems proper for 
different kinds of cell cultures were designed by Martinez-
Teruel et al. The first system was employing low frequency 
(1-200 kHz) for measuring adherent animal cell cultures, 
while the second one would apply higher frequency (100 
kHz -20 MHz) for measuring bacteria and yeast cell cultures 
in suspension, also feasible in single use bioreactors (116). 

Strength and weaknesses 
EIS is a real-time and non-invasive monitoring method 
which is relatively low cost and can be used for the 
characterization of tissue engineered constructs (18, 83). To 
obtain optimal results with this method from the 
measurement sample, the proper frequency range and EIS 
technique should be implemented. The impedance 
measured by EIS can also be influenced by many factors 

such as electrode oxidation and polarization which can lead 
to higher error percentage (124). EIS is very sensitive to the 
permittivity of cell membranes and therefore can precisely 
asses changes in cell cultures under high voltages, by 
incorporating advanced mathematical modeling methods 
(125). Being label-free is the clear advantage of EIS over the 
other characterization methods which require complex 
processes of preparation and dying of the samples and are 
usually destructive. However, EIS is less specific in 
comparison to non-label-free techniques, as it might be 
difficult to isolate different tissue volumes and therefore 
finding the right electrode configuration which would 
provide more specific measurements is of importance 
(116).  

ECIS (Electric Cell-substrate Impedance Sensors) / 
Impedance-Based Assays 
Description 
In 1984, Giæver and Keese showed that impedance 
spectroscopy can be applied for monitoring adhesion, 
spreading and proliferation of cells on a flat surface. The 
method was called Electric Cell-substrate Impedance 
Sensing, also known as ECIS. In ECIS a weak alternating 
current of (1 µA) is applied and the resulting impedance 
changes between a small sensing electrode on which cells 
are cultured and a large counter electrode are measured. 
Changes in the measured impedance occur because the 
electrode current is constrained by the insulating 
membrane of the cells cultured on the electrode surface 
and this way the electric current is forced to flow either 
under or between the cells (Figure 8) (40, 126).  

 When cells attach and start proliferating on the 
electrode surface, due to their low conductivity at low 
frequencies, the measured impedance increases and this is 
directly proportional to the area of the electrode that is 
covered with cells. When cells become confluent, the 
resistance reaches the maximum. And conversely, when 
cells start dying they start de-attaching from the electrode 
surface which leads to a decrease in the measured 
impedance (79, 127).  

Parameters such as resistance of the culture medium as 
well as the capacitance and resistance of the 
electrode/electrolyte interface, contribute to the 
impedance measured by ECIS technique (128). In ECIS 
measurements, quality of the cell barrier can be 
demonstrated by resistance of the cells towards the 
current, while capacitance is a measure of the area of the 
electrode that is covered by cells (129). 

Two electrode configuration is typically used for 
impedance measurements in ECIS method and measured 
impedance is highly dependent on the area of the sensing 
electrode that is covered by cells and also the adherence of 
the cells that are grown on the electrode (39).  
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Figure 8. A schematic drawing of an Electric Cell Substrate 
Impedance Sensing system (ECIS): The insulating membranes of 
the cells attached to the sensing electrode, cause capacitance (C) 
by constraining the current and force the current to flow beneath 
and between the cells which causes resistance (R), therefore in 
ECIS both the capacitance and resistance contribute to the 
measured impedance 

Application 
In ECIS the measurement can be performed in two ways: 1) 
Applying a current at a chosen frequency and measuring 
the impedance of the cell-covered electrode. This way the 
magnitude and phase of the voltage as a function of time 
would be monitored. From the results information 
regarding cells morphological changes and metabolic 
activities can be extracted (126, 130).  

2) Measuring the impedance of the electrode covered 
with cells at different frequencies. This way information 
regarding the cell layer covering the electrode surface, 
including the resistance of the cell barriers and capacitance 
of the cell membranes can be obtained (126, 131, 132). 

ECIS can provide information regarding the dynamic 
characteristics of the cells cultured on the electrode 
surface. Cell adhesion, spreading, density and barrier 
function, as well as cell micromotion and motility can be 
studied by this method (129, 133).  

