
 
 

J Electr Bioimp, vol. 9, pp. 133-141, 2018 
Received 11 Dec 2018 / published 28 Dec 2018 

https://doi.org/10.2478/joeb-2018-0018 

 

© 2018 J. Ojarand, M. Min. This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License 
(http://creativecommons.org/licenses/by-nc-nd/3.0/). 

133 

 

On the selection of excitation signals for the fast 
spectroscopy of electrical bioimpedance 

 
Jaan Ojarand 1,2 and Mart Min 1  
 
1. Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Tallinn, Estonia 
2. E-mail any correspondence to: jaan.ojarand@ttu.ee 
 

 
Abstract 
Different excitation signals are applicable in the wideband 
impedance spectroscopy in general. However, in electrical 
bioimpedance (EBI) measurements, there are limitations that set 
specific demands on the properties of the excitation signals. This 
paper compares the efficiency of different excitation signals in a 
graspable presentation and gives recommendations for their use. 
More exactly, the paper deals with finding the efficient excitation 
waveforms for the fast spectroscopy of electrical bioimpedance. 
Nevertheless, the described solutions could be useful also in other 
implementations of impedance spectroscopy intended for   
frequency domain characterization of different objects. 
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Introduction 
Electrical impedance spectroscopy is a widely used tool for 
characterization the structure of tissues and cell cultures 
[1]. In the cases where the properties of objects are 
changing in time (e.g., heart muscle) or the objects are 
moving as cells in a microfluidic channel, the coverage of 
the frequency range of interest within a short timeframe 
demands to satisfy the criteria of the linear time-invariant 
(LTI) system. If the properties of a sample under test (SUT) 
are changing significantly during a measurement 
timeframe, the corresponding spectra will be distorted. 
Recently, a novel method was proposed for the 
measurement of periodically time-varying impedances 
using multisine excitation [2]. However, the most of 
impedances do not change periodically. For example, the 
impedance of cells moving fast between the electrodes of 

high throughput microfluidic system or the impedance of 
bacteria attaching to the electrodes of a biosensor, also the 
impedance of food products changing during their 
processing. That is, the short timeframe of every single non-
repeatable measurement becomes valuable. 

As a result, the limited amount of energy of excitation 
signal spreads between multiple signal components with 
different frequencies during a short timeframe. Therefore, 
the power of corresponding individual components, equal 
to the square of their root-mean-square (RMS) values, 
decreases. The task to use the limited energy resources of 
signals most effectively and flexibly becomes necessary. 

Concurrently, such an important criterion of the 
efficiency of impedance measurements – the signal-to-
noise ratio (SNR) of measured signal – is proportional to the 
power of every frequency components in it, decreases as 
well. In electrical bioimpedance (EBI) measurements, 
unfortunately, the SNR cannot be improved by increasing 
the overall amplitude of the summary excitation signal, 
since it is limited to low values because of both two issues: 
a) satisfying the criteria of linearity of the LTI systems and 
b) fulfilling the security needs for living tissues [3], [4].  

Even for non-biologic measurements, the allowable 
input signal range and power supply voltage of electronic 
components, both limit the allowed amplitude of signals. 
Moreover, due to the high crest-factor (CF) of noisy signals, 
the probability of saturation of measurement channels 
increases. That leads to nonlinearities, which involve 
corresponding uncertainties into measurement results. 

As discussed below, there are still several possibilities 
to improve the SNR in EBI measurements by optimizing the 
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properties of excitation signals and specifying some para-
meters of the measurement system. 

 
Properties of the spectroscopy system 
The structure of the EBI spectroscopy system 
The typical structure of EBI spectroscopy system is given    
in Fig 1. An excitation signal source (generator of the 
excitation waveform) has inputs for setting the required 
timing, frequency range, and amplitude. The signal from 
this generator provides an input excitation for the complex 
impedance to be measured Ż. 

Next block, performs both, signal conditioning 
(amplification, filtering, normalizing) and analog-to-digital 
(A/D) conversion. A part of this block (front end) is often 
located near the SUT for obtaining better performance. 
 

 
 

Fig.1: Simplified structure of the EBI spectroscopy system. 
 
