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Abstract 
A mechanistic mathematical model for electrical impedance 
spectroscopy (EIS) measurements of human skin is analyzed, 
leading to a reduced model and approximate solutions. In 
essence, the model considers a complex-valued Laplace equation 
in the frequency domain for the alternating current from a circular 
EIS probe passing through the layers – stratum corneum, viable 
skin and adipose tissue – of human skin in the frequency range        
1 kHz – 1 MHz. The reduced model, which only needs to be solved 
numerically for the viable skin with modified boundary conditions, 
is verified with the full set of equations (non-reduced model): 
good agreement is found with a maximum relative error of less 
than 3%. A Hankel transform of the reduced model allows for 
approximate solutions of not only the measured impedance but 
also the point-wise potential distribution in the skin. In addition, 
the dimensionless numbers governing the EIS are elucidated and 
discussed. 
 
Keywords: Mathematical model, electrical impedance, stratum 
corneum, viable skin, equivalent circuit 

 
Introduction 
A promising noninvasive method to quantitatively study 
tissue alterations of human skin is electrical impedance 
spectroscopy (EIS). During an EIS measurement, an 
alternating current at varying frequencies is passed 
between electrodes and through the various layers of the 
skin. The resulting spectrum provides the skin tissue's 
overall resistance and reactance. 

To aid in the interpretation of EIS spectra and to 
elucidate the mechanisms involved in EIS of human skin, 
mathematical models have been developed. Out of these 

models, equivalent-circuit constructs are the most common 
[1-10], where the electrical properties of the skin are 
estimated through a tissue-equivalent circuit comprising 
real and hypothetical electrical components. Mechanistic 
models based on the Maxwell equations and various 
degrees of resolution of the various skin layers have also 
been derived [11-16]. The key advantage of the mechanistic 
models is that they are based on actual physical 
phenomena in the form of conservation equations, as 
opposed to theoretical equivalent-circuit models. Their 
main disadvantages, however, are the higher 
computational cost and complexity in solving the 
constituent partial differential equation(s) with their 
constitutive relations and boundary conditions. 

In light of the inherent disadvantages of a mechanistic 
model for EIS of human skin, our aims are threefold: (i) to 
elucidate the leading-order terms of our earlier mechanistic 
model [12], which has been shown to agree well with 
experimental measurements from clinical studies; (ii) to 
derive a reduced counterpart that brings with it significant 
computational savings whilst capturing the leading-order 
physics; and (iii) to secure approximate solutions of the skin 
impedance that are valid in the 1 kHz to 1 MHz frequency 
range we consider here and are as easy to employ as 
equivalent circuits. 

The mathematical model comprising a Laplace 
equation in the frequency domain with varying material 
properties for the skin layers and boundary conditions for 
the EIS probe is first summarized together with the 
numerical method. We proceed to analyze the transport of 
alternating current through each of the layers – stratum 
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corneum, viable skin and adipose tissue – of the skin as well 
as in the electrodes of the probe to uncover the leading 
order terms. In the following section, we discard lower 
order terms to secure a reduced mathematical model that 
retains the leading order physiochemical phenomena, 
which can be solved numerically at a significantly lowered 
computational cost. A Hankel transform then leads to 
approximate analytical solutions; these reductions and 
solutions are discussed and verified with the full set of 
equations (non-reduced model) for a large study with 7200 
parameter combinations. Finally, conclusions are drawn 
and extensions of the mathematical model are highlighted 
in terms of higher resolution of the skin layers and various 
probe designs. 

 
Materials and methods 
 
Mathematical formulation  
We start with the mathematical model for EIS 
measurements derived by Birgersson et al. [12], which 
treats the skin as a three-layer entity: stratum corneum (SC) 
as the outermost layer characterized by corneocytes; viable 
skin (VS) consisting of both living epidermis and dermis; and 
adipose tissue (AT) to account for the subcutis layer 
containing a high percentage of fat, as illustrated in Fig. 1a-
b. While the non-invasive EIS probe in the studies by 
Birgersson et al. [12] comprised four electrodes – one 
current detector (sense), one guard and two injects – we 
will here consider a simpler probe with similar dimensions 
but only one current detector (at ) and one voltage injector 
(at ). The dimensions and material properties of the 
electrodes and skin layers can be found in Table 1.  
 

Current detection width, w1 2 mm  
Ceramic width, w2 1.2 mm  
Inject width, w3 1 mm  
Outer radius of the probe, R  4.2 mm  
Outer radius of the skin, Rskin  10 mm  
Electrode thickness, hEL 0.1 mm [18] 
Stratum corneum thickness, hSC 14 µm [18] 
Viable skin thickness, hVS 1.2 mm [18] 
Adipose tissue thickness, hAT 1.2 mm [18] 
Inject voltage, V0 0.05 V  
Electrical permittivity in vacuum, ɛ0 8.85 x107 

Fm-1 
[19] 

Relative permittivity of electrodes, 
ɛr

EL 
1 [20] 

Electrode conductivity, σEL 4.56 x107 
Sm-1 

[20] 

Tab. 1: Base-case dimensions and material parameters for the 
probe and skin layers.  