ECIS has been applied to monitor human bone marrow-
derived mesenchymal stem cells (hMSCs) undergoing 
osteogenic differentiation. It has also been used to monitor 
human adipose-derived stem cells (hASCs) during 
osteogenic and adipogenic differentiation based on the 
distinct impedance properties of hMSCs and hASCs (30, 
134).  

Nordberg et al., reported that the impedance 
measurements performed by ECIS can be used to quantify 
donor-related differences during proliferation and 
osteogenic differentiation in hASC populations (135). 

Strength and weaknesses 
ECIS offers a non-invasive, label-free and continuous 
impedance measurements for monitoring cells 
characteristics with a high temporal resolution. Although 
the impedance measurements can be influenced by small 
changes in temperature, pH or the medium. In addition, by 
using mathematical models, changes in the resistance and 
capacitance can be used to interpret cellular behavior and 
morphology (129, 136). Nevertheless, it should be noted 
that these mathematical models are only valid when the 

cells are in their confluent states, therefore one should 
make sure of the maturity of the cells before modelling 
them. On the other hand, ECIS cannot be used for 
measurements on single cells as its measurements are the 
average of signals from all the cells cultured on the 
electrode surface. In addition, optimization of parameters 
such as seeding and coating density of cells prior to ECIS 
measurements is needed to provide optimal results (129, 
137).  

One of the drawbacks of ECIS method is that it cannot 
be used for monitoring 3D cell cultures where cells are 
encapsulated inside a 3D matrix and therefore cannot 
attach to the electrode surface. While the major limitation 
of this method is that direct information on molecular level 
cannot be provided by ECIS (79, 127, 138).   

TEER (Trans Endothelial/Epithelial Electrical Resistance) 
Description 
Trans Endothelial/Epithelial Electrical Resistance or TEER is 
a non-invasive method which measures the electrical 
resistance across the tissue and this way quantifies the 
integrity of the barrier tissue (Endothelial or epithelial 
monolayers). In TEER method, electrodes are placed on 
both sides of a cell layer which is grown on a semi-
permeable membrane (Figure 9).  

In Resistance-based TEER measurements, an alternating 
current signal would be applied and both the current and 
voltage would be measured across the cell layer. This way 
the electrical resistance of the cell layer in Ohms would be 
measured which provides information regarding barrier 
integrity; while in Impedance-based TEER, impedance 
measurements are performed across a frequency range 
(139, 140). 

In TEER measurements, many factors contribute to the 
measured electric resistance including: resistance of the cell 
layer, cell culture medium, the semi-permeable membrane 
where the cells are cultured and the electrode-medium 
interface (141).  

In TEER, two electrode configuration can be used to 
provide accurate TEER measurements, while four electrode 
configuration can provide even more reliable and robust 
measurements (140). 

 

 

Figure 9. Schematic of Trans Endothelial Electrical Resistance 
(TEER) measurement system with chopstick electrodes.  
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Application 
TEER offers a sensitive and reliable method for monitoring 
the integrity and permeability of the barrier of the cell 
monolayer (66). Due to its reliability and noninvasiveness, 
TEER is considered an important method to be used in 
body-on-chip microfluidic devices. Commercial TEER 
measurement systems with customized microfluidic 
implementations for various cell types have been reported 
such as blood-brain barrier (BBB), gastrointestinal (GI) tract, 
and pulmonary models (139, 142). 

Strength and weaknesses 
TEER measurements provide non-invasive and on-line 
monitoring of the whole process of cell growth and 
differentiation as well as their barrier integrity. Although, 
many factors such as temperature, formulation of the 
culture medium and also the passage number of cells can 
influence the measurement. In addition, in order to gain 
reliable and accurate measurements, all the factors 
contributing to the measurements including cell monolayer, 
culture medium, the semi-permeable membrane and 
electrode-medium interface should be under control. 
Variation in electrode placement and temperature between 
the blank and tissue-containing systems in lab-on-chip 
systems, can also cause errors in the measurements 
performed by TEER method (140). 