Discrete or fast Fourier transform (DFT or FFT) of the 

response signal from the SUT provides the amplitude |Ż |(f) 
and phase Φ (f) spectra. Also the spectra of real Re Ż (f) and 
imaginary Im Ż (f) parts of the impedance Ż can be 
calculated. Multichannel synchronous detection is an 
alternative to the Fourier transform if the number k of 
frequency components is low. Later, here we use also 
notation X[k] for the discrete spectrum and Mag X[k] for 
the magnitude spectrum of spectral components k. 

More exactly, to measure an unknown impedance, we 
can choose one of the two approaches. Either we apply a 
known voltage excitation across the SUT and measure the 
current response flowing through, or we inject a known 
current excitation into that object and measure the voltage 
response across it. We can also measure both, current and 
voltage, simultaneously. The last method is preferable if the 
excitation source is not stable enough in a required 
frequency range or the parasitic impedances cause too 
large changes on the known parameters of the excitation 
signal [5]. 
 
Criterions of the efficiency of EBI spectroscopy system 
Typically, the signal-to-noise ratio (SNR) of the measured 
signal is considered as the main efficiency criterion of the 
measurement system. The SNR of the EBI spectroscopy 
system depends on several factors, including the frequency 
bandwidth and measurement time. These parameters may  
be as well considered as efficiency criterions. 

 In several cases, e.g., for implantable and wearable 
measurement devices, the energy consumption, and 
physical dimensions are important. Also the reduced 

complexity of the measurement system is required 
frequently. 

In turn, the parameters as frequency bandwidth, 
measurement time, and SNR of measurements are mutually 
related. 
 
Frequency range of EBI spectroscopy system 
To characterize the properties of biological objects, the α- 
and β-dispersion frequency ranges are to be covered, 
usually. In the single-cell cytometry, capacitance and 
conductivity of the cell membrane and conductivity of the 
cytoplasm influence mainly the β-dispersion area that 
exhibits a characteristic frequency between several kHz up 
to tens of MHz [5]. In the case of living tissues, the spectrum 
of bio-impedance shifts toward lower frequencies and the 
spectra of the β-dispersion range cover typically 3-4 
decades within the kHz to MHz band [1], [6]. However, even 
if only the β dispersion area is of interest, some part of 
lower frequency area must be included since the α-
dispersion changes the plateau, from which the β-
dispersion begins. 
 
Frequency and time domain properties of signals 
Periodicity of signals and synchronous measurement 
Presentation of signals can be converted mutually between 
time and frequency domains by the aid of mathematical 
operators known as transforms. The use of Discrete Fourier 
Transform (DFT) or more efficient Fast Fourier Transform 
(FFT) for the conversion from time to frequency domain is 
essential in fast impedance spectroscopy. The inverse 
transforms (DFT-1 and FFT-1) apply to opposite conversions. 
Though the signals are classified as periodic and aperiodic 
ones, however, the aperiodic signals can be addressed also 
as periodic having infinitely long period in the time domain. 
In the frequency domain, such approach produces infinitely 
small frequency steps leading to a continuous spectrum. In 
signal processing practice, a signal component with the 
longest but finite period Tm produces a discrete spectrum 
with frequency steps  f1 = 1/Tm, where f1 is the lowest 
frequency presented as a fundamental frequency 
component. A single one-shot event in one domain reflects 
as the periodic component in the opposite domain [7]. Even 
if the real signals are not periodic, DFT interprets them as 
periodic, which leads to the distortions of spectra (spectral 
leakage error). A signal x (t) is periodic if: 

 ( ) ( )px t x t T= +   (1) 

 
The smallest positive value of Tp, which satisfies the 

condition (1) is a period. To be sure in signal periodicity, it 
must be observed from infinite past to the infinite future. 
Fortunately, this is not necessary, if the periodicity of 
signals is ensured by the design of the impedance 
spectroscopy system. 
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Due to the discrete nature of signal processing, one 
more condition must be fulfilled for the synchronous DFT: 
the measurement interval Tm = N × ts must be an integer 
multiple of the period Tp of the signal, where N is the length 
of DFT. That is, the total number of samples N used for 
calculation of Fourier transform, where ts is a used sampling 
period. If the conditions of the synchronous measurement 
are not met, then a certain spectral leakage errors occur. 

The spectral leakage errors can be reduced by 
employing special window functions in the time domain. 
However, this increases the complexity of signal processing 
and produces additional error components. Hence, if 
feasible, the synchronous measurement is always 
preferred. 
 