 
The mathematical model can be written as  

 ( ) 0, J r  (1) 

 ( ) ( ),k
eff  J r r  (2) 

 (I) 0,   (3) 
 0(II) ,V   (4) 
 (III) 0. J n  (5) 

Here, the complex-valued phasors, ( ) r and ( )J r , for the 

potential and current density are functions of space only 
(although we note that they can be pulled back into the 
time domain),  n is the unit normal vector pointing 
outwards to any given boundary, V0 is the applied voltage, 
and the location of the boundary conditions is given by 
roman numerals, see Fig. 1 for their location; the effective 

conductivity, k
eff , is given by  

 
0 ,k k k

eff ri      (6) 

where k  is the electric conductivity, 0 and k
r are the 

relative permittivities of vacuum and the material 
respectively, i is the imaginary unit, and 2   is the 
angular frequency. The superscript, k, denotes either viable 
skin, stratum corneum soaked with a saline solution with 
0.9% NaCl for 1 min, adipose tissue, or the electrode. 
 

 
 
Fig.1: Schematic overview of the non-invasive two-electrode EIS 
probe and adjacent stratum corneum, viable skin and adipose 
tissue (a-b). The model reduction from the scaling analysis is 
illustrated in b-f. 

 
The material properties for the three skin layers on the 
volar forearm are defined as follows [17]:  

5 4 3 2
5 4 3 2 1 0( )( ) 10 ,
k k k k k kN N N N Nk N        (7) 
5 4 3 2

5 4 3 2 1 0( )( ) 10 ,
k k k k k kN N N N Nk

r N       (8) 

N = log10( ) (9) 
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      Here, cj
k and dj

k are the material coefficients, given in 

Table 2;  /  (1 Hz) is a dimensionless frequency and N is 
the uppercase greek letter of  , introduced for notational 
convenience. These constitutive relations for the electrical 
material properties are valid between 1 kHz and 1 MHz; see 
Birgersson et al. [17] for the validation of these relations for 
two studies comprising 26 and 120 volunteers respectively. 
  

j cj
SC dj

SC 

0 -1.1803×101 1.7570×101 
1 2.1404×101 -1.7961×101 
2 -9.9955×100 8.5278×100 
3 2.2537×100 -2.0255×100 
4 -2.5509×10-1 2.3953×10-1 
5 1.1516×10-2 -1.1319×10-2 
   
j cj

VS dj
VS 

0 2.3688×101 6.7610×101 
1 -2.7471×101 -7.0466×101 
2 1.2952×101 3.2847×101 
3 -3.0088×100 -7.7649×100 
4 3.4167×10-1 9.2429×10-1 
5 -1. 5178×10-2 -4.4465×10-2 
   
j cj

AT dj
AT 

0 1.7402×100 7.5844×100 
1 0 8.3142×10-2 
2 0 -7.7214×10-1 
3 0 1.1797×10-1 
4 0 -4.0926×10-4 
5 0 -5.2423×10-4 

Tab. 2: Coefficients for the conductivity and relative permittivity 
of the skin layers for 1 kHz to 1 MHz; the skin has been soaked 
with a 0.9% NaCl solution for 1 minute [17].  

  
The impedance is defined as  

 0 ,
V

Z
I

  (10) 

with the total current measured at the sense, boundary  in 
Fig. 1b, defined as  

 1

0

2 (I) .

w

I rdr J n  (11) 

We will refer to this model as the complete model. 
 
Analysis  
We define the following dimensionless variables and 
dimensionless numbers:  

 

0

[ ]
, , Z ,

sen

k

r z Z J A
r z

R Vh
     (12) 

 

0

, , ,
[ ]

k
k h

J V R


     J

J  (13) 

 2
0

1, , .
k k SC

k kr
k sen SC

R h

A R

   
 

       (14) 

Here, [ ] is the scale (absolute value), 1 2 3R w w w    is 

the overall radius of the outer electrode (inject) and 
2
1

senA w  is the area of the inner electrode (sense); we 

have taken the scale for the impedance as 

0[ ] / ([ ] )senZ V J A . The dimensionless number, k , is the 

ratio of the displacement and ohmic current; k relates the 
height of a given skin layer to the overall length in the radial 
direction; 1 arises in the non-dimensionalization of the 

total current measured at the sense; and k  gives the ratio 
of the current flowing through skin layer k to the current 
flowing through stratum corneum in the z -direction – and 
will provide valuable quantification of where the currents 
flow later in the analysis. We note that at this moment, the 
scale for the current, [J], is unknown. 

These dimensionless variables and numbers are 
substituted into the governing equations for each layer of 
the skin, which we shall consider separately. Between the 
different layers, we require continuity of the current 
density as well as potential – we do not explicitly state 
those boundary conditions in the coming analysis for the 
sake of brevity. 

 
Stratum corneum  
In the stratum corneum, we obtain the following 
dimensionless transport equations:  

 
  0,

SC
z

r
J

rJ
r r z

 
 

 


  

 (15) 

where  
 

0 (1 ) ,
[ ]

sc
SC

r
V

J i
J R r

 
   






 (16) 

 
0 (1 ) .