 
EIT (Electrical Impedance Tomography) or ECT (Electrical 
Capacitance Tomography) 
Description 
Electrical Impedance Tomography (EIT) is a noninvasive 
imaging method, in which the conductivity distribution in a 
tissue is mapped based on electrical measurements from 
the subject (143).  

EIT systems are either Single-frequency where a 
constant current at a particular frequency is applied and the 
resulting potential is measured, or Multi-frequency EIT 
systems where measurements are performed over a 
frequency range (143, 144). Typically in EIT methods, an 
alternating current with a magnitude of a few mA is applied 
to one pair of electrode and the resulting voltages between 
other electrodes are picked up. Current is then applied to 
all the other electrode pairs and the voltages are recorded 
(145). Optimized algorithms are then implemented in order 
to reconstruct an impedance image based on the electrical 
measurements (146).  

Four electrode configuration is considered an effective 
way to minimize electrode/electrolyte interface errors in 
measurements (147). Therefore, by successive 
measurements based on four electrode configuration, it 
would be possible to collect electrical data from several 
electrode pairs and consequently map the impedance of 
the subject under measurement (46).  

EIT measurements can be performed by applying 
different data collection methods (101, 148) (Figure 10) by 

which the current is injected and the voltages are detected: 
1. Adjacent Drive or Neighboring method (149), 2. Opposite 
method, 3. Cross method (150), 4.Trigonometric or 
Adaptive method (151).  

 

 

Figure 10. Impedance data collection methods in Electrical 
Impedance Tomography by applying 16 equally spaced 
electrodes: A) Adjacent Drive or Neighboring method, B) 
Opposite method. 

 
Application 
First in 1978, EIT was developed as an alternative and cost-
effective imaging method for clinical applications such as 
thorax imaging (152).  

Application of EIT at the cellular level started by 
development of microtechnologies, where EIT 
measurements were performed by placing microelectrodes 
inside the cell culture environment. Electrical current with a 
low magnitude was is then applied and the electrical data 
were collected and using reconstruction algorithms, the 
internal conductivity of the cell culture was mapped (153, 
154, 155).  

EIT is a multi-dimensional (space, time and frequency) 
direct imaging method, which can provide non-invasive and 
label-free monitoring of cell growth, proliferation, 
differentiation, migration and death in cell cultures (156). 

Cell culture imaging by EIT has been studied by several 
research groups: Linderholm et al., presented a novel, low-
cost, and fast EIT system for two dimensional imaging of 
cell cultures. Using a four-electrode configuration set up 
with 16 planar microelectrodes integrated into the cell 
culture chamber, 2D impedance images were obtained. This 
novel imaging method, made it possible to study the shape 
and position of human hair, and its vertical cross sections. 
In addition, human epithelial stem cells grown directly on 
the device surface were monitored by this method (91, 
153). 

Sun et al., reported a miniaturized EIT system for 
mapping the conductivity distribution within a two-
dimensional cell culture. For this purpose, a chip containing 
a circular 16-electrode array was used to measure spatial 
voltage across a multi-nuclear single cellular organism. The 
electrical data was then collected using a four electrode 
configuration set up and the conductivity distribution 
images were reconstructed. This way a non-invasive lab-on-
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chip technology for mapping the impedance of single cells 
was developed (94, 154).  

In addition, EIT is also a proper method for imaging 3D 
cell cultures by monitoring the distribution of cells in to 3D 
scaffolds, however only a few applications of EIT in 3D 
imaging are reported. As an example, 3D imaging of breast 
cancer cell spheroids was performed by Yang et al. (157); 
and Wu et al., developed an EIT sensor to monitor cell 
viability in 3D cell spheroids in a single-well system (53). 

Strength and weaknesses 
With single-frequency EIT imaging system, measuring the 
absolute impedance of the tissue cannot be accurate as the 
position of the electrode is not certain, while multi-
frequency EIT imaging system, which employs impedance 
spectroscopy, has made characterization of biological 
tissues possible (7). 