Minimal measurement interval and observation time 
The measurement interval, Tm, which corresponds to the 
one period of the signal, determines the lowest frequency f1 
of the spectra obtained by DFT, f1 = 1/Tm.  

Although only one period of a periodical signal fulfills 
the requirement of synchronous DFT (Tm = Tp), more 
periods allow noise reduction through averaging. When the 
noise is not correlated neither with the signal nor with itself 
across trials, averaging yields an improvement of the SNR. If 
σ is the amount of RMS noise in a set of p samples, the 
averaged RMS noise is  
 

 /avg pσ σ=   (2) 

 
However, this improvement comes at the cost of 

increased total measurement time (observation time) To, 
To = Tm × p. If the noise is correlated, the improvement is 
less effective. 

The minimal measurement interval Tm depends on the 
lowest frequency in the frequency range of interest. The 
frequency range, in turn, depends on the properties of SUT 
as will be explained in the next section. If the properties of 
SUT are varying in time, the total measurement interval 
should be decreased for the better conformity with the 
criteria of the time-invariant system. 

One possibility is to decrease the observation time To 
by reducing the number of measurement samples p. 
However, this also decreases the SNR. Another, better 
solution is to minimize time delays required for the 
formation of the response signal. Each time, when the 
excitation signal is applied, some settlement time of the 
response signal, depending mostly on the time-constants of 
the SUT, is required. Thus using the excitation signal that 
contains all the required frequencies (a multifrequency 
signal) provides minimal total observation time. 

However, multifrequency signals have a drawback: 
their crest factor (CF) - the ratio of signal’s peak value in 
respect to its RMS level – is often higher in comparison with 
a single frequency signal (sine wave). Moreover, even if the 

CF of the multifrequency signal is similar or even below the 
CF of a single sine wave ( 2 ), the RMS values of single 
multifrequency components are always less. RMS values of 
multifrequency components are decaying proportionally to 
the number of components k, as will be discussed in next 
sections of the paper. 

 
The highest frequency in spectra and sample rate 
The highest frequency fk of the spectra is determined by the 
length N of DFT, fk = f1 × N/2. If the frequency bandwidth of 
measured signals is wider than fk, then aliasing errors occur, 
because the signal power at higher frequencies mirrors at 
the lower frequencies. To minimize this distortion of spectra 
in the frequency range of interest, the sampling frequency 
fs = 1/ts should be set high enough – typically 4 to 10 times 
above the highest frequency (though theoretically only 2 
times). Unfortunately, this also requires more high-speed 
DSP components and increases the number of DFT samples. 
 
Normalization of signals and their energy content 
To improve the SNR, higher RMS magnitudes of the 
frequency components of interest (FCI) are desirable. For a 
graspable comparison of different waveforms, some 
variables must be normalized as constants. It is reasonable 
to normalize the amplitude to the unit value ± 1 and the 
duration to 1 second. Normalizing the duration of the signal 
against 1 second also provides a normalized presentation of 
the spectra since the fundamental frequency is reciprocal to 
the duration Tp. 

In general, RMS magnitudes of the frequency 
components (bins) of excitation signals are not equal. The 
shape of a magnitude spectrum may also be decaying, 
rising or oscillating around some mean value. The mean 
value of the RMS magnitudes of a number of frequency bins 
that fall in the half-power limit range is used here as a 
figure of merit for this general case. 

According to Parseval theorem, the total energy in the 
frequency domain must be the same as calculated in the 
time domain. In the case of using DFT, this relation is 
following: 

 [ ] [ ]
1 /2

2 2

0 0

2( ) ( ) ,
N N

i i
x i Mag X k

N

−

= =

=    (3) 

 
where x[i] is a time domain signal with i running from 0 

to N-1, and X[k] is its modified spectrum with k running 
from 0 to N/2. The modified spectrum is found by taking 
the DFT of the signal and dividing the first and last samples 
(samples 0 and N/2) by the square root of two [7]. 

 
Single frequency excitation and spectrally dense wideband 
excitation signals 
Single frequency signal and a short pulse 
The only signal with a single line spectrum is the sine wave. 
Sinusoidal signal x(t) can be described mathematically as: 
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 ( ) sin (2 ) ,x t A f tπ= + Φ   (4) 
 

where A is the amplitude and Φ is the initial phase, 
which specifies the waveform at time t = 0. (A cosine wave 
is also "sinusoidal" but with a phase-shift of π/2). If the SUT 
and measurement channel are linear, the output signal will 
also be a sinusoidal signal with the same frequency as the 
input. The drawback of using the single sine wave excitation 
is that several measurement steps at a number of 
frequencies are necessary and some settlement time is 
required in each sequential frequency step. 