[ ]

sc
SC

z SC

V
J i

zJ h

 
   






 (17) 

Here, 1,SC   as can be inferred from Fig. 2, whence 
we can identify the current density scale, [J], from Eqs. 16 
and 17 as  

 
0

0
1 1

[ ] max , .
SC

SC
SC SC

V
J V

R h h


    

 
  

Substituting the current density scale back into the 
governing equations, Eqs. 15-17, gives 

 
  0,

SC
z

r
J

rJ
r r z

 
 

 


  

 (18) 

where 
 

(1 ) ,SC SC
rJ i

r


   






 (19) 

 
(1 ) .SC

zJ i
z


   






 (20) 
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Furthermore, the stratum corneum is slender with  
210R   m and 510SCh   m, such that  

 310 1,SC     (21) 
and  

 1, 1.SC
z rJ J     (22) 

In other words, the current density in the radial 
direction is around a thousand times smaller than the 
current in the z-direction for the conditions and probe 
dimensions considered here, whence Eq. 18 reduces to  

 
0,zJ

z









 (23) 

subject to the boundary conditions adjacent to the 
electrodes  

 (I) 0,   (24)  

 (II) 1,   (25)  

and a continuous potential at the interface with the viable 
skin (N.B.: the potential drop in the electrodes is negligible 
at leading order as we shall show later). The current 
between the inject and the sense in the radial direction 
thus has to occur in the viable skin and/or adipose tissue, 
because the voltage is not enough to drive the current 
through the SC in the radial direction.  
 

 
Fig.2: Dimensionless number, Π, for SC (–), VS (– –), AT (-⋅-) and 

EL (⋅⋅⋅).   
 

Returning to the current density scale for the 
frequency range of 1 kHz to 1 MHz that is of interest here, 
we find that  

 
 

2 1 20

1 kHz 1 MHz

[ ] 10 10 A m ,
sc

SC

V
J

h

      (26) 

which provides the scale for the current density in the z-
direction for the base-case parameters and conditions; in 
the radial direction, the scale for current density is 

5 2[ ] 10 10SCJ       A m-2. We verify these scales with the 

numerical solution in the stratum corneum for 1 kHz to 1 

MHz, which gives 
6 210 10rJ    A m-2, evaluated at  

1 2 / 2,r w w   0 ,SCz h  which is between the two 

electrodes; and 210zJ  – 10 A m-2, evaluated at  10 ,r w 

,SCz h which is underneath the sense.  

Finally, we confirm that scaling the potential, 0/ ,V   

in the stratum corneum with V0 in the entire frequency 
range is correct by comparing with the numerical 
simulations of the absolute voltage drop underneath the 

sense 1( /2,0 )SCr w z h    and the inject  

1 2 3( /2,0 )SCr w w w z h     , which are around 0.033 

– 0.024 V and 0.017 – 0.013 V respectively for 1 kHz to 1 
MHz. These voltage drops are indeed 0( ).O V  The higher 

potential drop underneath the sense compared to the 
inject originates from the fact that the area of the inject is 
roughly two times larger than the sense for the base case 
conditions. 
 
Viable skin  
For the viable skin,  

 
  0,

VS
z

r
J

rJ
r r z

 
 

 


  

 (27) 

where  
 

(1 ) ,VS VS
rJ i

r


   






 (28) 

 
(1 ) ,

VS
VS

z VS
J i

z

 
   






 (29) 

and  
 1, 1.VS VS     (30) 

In order for the current to be carried through the viable 
skin between the inject and the sense, we require that 

1VS  in Eqs. 28 and 29 for both the left-hand and right-
hand sides to be O(1), which is not the case since  

 100 (1 kHz) ≳ VS ≳ 1 (1 MHz), (31) 
as illustrated in Figure 3.  
 

 
Fig.3: Dimensionless number, Ξ, for SC (–), VS (– –), AT (-⋅-) and 

EL (⋅⋅⋅).   
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This in turn suggests that we need to revisit the potential 
drop in the viable skin, which we assumed to be ~ V0 when 
we scaled 0/ .V   If we rescale the potential, 

 
0ˆ ,

VS

V
 




 (32) 

with VS denoting an as-of-yet unknown scale for the 
potential drop, Eqs. 27-29 take the form  

 
  0,

VS
z

r
J

rJ
r r z

 
 

 


  

 (33) 

with  
 

0

ˆ
(1 ) ,

VS
VS VS

rJ i
V r

 
   





 (34) 

 

0

ˆ
(1 ) .

VS VS
VS

z VS
J i

V z

  
   





 (35) 

Again, we require that 1r zJ J   ( N.B.  1VS  ) for the 

current to be carried through the viable skin, i.e.  
 

0

1,
VS

VS

V


   (36) 

which gives the scale for the potential drop, 
 0 .VS

VS

V
 


 (37) 

For the base case,  
 4 2

0
1 kHz 1 MHz

10  V 10  V ,VS V      (38) 

which agrees well with the numerical solutions of the 
complete model (not shown here). 
 
Adipose tissue  
For the adipose tissue,  

 
  0,

AT
z

r
J

rJ
r r z

 
 

 


  

 (39) 

where  
 

(1 ) ,AT AT
rJ i

r


   






 (40) 

 
(1 ) ,

AT
AT

z AT
J i

z

 
   






 (41) 

and  
 1.AT   (42) 

Now, because  
 210 1,AT     (43) 

the current in the adipose tissue is mainly ohmic, such that 
we can write 

 
,AT

rJ
r


 






 (44) 

 
.