In comparison to other imaging technologies such as 
confocal and fluorescence microscopy, EIT has a lower 
spatial resolution which is due to the problem with 
reconstruction of image from the measurements (41, 158). 
One important factor that contributes to low spatial 
resolution, is the low signal to noise ratio of the 
measurements as the result of low voltage variation at the 
electrode/tissue interface which is the consequence of low 
conductivity variation in the tissue in comparison to 
circuitry noise. System calibration is one way to minimize 
this circuitry noise. The other solution can be using 
advanced image reconstruction algorithms which use prior 
knowledge with regards to structure of the tissue under 
measurement (159).  

Lie et al., developed a micro-EIT system (KHU Mark 1 
micro-EIT) by using a unique electrode configuration and 
data collection method. This method could provide images 
with higher resolution than the conventional impedance 
imaging methods due to the projected image 
reconstruction algorithm used. However, suffered from 
limitations such as underestimation of the volume and 
artifacts around the secondary current carrying electrode 
(160).  

Later, Lee et al. introduced a new micro-EIT system 
(KHU Mark 2 micro-EIT) which could overcome some of the 
limitations of the previous system (KHU Mark 1 micro-EIT) 
by applying three current patterns which were linearly 
independent. This way the images could be reconstructed 
without any interference caused by the secondary current 
carrying electrodes and thus the quality of the 
reconstructed images were improved (156). 

Although EIT is a low-cost, easy to operate, non-invasive 
and label-free imaging method which can be applied over-
time, but its performance suffers from limitations such as 
low signal to noise ratio and spatial resolution specially in 
monitoring 3D scaffolds due to low conductivity variation 
produced by sparse cell distribution in the scaffolds (53). 

CPM (Complex Permittivity Measurements) 
Description 
Complex Permittivity Measurement or CPM is an effective 
method for non-invasive monitoring of biomaterials. 
Permittivity in a biological tissue is related to its structure 
and compositions, and measurement of permittivity is 
essential for studying the effects of electromagnetic field 
on the biological tissue (23). Therefore, studies have been 
performed to measure permittivity in biological tissues 
(161-164). 

Theoretically, permittivity can be characterized by the 
reaction of a material to polarization by an external field, 
for example, electric field (9). 

Typically, in order to express the electrical properties of 
a tissue, relative permittivity (Ɛr) would be used which is the 
ratio of permittivity of tissue (Ɛ) and the permittivity of 
vacuum (Ɛ0=8.854 pF/m), given as (9) ; 

 Ɛr = 
ఌఌబ   [2] 

The reaction of materials including biological tissues to 
external fields such as electric fields depends on the 
frequency of the field. Due to this frequency dependency, 
an electric field does not change the polarization of the 
biological tissue instantly, and the change in polarization 
occurs with a phase difference which describes the phase 
lag between the applied electric field and change in 
polarization (161).  

When the material to be measured is a dielectric (a dry 
insulator capable of storing electrical energy) with losses, 
the term complex permittivity is used to incorporate both 
the frequency dependency and the dielectric losses (7, 
164). Thus, complex permittivity (Ɛc) can be given as; 

Ɛc=Ɛr- jƐr tan δ  [3] 

Where Ɛr is the real part of complex permittivity, j=√−1, 
and tan δ is the loss factor. For purely conductive losses;  

tanδ= σ/ωƐ0Ɛr  [4] 

Where ω is the frequency and σ is the medium 
conductivity (23). 

Complex permittivity can be measured by different 
methods such as transmission, reflection, and resonant 
measurements (23). In a measurement method based on 
transmission of for example Radio Frequency (RF); the 
sample to be measured would be loaded on the 
transmission line and by transmitting RF through the 
sample, the scattering parameters would be measured and 
related to permittivity of the material. In the reflection 
method, the reflection coefficient at the interface between 
the electrode and the sample under measurement, would 
be measured to determine the permittivity of the material 
(165).  
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Another method for characterizing the permittivity of a 
biological tissue, is measuring the capacitance of the tissue 
and then calculate permittivity based on the relationship 
between the tissue morphology and the electromagnetic 
theory (166, 167).  