The infinitely short δ-pulse can be considered as an 
ideal excitation signal for the fast impedance spectroscopy 
since it covers all the frequencies in the shortest time 
frame. However, in practice, there is a crucial drawback – 
because the excitation pulses are very short ones with 
limited amplitudes, the energy of pulse spread over a 
number of frequency components, will be very low. The 
reason is that according to the left side of (3), the energy 
content of the signal is proportional to the surface area of 
the waveform, and in the frequency domain, this energy is 
divided among spectral components. In the case of very 
short pulses, the distribution of frequencies is dense, 
almost all the higher harmonics of the first frequency f1 are 
present. If the amplitudes of the waveform are fixed 
(normalized), then the energy content of quadrangle pulses 
is directly proportional to their duration. If the duration of 
the pulses is increased, the magnitudes of frequency 
components are almost equal only in a shorter frequency 
range as illustrated in Fig. 2, and the mean value of their 
RMS magnitudes is nearly twenty times less compared to 
the RMS magnitude of a single sine wave. 

 
 

                             
       (a)          (b) 
 

Fig.2: Waveform (a) and magnitude spectrum (b) of the pulse 
with relative duration t = (64/1000). 
 
 
Other types of short pulses, e.g., the chirps as short-

time frequency sweeps, could also be used for EBI 
measurements [8]. Chirps with a single cycle or even less 
can be generated, too. The RMS values of the first six 
components of the exponentially modulated short chirp [9] 
(Fig. 3) are higher in comparison with the pulses shown in 
Fig.2, but still low since the surface area of the waveform 
(hatched), being proportional to the energy content of the 
signal, is small. 

 

                             
       (a)          (b) 
 

Fig.3: Waveform (a) and magnitude spectrum (b) of the 
exponentially modulated short chirp with relative duration 
t = 0.5. 

 
Pulse waveforms with a longer duration 
The further symmetrical extension of the excitation signal 
shown in Fig. 2, runs out into a rectangular waveform in Fig. 
4. In this case, the energy content of the signal is maximal. 
However, the spectrum contains only odd harmonics (1st, 
3rd, 5th, 7th), which are declining fast with frequency by 1/f 
rule. Such a simple waveform can be used, therefore, only 
in the cases where this type of decaying shape of the 
spectrum is useful. For example, a decaying part of the 
response current spectrum may be equalized with a similar 
decaying spectrum of the excitation voltage. 

Another type of signal that covers a large number of 
harmonic frequencies with almost equal amplitudes is a 
step wave (Fig. 5). This type of excitation is often used in a 
time domain based impedance measurement [5], [10]. The 
total energy content of the signal starting from zero is near 
maximal, but there are also serious drawbacks. At first, 
most of the energy of the signal is concentrated in a DC 
component that is mostly undesired in EBI measurements. 
If the rise time of the step waveform tends to zero, the 
number of harmonics tends to infinity, but their 
magnitudes reach to zero. In practice, the rise time of the 
step waveform is larger than a zero moment, and the 
amplitudes of higher harmonics are decaying. 
 

                             
       (a)          (b) 
 

Fig.4: Rectangular waveform (a) and its magnitude spectrum (b). 
 

A step waveform with the rise time of 1/500 of the 
period Tp is shown in Fig. 5a, where the RMS magnitudes of 
spectral components are almost constant up to 100th higher 
harmonic but very low. DC component equals 0.9985. DC 
component of the signal can be canceled by shifting the 
starting point of the waveform near to -1 (dashed line in 
Fig. 5a), but the RMS values of other frequency components 
remain the same (very small).  
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       (a)          (b) 
 

Fig.5: Waveforms (a) and magnitude spectrum (b) of the step 
waveform with a rise time of 1/500 of the signal period. Note 
that the first part of the time scale is magnified by 20. Diagonal 
hatch illustrates the energy content of the signal starting from 
zero and cross-hatches the energy content of the signal starting 
from -1. 
 

The energy content of the shifted waveform is proportional 
to a cross-hatched area, and its spectral content is similar to 
very short pulses. 