AT

z AT
J

z

 
 






 (45) 

For the current to be carried through the adipose tissue, we 

require that 1AT  ; returning to Fig. 3, however, we see 

that 220 2 10AT      at 1 kHz and 1 MHz respectively. 

Rescaling the potential drop like what we did for the viable 
skin,  

 0ˆ ,
AT

V
  


  (46) 

 

and requiring 1r zJ J   ( N.B.  1AT  ), i.e.  

 

0

1,
AT

AT

V


   (47) 

we find the scale for the potential drop in the adipose 
tissue,  

 0 .AT
AT

V
 


 (48) 

With the base case parameters,  
 

3

1 MHz1 kHz

3 10  V 2.4 V.AT    (49) 

Clearly, the current from the probe cannot be carried 
through the adipose tissue at 1 MHz since it would require 
around forty times the applied voltage, V0; at the other end 
of the considered spectrum, 1 kHz, the voltage drop in the 
adipose tissue is around ten times larger than that of the 
viable skin; i.e.  

 
10 (1 kHz) 50 (1 MHz).

AT VS

VS AT

 
  

 
 (50) 

In other words, most of the current from the inject would 
choose the easier path through the viable skin before even 
going deeper through the viable skin to reach the adipose 
tissue, after which the current would need to pass through 
the adipose tissue in the radial direction and then upwards 
through the viable skin again. 
 
Electrodes  
In the electrodes, the dimensionless governing equations 
can be written as  

 
  0,

EL
z

r
J

rJ
r r z

 
 

 


  

 (51) 

where  
 

(1 ) ,EL EL
rJ i

r


   






 (52) 

 
(1 ) .

EL
EL

z EL
J i

z

 
   






 (53) 

Because 15 1210 10 1,EL       the displacement current 
is negligible compared to the ohmic counterpart in the 

electrodes; in addition,  11 810 10EL    for 1 kHz to 1 MHz, 
which implies that the voltage drop in the electrodes is 
negligible compared to the drop across the skin layers. 
There is thus no need to consider the potential drop in the 
electrodes. 
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Reduced model formulation 
Now that we have analyzed the currents in the electrodes 
and three skin layers in detail to deduce the leading-order 
phenomena, we can combine the findings to arrive at a 
reduced model, as illustrated in Fig. 1b-1f.  

In the first step from Fig. 1b to 1c, the electrodes do 
not need to be resolved due to the negligible potential 
drops in these; we can thus move the boundaries for the 
ground, , and applied potential, , down to the stratum 
corneum; i.e. at the sense (), 

 1(0 , ) 0,SCr R z h      (54) 
and at the inject (),  

 2 3 0( , ) ,SCR r R z h V      (55) 
where 1 1,R w 2 1 2 ,R w w  3 1 2 3 ( )R w w w R    for 

notational convenience. 
In the second and third steps from Fig. 1c to 1e, the 

leading-order transport in the stratum corneum for the 
frequencies considered here is in the z-direction, whence 
the PDE reduces to an ordinary differential equation, which 
we can integrate analytically and so reduce this layer to the 
modified boundary conditions, ’and ’ adjacent to the 
viable skin. We can capture these two steps in our reduced 
model by returning to Eq. 23 and writing it in dimensional 
form as 

 ( , )
0,zJ r z

z





 (56) 

which gives us that zJ  is constant in the z-direction in the 

stratum corneum (the radial component is ( ) 1SCO   for 

the conditions we consider here); i.e., it is a function of r 
only. With the definition of the current density, we can 
write 

 ( , )
( ),SC

eff z
r z

J r
z

 
 


 (57) 

which can be integrated once to give  
 ( )

( , ) .z
SC
eff

J r
r z z C


     (58) 

With the boundary condition, Eq. 55, underneath the inject, 
we can determine the integration constant, C, and write 
the potential as  

   0
( )

( , ) .SCz
SC
eff

J r
r z h z V


     (59) 

At the interface between the stratum corneum and viable 
skin (II'; z=0 in Eq. 59), we can now introduce the modified 
boundary condition in lieu of the stratum corneum and the 
inject as 

  0’( II ) ,zJ S V    (60) 
where, again for convenience,  

 
.

SC
eff

SC
S

h


  (61) 

 

Returning to the sense () and the boundary condition, Eq. 
54, we can repeat the integration above and write the 
modified boundary condition for the reduced model as  

 ( )’ .z IJ S   (62) 
In the fourth step from Fig. 1e to 1f, the contribution of 

the adipose tissue to the impedance is negligible at leading 
order, whence we do not need to resolve this layer. 

After these four steps, we can finally formulate the 
dimensional governing equations and boundary conditions, 
because it is not necessary to go through the entire 
nondimensionalization to employ the model: 

 0,  J  (63) 
 ,VS

eff J  (64) 

 (I ,’) S  J n  (65) 
  0’(II ) ,S V   J n  (66) 
 (III) 0, J n  (67) 
 

1
1

0

0

2 (I ) .’ .

R

redZ V rdr


 
  
 
 
J n  (68) 

We note that the initial boundary conditions – two Dirichlet 
and one Neuman condition – have been replaced by two 
Robin and one Neuman condition. 
 