Application 
The Complex Permittivity measurement can be a useful 
monitoring method in the field of tissue engineering. One 
of the applications can be real-time monitoring of cellular 
proliferation, growth, and concentration in microporous 
polymer scaffolds and evaluation of the porosity and 
structural defects of these scaffolds, as variations in cell 
concentration inside scaffolds leads to changes in complex 
permittivity measurements (168, 169). In 2003, Bagnaninchi 
et al., reported the application of complex permittivity 
measurements for characterizing Chitosan microporous 
scaffolds at radio frequencies and real-time monitoring of 
cell growth and concentration in these scaffolds (168).  

In 2004, Bagnaninchi et al. proposed the application of 
CPM for monitoring morphological behavior of osteoblast 
and macrophages including their attachment, proliferation 
and differentiation inside microporous scaffolds as well as 
the structural defects of the scaffolds (169).  

Strength and weaknesses 
One major problem with both transmission and reflection 
methods used for CPM measurements is the multiple 
reflections happening between the source and the sample 
which decreased the accuracy of measurements. However, 
employing a four electrode configuration instead of the two 
electrode configuration has helped to solve some of these 
problems (164, 165, 170). 

Permittivity being one of the frequency dependent 
deielectric properties of the tissue, demonstrated nonlinear 
characteristics in frequency domain. Therefore, the models 
used for calculation of the complex permittivity of the 
biological tissues can face some limitations. Hence, 
establishing a model proper for the dielectric properties of 
different constituents in the frequency domain is needed 
(23). 

Conclusions 
The translation of tissue engineered products into clinical 
routine is often limited by the lack of suitable non-invasive 
imaging methods to visualize parameters and behavior of 
the constructs (171). At the moment there are very few 
non-invasive methods in general use for evaluating the 
characteristics or viability of tissue engineered constructs. 
Current analysis methods and protocols employed in cell 
and tissue engineering are mainly histological techniques 
that require labeling and involve destructive tests to 
characterize the cell cultures and tissue engineered 
constructs (172). 

The investigation of the electrical properties of 
biological materials and their applications has a long history 
where measuring the dielectric properties of the cells could 
offer an applicable method for evaluating cell 
characteristics non-invasively. Tissue engineering, in 
contrast, is a relatively more recent field of investigation, 
and the exploration of the use of electric fields for 
characterizing or actively monitoring tissue engineered 
constructs offers a great potential (26). 

Therefore, impedance measurements could offer a 
noninvasive and reliable method with high temporal 
resolution for real-time monitoring of tissue engineered 
constructs during the production phase, providing the 
possibility of monitoring cell viability, growing and 
differentiation. Nevertheless, the measurement system has 
to be enhanced and different frequencies should be 
utilized. In this article, applications of bioimpedance 
measurement techniques in the field of tissue engineering 
from various reference points were reviewed.  

 From the electrode point of view, different electrode 
configurations and their applications in different 
bioimpedance measurement methods and cell culture 
types were discussed. Four electrode configuration seems 
to be able to provide results with higher relative sensitivity 
to cell density and morphological information in 
comparison to two electrode measurements which can be 
inaccurate for multiple layer growths. Therefore the 
combined use of the two, three and four electrode 
measurements can provide information with high 
sensitivity with regards to structural, morphological, spatial 
distribution and differentiation state of the cells in a 3D cell 
culture. 

From the tissue engineered cell culture point of view, 
the 3D and lab-on-chip cultures seems to be the closest in 
mimicking the in-vivo biological systems in comparison to 
2D cell cultures. Of course the complexities of organ 
functions and other requirements for their simulation on a 
chip will not allow researchers to replace human testing so 
easily and lab on chip systems need to be integrated with 
diverse technologies to enhance their capabilities (173).  

When it comes to the proper bioimpedance 
measurement technique, it should be chosen based on the 
application and the type of the cell culture which is to be 
monitored. Consequently the proper electrode 
configuration is of a high importance. Many of the current 
systems are not really portable, so developing 
microsystems with reduced size, both for the cell culture 
environment and the electrodes and the bioimpedance 
measurement system could be a subject for the future 
studies. 
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