The DC component can be canceled also by adding a 
second part of opposite polarity. However, the waveform 
resumes in near rectangular signal with a well known 
decaying shape of the magnitude spectrum (Fig. 4). It must 
be emphasized here, that DFT interprets the signal as 
periodic, and according to (1) all the changes of the 
waveform must be included in a period. 

The situation described here also illustrates the 
drawback of time-domain impedance measurement 
method with a short pulse or step waveforms. In the case 
of unbalanced step waveforms, most of the excitation 
signal energy is useless for spectroscopy (concentrated in a 
DC component). Faster measurement cycle comes at the 
cost of lower SNR since the energy of harmonic spectral 
components is created only during the front part of the 
step or duration of the balanced pulses. Another reason for 
the low level of spectral components is that the energy 
spreads over many harmonic components. Averaging 
improves the SNR, however, this contradicts with the idea 
of fast measurements. Moreover, the use of longer 
excitation with a higher level of desired spectral 
components is more efficient under similar conditions since 
only uncorrelated noises can be effectively suppressed by 
averaging. 
 
Chirps 
Chirps are considered here as signals of many cycles of 
sinusoidal oscillation with a changing „instantaneous“ 
frequency. A sine-wave chirp signal with an instantaneous 
phase θ(t) can be described mathematically as 
 

 ( )( 2 (( ) ( ) ))chS sin si tt n f t dt θ π= =    (5) 

 
with the „instantaneous“ frequency 
 
 /( )( ) / 2( )f tt dtθ π=   (6) 
 

In practice, however, generating of discrete signals is 
more convenient. The waveforms of the sinusoidal and 
discrete, so-called signum-chirp Ssgn (t) = sign (Sch (t)) are 
shown in Fig. 6b. 
 

                             
       (a)          (b) 
 

Fig.6: Waveforms of the sinusoidal (a) and signum-chirp (b). 
 

The dependency of the mean RMS magnitudes on a 
number of frequency bins k of chirp signals is described in 
[11]. RMS magnitudes of spectral components of 
normalized linear sinusoidal chirp tend to the value of 
1/ k  and are higher by a factor of 4/π in the case of 
signum chirp. 

Further analysis shows some deviation (ripple) of the 
RMS magnitudes x of frequency components from a mean 
value of all used components k. The ripple in per cents is 
calculated as 
 
 max min((( ) / 2) / ) 100meanD x x x= − ×   (7) 
 
and is presented in Fig. 7 and Fig. 8. 

The advantage of signum chirp (in comparison with a 
sinusoidal one) is higher RMS value of its spectral 
components, but the ripple is also considerably higher in 
the cases, when the number of desired harmonic 
components, k > 10. 
 

 
 

Fig.7: Relative deviation of RMS magnitudes of the frequency 
components from their mean values of the linear sinusoidal chirp 
with normalized frequencies in the range from 10 to 50. 

 
Another disadvantage of signum chirp is that some part of 
the energy, typically 15-20 % of total energy, always spreads 
into higher harmonics above k. 
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Fig.8: Relative deviation of RMS magnitudes of frequency 
components from their mean values of the signum chirp with 
normalized frequencies in the range from 10 to 50. 

 
Maximum length binary sequence, MLBS 
Another type of wideband excitation waveform with a 
dense distribution of frequencies is a maximum length 
sequence (MLBS). MLBS is a type of pseudorandom binary 
sequence, which can be easily generated by an n-stage 
linear feedback shift register (LFSR). A maximum-length 
LFSR produces a maximum length sequence (m sequence). 
It cycles through all possible N = 2n − 1 states within the n 
stage shift register (except the state where all bits are zero). 
The MLBS period Tp = (2n-1) × tc, where tc is the period of 
the register clock. The RMS magnitude spectrum follows the 
envelope of sin ( f ) / f function as illustrated in Fig. 9. The 
half-power bandwidth occurs at a frequency of 
approximately 0.443/tc [12]. 

The shape of the magnitude spectrum becomes 
flattered as N increases, and more frequency bins fall in the 
half-power limit range. However, the power of each 
frequency component decreases. We showed in [11] that 
the mean RMS magnitudes of the frequency components of 
the MLBS signal tend to the value 
 

 0.5
4 1Mag ,

2 h

AX B
kπ

=   (8) 

where B ≈ 0.93 and kh is a number of useful frequency bins 
that fall in the half-power limit range. 
 