Approximate solutions  
The reduced model – a Laplace equation with a Neuman 
and two Robin conditions – still requires a numerical 
method to solve. It is thus not as straight-forward to 
employ as equivalent circuits nor does it readily yield the 
functional form of the measured impedance and its 
dependence on the parameters. We therefore proceed with 
our analysis with a view to secure semi-analytical or 
analytical solutions (step v in Fig. 1). As we shall see, these 
solutions will be approximate in nature; i.e. we will make 
assumptions during the derivation. 

Now, because we are primarily interested in the 
measured impedance (macroscopic, integral quantity) and 
not the pointwise potential distribution (microscopic 
quantity) throughout the electrodes and skin layers, we 
start by integrating the reduced model, Eqs. 63-64, and 
invoking the divergence theorem, 

 0,
V A

dV dA     J J n  (69) 

where V is the volume and A is the outer area bounding the 
volume. 

Introducing the boundary conditions, Eqs. 65-67, into 
the integral formulation, Eq. 69, gives 

  0 0,sen sen inj inj

I
I

A S A S V




     
 

(70) 

where sen  and inj  are the area-averaged potentials at 
the sense and inject respectively:  
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 1

0
2 ( ,0)

,

R
sen

sen

r r dr

A

 
  

 (71) 

 3

2
2 ( ,0)

.

R

Rinj
inj

r r dr

A

 
 


 (72) 

 
Here, I is the total current and the areas of the sense and 
inject are  

 2
1 ,senA R  (73) 

  2 2
3 2 .injA R R   (74) 

Let us define the overall potential drop across the viable 
skin as  

 ,VS inj senV      (75) 

and argue based on linearity that VSV should be a 
function of the current density, the effective conductivity of 
the viable skin and a representative average length for the 
current flowing through the viable skin, L; i.e.  

 
,VS

VS
eff

I
V

L
   (76) 

Assuming that we will later be able to quantify L, we now 

have four equations for our primary variables,  ,sen inj
, I, and Z: 

 ,sen senA S I   (77) 
  0 ,inj injA S V I     (78) 

 
,inj sen

VS
eff

I

L
     (79) 

 
0 .

V
Z

I
  (80) 

After some algebra, we find the current and impedance as 
 

 
0 ,

1

inj sen

sen inj

A A SV
I

A A


 
 (81) 

 1 1 1
,

sen inj
Z

S A A

   
 

 (82) 

with  
 

.
inj

VS
eff

A S

L
  (83) 

Returning to the definition of S in Eq. 61, we can express C 

as  
 

,
inj SC

eff

SC VS
eff

A

h L




  (84) 

which acts as a dimensionless correction factor for the 
current and impedance; i.e. if 1 we obtain 

 
0

1 ,
inj sen

sen inj

A A SV
I

A A



 (85) 

 
1

1 1 1
.

sen inj
Z

S A A

   
 

 (86) 

In particular, if we take 2injA R and L R , we see that 

 1
,

SC VS

SC VS VS SC

R

h





  

 
 (87) 

based on the potential drops that were defined in the 
earlier analysis for the skin layers. The condition 1   
thus corresponds to the scenario when the impedance is 

dominated by the stratum corneum, VS SC  , which 
is typically the case for frequencies around 1 kHz. 
Noteworthy is that the closed-form solution for the 
impedance in Eq. 86 is identical to our analytical solution 
for a four-electrode probe around 1 kHz [13] when only 
considering two electrodes. 

Let us now try to determine L and its functional form. 
For this purpose, we will carry out a Hankel transform of 
zeroth order,  0 ( , )H r z , similar to Cheng et al. [21], 

 
 0 0

0
( , ) ( , ) ( , ) ( ) ,z r z r r z J rH dr 


       

because it allows us to transform our axisymmetric Laplace 
equation in cylindrical coordinates (Eq. 63), 

 2

2

1
0,r

r r r z

          
 (88) 

to an ordinary differential equation, 

  2
0 2

( , ) ( , ) ( , ) 0,r z z zH
z

  
     


 

with the solution 
 ( , ) ( ) ( ) ,z zz A e B e       (89) 

where ( )A   and ( )B   are two functions that we will soon 

determine from the transformed boundary conditions; J0 is 
the 0th-order Bessel function of the first kind and  is the 
Laplace operator. At this stage, we note that our 
transformed solution automatically satisfies the circular 
symmetry and requires that  

 lim ( , ) 0,
r

r z


   (90) 

which is reasonable since we expect the measured 
impedance to mainly be determined by the current flowing 
between the two electrodes; in fact, we have in the original 
boundary condition, Eq. 67, artificially limited the 

computational domain by assuming insulation for skinr R

and choosing skinR  sufficiently large not to affect the 
impedance significantly. 

If we further assume that the current across each 
electrode is constant, we can simplify Eqs. 65 and 66 to  

 
12

1

( , 0)
( )VS

eff
r I

R r
z R

U



  


  

 

  3 22 2
3 2

( ) ( ) ,
I

R r R r
R R

U U


     


 (91) 

or, after the Hankel transform,  
 

1 1 12
1

( , 0)
( )VS

eff
I

R J R
z R

 



 


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  3 1 3 2 1 22 2
3 2

( ) ( ) ,
I

R J R R J R
R R

 


   


 (92) 

where we have used that the Hankel transform of zeroth 
order of a Heaviside function, ( )U a r , is defined as  

  0 1( ) ( ),
a

aH r J aU 


   (93) 

with J1 and a denoting the 1st-order Bessel function of the 
first kind and a constant respectively. The remaining 
boundary condition, Eq. 67, becomes after transformation 

 ( , )
0.