                             
       (a)          (b) 
 

Fig.9: Waveform of the 3-rd order MLBS (a) and its magnitude 
spectrum (b). 

 
It may be concluded that the magnitudes of the 

spectral components of MLBS and signum chirp signals 
depend almost similarly on a number of frequency 
components k. Even so, there are also important 
differences. At first, the number of spectral components of 
the MLBS signal is fixed by its order n, and secondly, a 
shape of the spectrum is smoother with a fixed relative 

deviation near ± 15 % from its mean value (later defined by 
the half-power limit). 

 
Spectrally sparse wideband excitation signals 
Distribution of frequencies and the power of spectral 
components 
The excitation signals described above (except sinewave) 
have a dense distribution of frequencies. Spreading of the 
signal energy in such a way reflects in a lower power of 
separate frequency components. If the frequency response 
of SUT is smooth, as in the case of EBI measurements, the 
concentration of the signal energy into a limited number of 
components is more adequate than the dense distribution. 
A more detailed illustration will be given in next sections. 

The accuracy of fitting the equivalent circuit model with 
the impedance measurement results depends on the 
number of frequency components. In general, the use of 
more frequencies improves the fitting accuracy [13]. 
However, the fitting accuracy also depends on the signal to 
noise ratio (SNR) of measurements. As already discussed in 
previous sections, the magnitudes of spectral components 
of the excitation signal are decreasing, when their number 
increases. It follows that the number of used spectral 
components has two contradictory effects on the accuracy 
of estimation of parameters of the equivalent circuit model. 
Usually, less than ten components are required in EBI 
spectroscopy.  
 
SNR and shape of the magnitude spectrum 
The SNR is expressed through the ratio of signal and noise 
power Psignal /Pnoise , while the power is equal to the square 
of RMS value. Assuming that the power density of noise is 
uniform in the frequency range of interest, the SNR of 
spectral components is proportional to the square value of 
their RMS levels. Since the magnitude of the impedance 
spectrum of biological objects decays with frequency, the 
spectrum of the excitation signal should have such a shape 
that elevates the response signal at higher frequencies. In 
the case, when polarizable electrodes are used, the shape 
of the excitation signal should provide a lower level 
response at lower frequencies, too. 

If the noise power density is not uniform in the 
frequency range of interest, then the better overall SNR is 
obtained when the shape of the excitation spectrum 
follows the power density spectrum of noise. Moreover, 
in-vivo electrical bioimpedance (EBI) measurements must 
comply with the safety regulations. The safe applied current 
for the BF and CF type devices is limited according to the 
IEC60601 standard. 

In EBI measurements, the required dynamic range of 
the impedance magnitude may reach three decades and 
more [1], [5]. Therefore adaption of the magnitudes of 
spectral components of the excitation provides better SNR. 
From the excitation signals described above, only the sine 
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wave and sinusoidal multicycle chirp allow free adjustment 
of the magnitudes of separate frequency components. 
 
Binary multifrequency signals (BMS) 
Binary multifrequency waveforms in Fig. 10a and Fig. 11a 
with two discrete values (±1, if normalized) look similar to 
the maximum length sequence (MLBS) shown in Fig. 9a. 
However, a sequence of pulses in the period Tp of binary 
multifrequency waveforms is not distributed by the rule 
used for generating the MLBS waveforms. 

According to the Fourier principle, periodic signals can 
be represented by a set of discrete frequencies. A spectrum 
of the periodic BMS waveform (a pattern of pulse 
sequence) may be composed as the sum of spectra of its L 
components with different durations: 
 

 
1

( ).
L

BMS
i

X X i
=

=   (9) 

 
Magnitude spectrum X (i) of individual waveform 

components i depends only on their duration (amplitudes 
are normalized), but their contribution into the overall 
magnitude spectrum of the BMS waveform also depends on 
their phase spectra. Phase spectra of the waveform 
components, in turn, depend on their polarity and position 
in a signal period. Choosing appropriate lengths and 
positions of the waveform components allow designing the 
BMS with different magnitudes of its spectral components, 
including the zero and near-to-zero values. 

As a result, the shapes of the BMS spectra differ 
principally from the envelope of sinc-function being 
characteristic to MLBS. The envelope of the spectrum lines 
of synthesized BMS may have as decaying, as well as flat 
(Fig. 10b) or even rising shape (Fig.11b). 

The CF of the BMS waveforms is the smallest of 
possible (CF = 1), and the total energy of BMS excitation is 
two times higher compared to the sine or multi sine wave 
with the same amplitude. Considering the simplicity in 
generating binary signals, BMS also meets the criteria of 
reduced energy consumption and lower complexity. The 
disadvantage of the BMS is that some part of the energy 
always spreads into higher harmonics outside the desired 
spectral range. Therefore, characterization of the BMS only 
by the smallest CF = 1 is an overestimation of its merits. 
 

                             
       (a)          (b) 
 

Fig.10: BMS waveform (a) and its magnitude spectrum (b) with 
four equally emphasized components (frequency bins 1, 3, 5, 7). 

 

                             
       (a)          (b) 
 

Fig.11: BMS (a) and its magnitude spectrum (b) with rising levels 
of components (frequency bins 1, 3, 5, 7). 

 
Multisine excitation 
Multisine excitation retains the advantages of the sine wave 
while reducing the measurement time. The specific 
advantage of the multisine signal is that only the desired 
components appear in the spectra. Adding up several (k) 
sine waves leads to decreasing the individual spectral 
components in the excitation signal because its overall 
amplitude is limited, moreover, their RMS values decrease 
proportionally to CF, as we showed in [11]: 
 

 | ( )| 1
1( )RMS Max s tS i
k CF= =

×
  (10) 

 
Let us indicate here that the CF of the sum of same 

level consequent frequency components with optimal 
phases can be below the corresponding value of a single 
sine wave ( 2CF =  ) [4]. Our optimization algorithms 
provide CF below this value for a consequent frequency 
distribution i = 1, 2, 3, 4 …. k and k > 6, Fig. 12. The 
enhanced algorithm described in [14] gives CF below 1.37 
at large k.  

Let us take an example. In the case of 36 added 
components CF = 1.358. If the total amplitude of the sum of 
signals with equal amplitudes is set to 1 V, then according 
to (10), RMS values of all components are 122.8 mV that is 
5.76 times less than RMS value of the single sine wave with 
the amplitude of 1 V.  

 

 
 

Fig.12: CF of the optimized multisine signal with a consequent 
frequency distribution (i = 1,2,3,4 …. k), for a k in the range from 
4 to 40. A green line level corresponds to the CF of a single sine 
wave. 

 
In the case of very sparse distribution of frequencies, 

the optimization of initial phases of multisine components 
is ineffective, and the CF tends to its worst possible case      
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( 2k ). However, in the case of less sparse frequency 
distributions as a binary logarithmic one, the results prove 
to be acceptable. For example, the CF of the multisine 
signal with binary logarithmic distribution at the number of 
components k = 16 (i = 1, 2, 4, 8, 16, 32, ..., 32768) tends to 
the value 3 / 2 2kπ . Moreover, a multisine with the 
binary distribution of spectral components does not require 
optimization of initial phases since their zero value provides 
near optimal results [15]. 

Remark: even though some part of the BMS energy 
transfers to useless higher harmonics, the RMS levels of the 
components of well optimized BMS are higher than of the 
optimized multisine. A benefit of using BMS increases with 
the sparsity of frequency distributions. Fig. 13 illustrates 
RMS magnitudes of both excitation waveforms for the 
different frequency distributions. 
 

 
 

Fig.13: Normalized RMS magnitudes of consecutively and 
logarithmically distributed frequency components of optimized 
multisines (MS, dashed lines) and BMS (solid lines) vs. a number 
of frequency decades a signal covers. 

 
Multilevel binary signals 
The stair-step multifrequency waveforms (MFS) [16] and 
tri-level (ternary) waveforms (MFM) [17] are recently 
proposed for the broadband bioimpedance spectroscopy. 
Although these waveforms can be used as multifrequency 
excitation, there are also some limitations and 
disadvantages. 

Calculations with (3) show that the total energy content 
of described 6-th order MFS and MFM waveforms are 61% 
and 83 %, respectively, in comparison with two level BMS. 
Taking into account that 83.6 % of the energy of the MFM 
signal falls into the desired frequency components, the 
overall energetic efficiency is 69.3 %. The typical energetic 
efficiency of the BMS signal depends on the distribution of 
frequencies and is in the range from 65 to 85 %. 