VSh

z

 



 (94) 

Substituting the z-derivative of the solution, Eq. 89, 
 ( , )

( ) ( ) ,z zz
A e B e

z
     

  


 (95) 

into Eq. 94 gives 
 2( ) ( ) .

VShA B e     (96) 

Proceeding to the other boundary condition, Eq. 91, we find 
after substituting the solution thus far,  

  2
1 1

1

( ) 1 ( )
VSVS h

eff
I

B e J R
R

   


     
  

 

  3 1 3 2 1 22 2
3 2

( ) ( ) ,
I

R J R R J R
R R

 


   


 (97) 

whence  
 

 2

( )
( ) ,

1
VSVS h

eff

I
B

e 

 
  




 
(98) 

and 
 

 
3 1 3 2 1 21 1

2 2
1 3 2

( ) ( )( )
( ) .

R J R R J RJ R

R R R

 
 

 


 


 (99) 

With ( )A   and ( )B   in Eq. 89,  

  
 
2

2

( )
( , ) ,

1

VS

VS

h z z

VS h
eff

I e e
z

e

  



 


 

 




 


 (100) 

or  
  

 
( ) cosh

( , ) ,
sinh

VS

VS VS
eff

I h z
z

h

  


  

      (101) 

since 
 

 
   

cosh ,
2

VS VSh z h z
VS e e

h z
 


  

  
   (102) 

 
 sinh .

2

VS VSh h
VS e e

h
 




  (103) 

Taking the inverse Hankel transform,  

 1
0 0

0
( , ) ( , ) ( , ) ( ) ,r z J r dH z z    

    
 

(104) 

we find the local potential distribution throughout the 
viable skin as  

 
  0

0

cosh
( , ) ( ) ( ) .

sinh

VS

VS VS
eff

h zI
r z J r d

h


   

 


 
    

 

(105) 

Note that the local potential, ( , )r z , at this stage is not the 

same as ( , )r z  in our initial model with a Robin boundary 

condition, Eqs. 65 and 66. We need to correct the potential 
distribution arising from the Hankel transform with the 
simplified boundary condition, Eq. 91, by shifting it with a 
constant, c; i.e. 

 ( , ) ( , ) .r z r z     (106) 
The potential drop across the viable skin can now be found 
from 

 VS inj senV        
     2

,inj sen
VS
eff

I


       (107) 

where 
 

 
1 0

0 0

( ) ( )2

tanh

R
sen

VS sen VS
eff

J rI
rd dr

A h

   
 


       

 

 
1 1

0
1

( ) ( )2
,

tanh
VS VS
eff

J RI
d

R h

  


  


    (108) 

 

 
3

2

0

0

( ) ( )2

tanh

R
inj

VS inj VSR
eff

J rI
rd dr

A h

   
 


       

 
2 2
3 2

2

( ) VS
eff

I

R R 
 


  

 

 
3 1 3 2 1 2

0

( ) ( ) ( )
,

tanh VS

R J R R J R
d

h

   


 

     (109) 

 2

0

( )
,

tanh( )VS
d

h

  



   (110) 

because 
 

0 1( ) ( )
r

J ar rdr J ar
a

  constant, (111) 

and  
 1 (0) 0.J   (112) 

It is noteworthy that the integral on the right-hand-side 
(RHS) of Eq. 110 only depends on the lengths, R1, R2, R3 and 
hVS and not on the frequency. One thus only needs to solve 
the integral once for a given electrode design and thickness 
of the viable skin. Most importantly, we see that the 
functional form agrees with Eq. 76 and that  

 1
2 .

L
  (113) 

Substituting our expression for 1/ L into Eqs. 81-83 finally 
reveals the functional form for the current and impedance 
based on the Hankel transform (denoted with the subscript 
H) as  

 

 
0 ,

1

inj sen

H sen inj
H

A A SV
I

A A


 
 (114) 
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 11 1
,H

H sen inj
Z

S A A

   
 

 (115) 

 2
.

inj SC
eff

H SC VS
eff

A

h

 


  (116) 

It is clear that this solution requires one numerical step for 
the integral, J, in the correction factor, CH, whence we 

refer to it as a semi-analytical solution (a simple Matlab 
code can be found in Appendix A). With the current, IH, we 
can also calculate the average potentials at the sense and 
inject: 

 
,sen H

sen

I

A S
   (117) 

 
0 .inj H

inj

I
V

A S
    (118) 

Let us determine the constant c; this can be done by 
introducing a reference potential, e.g. sen  from 117 into 
Eq. 106 together with Eq. 108, such that  

 
,sen senH

sen

I

A S
      (119) 

whence 
 

 
1 1

0
1

2 ( ) ( )
.

tanh

H H
sen VS VS

eff

I I J R
d

A S R h

  


  


    (120) 

If we want to identify the contributions from the individual 
layers, we can write the impedance as 

 1 1 1 2
,H sen inj VS

eff

Z
S A A




    
 