Limitations of the described MFM waveforms are that 
only binary distribution of frequencies and decaying shapes 
of magnitude spectra are produced. MFS waveform 
provides a flat magnitude spectrum, but its total energy 

content is significantly lower in comparison with MFM and 
BMS. Furthermore, generation of MFM and MFS waveforms 
requires more resources in comparison with BMS. 

 
Ethical approval 
The conducted research is not related to either human or 
animal use.  
 
Discussion 
There are several criteria for rating the efficiency of EBI 
spectroscopy system as described in the second section. 
The criteria are related and are often contradictory, e. g., as 
the SNR and speed of measurements. A choice of proper 
excitation signal has an important role in acceptable 
satisfying of different requirements. 

Even though the short signals cover wide bandwidth, 
they do not suit well for EBI spectroscopy. Since the 
amplitude of signals is strictly limited, the energy content of 
short pulses (proportional to the waveform area) remains 
low. In other terms - the crest factor CF of this type of 
signals is high (too high). The second disadvantage is that 
the energy of short pulses is spread widely over too many 
frequency components. The third drawback is that the 
amplitudes of individual spectral components are not freely 
adjustable. 

Disadvantages of the step waveform have common 
roots with short pulses. If the step starts from zero, most of 
the energy is concentrated into a DC component, and the 
magnitudes of other spectral components are low. Though 
the shifted initial level cancels the DC component, the 
remaining waveform becomes similar to a short pulse. 

Binary waveforms (MLS, signum chirp, and BMS) have 
the lowest crest factor (CF = 1) that guarantees highest 
energy content of the excitation signal in a measurement 
interval in comparison with other waveforms. The simplicity 
in generating of binary signals also meets the criteria of 
reduced energy consumption and lower complexity. 

A common disadvantage of all the binary excitations is 
that some part of the energy always spreads onto higher 
harmonics of the desired frequency components. This part 
is mirrored at lower frequencies and distorts the spectra. 

Another important aspect is that the overall SNR of 
impedance measurements also depends on the CF of the 
response signal. The use of binary waveforms may 
significantly increase it in comparison with the sinusoidal 
waveforms [18]. Limiting the bandwidth of binary excitation 
improves the situation. However, simple filtering also 
produces distortions and increases the CF of the excitation 
signal. Another solution is increasing the sampling rate, but 
this raises both the complexity and energy consumption. 

Additional disadvantages of the MLS and signum chirp 
excitations are that the energy spreads onto too many 
frequency components, and the amplitudes of spectral 
components are not freely adjustable. BMS does not have 
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these drawbacks. However, the adjustment range of 
magnitudes is limited, especially if the rising shape of the 
spectrum is desired. 

Tri-level and stair-step multifrequency waveforms do 
not have clear advantages - their CF is significantly higher in 
comparison with BMS, but generation requires more 
resources. 

The advantage of the multisine waveform is that only 
the desired components appear in the spectra, and the 
amplitudes of spectral components are freely adjustable. 
The disadvantages of multisine (in comparison with the 
BMS) are higher CF, especially in the case of sparse 
frequency distributions, and increased complexity of 
generation. However, in the cases where the higher 
accuracy of measurements is required, it is a good choice. 
Besides, the multisine waveforms can be used also for the 
composition of near-binary waveforms [18]. The CF of such 
signals is near 1.2 even in case of sparse frequency 
distributions and the distortions caused by unwanted 
higher frequency components of binary waveforms are 
eliminated. 

To decrease the dynamic range of amplitudes, the use 
of several time-separated excitation signal sections with 
different frequency subranges may be an optimal solution. 
 
Conclusion 
In electrical bioimpedance (EBI) measurements, several 
limitations set specific demands on the properties of the 
excitation signals. Signal-to-noise ratio (SNR), measurement 
time, and the complexity of realization were considered as 
the main criteria of efficiency. 

Multicomponent signals, both multisine and binary 
(BMS), have a clear advantage over the spread spectrum 
ones (short pulses, step waveform, binary chirps, 
pseudorandom sequences). The final choice is as follows – 
the multisine wave excitation gives the highest accuracy, 
but the multi-frequency binary excitation enables the 
lowest complexity. 

The accuracy of fitting of the equivalent circuit 
impedance model with the impedance measurement 
results depends on the number of used frequency 
components. An optimal number of frequencies of the 
multifrequency excitation is a topic for further research. 
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