 (121) 

or in its dimensionless form as 
 

321
,

1 1

SC sen
H

H SC SC VS

Z A
Z

h i i

  
         

  (122) 

with the dimensionless numbers 
 

2 3
2

, .
sen SC sen

inj SC VS

A A

A h

 


     (123) 

The first two terms on the RHS in Eqs. 121 and 122 quantify 
the impedance contribution of the current passing through 
the stratum corneum underneath the sense and inject and 
the third term as it passes through the viable skin. In 
particular, the dimensionless form of the impedance 
reveals that the full model for the measured EIS can be 
reduced down to four dimensionless numbers 2 , 3 , 

SC and .VS  
 
Numerics  
We solve both the complete mathematical model and the 
reduced counterpart in the finite-element solver COMSOL 
Multiphysics 5.2a [22]. The axisymmetric two-dimensional 
geometries of the complete, see Fig. 1b, and reduced 
model, see Fig. 1f, were resolved with around 104 and 500 
mesh elements after a mesh-independent study to ensure 
mesh-independent solutions. The direct solver MUMPS was 

selected as the linear solver with a relative convergence 
tolerance of 10-6; and a typical run for one frequency 
required around 1 s (wall-clock time) with around 104 
degrees of freedom on a quad-core 3.4 GHz workstation 
with 16 GB RAM for the complete model; the reduced 
model with 103 degrees of freedom was solved almost 
instantaneously (reported as 0 s in COMSOL). Additionally, 
the approximate semi-analytical and analytical solutions 
were calculated and post-processed in Matlab R2015 [23]. 
 
Results and discussion 
We have thus far derived a reduced model that only 
requires the numerical solution of a complex-valued Laplace 
equation in the viable skin with modified boundary 
conditions for the leading-order transport in the electrodes 
and stratum corneum. We have also been able to further 
reduce the computational complexity by securing 
approximate solutions for the impedance (a macroscopic 
property) as well as point-wise potential distribution 
(microscopic entity). To verify the fidelity of the reduced 
model as well as the approximate solutions, we will start by 
comparing these with the complete model at the 
macroscopic level and then at the microscopic level – here, 
verification refers to a numerical comparison. (The 
complete model was validated with experiments for two 
cohorts in an earlier study [17].) 
 
Macroscopic verification  
At the macroscopic level, we have three expressions for the 
impedance: 

 
1

1

0

0

2 (I ) .’ ,

R

redZ V rdr


 
  
 
 
J n  (124) 

 11 1
,H

H sen inj
Z

S A A

   
 

 (125) 

 
1

1 1 1
.

sen inj
Z

S A A

   
 

 (126) 

We compare their magnitudes and phases with the 
numerical solution of the complete model, Eqs. 1-5, for 1 – 
103 kHz at base-case conditions (Table 1) in Fig. 4. Here, 
several features are apparent. First and foremost is that the 
reduced model, Zred, can predict the magnitude and phase 
of the EIS in the considered frequency range: the maximum 
relative error is less than 2% and 0.1% for the magnitude 
and phase respectively. For the base-case parameters, the 

key dimensionless number 3/ 10 1SC SCh R      – the 
key condition for the reduced model to be valid. This 
condition should be fulfilled for most probe designs if the 

length scale, 510SCR h  m. Second is that the 
magnitude and phase of the impedance predicted by the 
approximate solution from the Hankel transform, ZH, 
agrees well throughout the frequency range with a 
maximum relative error of around 2% and 1% for the 
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magnitude and phase respectively. It agrees well despite 
our approximation of the current being constant 
underneath each electrode, which raises the question as to 
why this is.  

 
 

Fig.4: The magnitude (▲) and phase (●) of the impedance from 
the numerical solution of the complete set of equations, the 

reduced set of equations, Zred (–); the Hankel counterpart, ZH (+); 

and the approximate analytical counterpart, Z₁ (– –).  

 
The answer can be found in the stratum corneum, which 
acts as a significant resistance to the current and so evens 
out the current density profile underneath the electrodes – 

this is in particular the case around 1 kHz where 1VS  . 
Third is the good agreement of Z1 around 1 kHz with 
maximum relative errors of 0.8% and 0.3% for the 
magnitude and phase respectively when 1;   and the 
large deviation of 22% and 34% around 1 MHz when 1 . 
We can thus simply use the closed-form expression by Z1 
around 1 kHz, but need to resort to either Zred or ZH for 
frequencies around 104 Hz and higher. 

Parameters   
  (1, 2.1, 4.6, 10, 22, 46)×103, 

(1, 2.2, 4.6, 10)×105 Hz 
w1 0.5, 1, 2, 3 mm 
w2 0.1, 0.5, 1.2, 2, 3 mm 
w3 0.5, 1, 2, 3 mm 
hSC 8, 14, 20 µm 
hVS 0.8, 1.2, 1.6 mm 

Tab.3: Parameter combinations.  
 
To further test the fidelity of the reduced model, Zred, 

and approximate solution, ZH, let us compare it with the full 
set of equations for a set of parameters in Table 3 that 
correspond to different electrode designs with smaller and 
larger electrodes – w1, w2 and w3 – and thicknesses of 
stratum corneum, hSC, and viable skin, hVS, and frequencies,

 . All permutations of these parameters are considered for 
a total of 7200 parameter combinations. For the two skin 
layer thicknesses, we have taken the mean values ± two 
standard deviations [12]; i.e. 14±6 µm for stratum corneum 
and  1.2 0.4 mm for viable skin.  

Starting with the reduced model in Fig. 5a-b, we 
see that it captures all the 7200 permutations of the 
parameters well with respect to the full model – the 
maximum relative error is 3% and 0.1% for the 
magnitude and phase respectively. For the approximate 
solution based on the Hankel transform, ZH, the picture 
is slightly different: It agrees well in terms of the 
predicted magnitude with a maximum relative error of 
3% for all parameter combinations, but the error for its 
predicted phase increases for smaller angles and 
reaches around 24% for negative phase values of 
around 20o.  
 

  
Fig.5: Verification of the magnitude and the phase of the 
approximate solutions with the full set of equations for the large 
parametric study: (a-b) reduced model, Zred, solved numerically; 
(c-d) solution, ZH, from the Hankel transform; (e-f) solution, Z₁, 
for C≪1.  

 
A closer inspection reveals that the specific parameter 

combinations for these predicted low negative phase values 
of around 20o are as follows: 1 MHz frequency, where the 
width of the sense, w1, is typically 3 mm, the width of the 
inject, w3, is 3 mm and the spacing between the electrodes, 
w2, is 1.2 - 2 mm, whilst hSC is either 8 or 1.4 µm (but not at 
the higher thickness of 2 µm) and hVS is at the lowest 
thickness of 0.8 mm. The key factors here are the large size 
of the electrodes (the inject is three times wider than in the 
base case) and the frequency of 1 MHz, for which 
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0/ |zz    varies significantly across the electrodes, 

whence the assumption that 0/ |zz    is constant for the 

Hankel solution becomes less accurate. For these 
conditions, we need to solve the reduced model to 
maintain low relative errors as compared to the full model. 
From the point of view of experimental measurements, it 
should be noted that the standard deviation in the 
measured phase increases as well when we sweep from 1 
kHz to 1 MHz with around 20o±10o around 1 MHz [12]. 
  We also see that Z1 captures the measured magnitude 
reasonably well at high absolute values of the impedance 
but grows to a maximum relative error of around 70% at 
lower values of around 10 kΩ, whereas it only captures the 
phase close to 1 kHz (values in Fig. 5f close the diagonal) 
and then fails to describe the measured phase at 
frequencies larger than 1 kHz with a maximum relative 
error of around 220%. The latter is due to the fact that Z1 
does not account for the current flow through the viable 
skin. 
 
Microscopic verification 
At the microscopic level throughout the viable skin, we can 
determine the point-wise potential distribution by solving 
the reduced model numerically or take the approximate 
solution arising from the Hankel transform of the reduced 
model together with the assumption of constant currents at 
the electrodes. The latter is given by 
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    (127) 

Let us first look at the potential distributions at the 
electrodes, as depicted in Fig. 6 for the base-case 
conditions.  
 

 
Fig.6: The absolute value of the local potential distribution at z=0 
m on the base case for the frequencies 1 kHz (▲), 0.328 MHz (■) 

and 1 MHz (▼); the reduced numerical model (–) and the Hankel 
counterpart (o). (N.B.: The verification points have been shifted 
slightly along r to prevent overlap.) 

 
Again, we note the good agreement of the reduced model 
and approximate solution, Eq. 127, vis-à-vis the complete 
counterpart with a maximum relative error of around or 
less than 1%. Throughout the viable skin, the agreement 
remains good, as can be inferred from the visual 
comparison of the absolute value of the potential at 1 MHz 
in Fig. 7.  
 

 
Fig.7: The absolute value of the potential distribution at 1 MHz 
for the base case in the viable skin: (a) the complete model; (b) 
the reduced model; and (c) the approximate solution from the 
Hankel transform.  

 
Finally, we note that we could, although we do not do 

so here, also calculate and visualize the potential 
distribution in the stratum corneum by returning to the 
earlier analysis during which we reduced the stratum 
corneum to a boundary condition.  
 
Conclusions 
A scaling analysis of a mathematical model comprising a 
complex-valued Laplace equation with boundary conditions 
in the three outermost layers of a volar forearm – stratum 
corneum, viable skin and adipose tissue – for EIS 
measurements with a two-electrode probe has revealed 
the order-of-magnitudes of the current flow and potential 
drops and the dimensionless numbers that govern the 
measured impedance. These, in turn, have allowed for a 
reduction of the full set of equations (original model) to a 
reduced counterpart that only requires the numerical 
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solution of the viable skin with modified boundary 
conditions that implicitly capture the contributions to the 
impedance from the electrodes, stratum corneum and 
adipose tissue. The reduced model was found to agree well 
with the complete model for the frequency range of 1 kHz 
to 1 MHz that is considered here. 

Furthermore, a Hankel transform of the reduced model 
yielded a semi-analytical approximate solution that 
captures both the impedance and the point-wise potential 
distribution in the viable skin. Around 1 kHz, a closed-form 
expression was found as well. These solutions for the 
measured impedance are of similar functional form as the 
common equivalent circuits for EIS measurements of 
human skin and as easy to use; however, unlike equivalent 
circuits, which contain parameters to be fitted to 
experiments that are not always physical in nature, our 
solutions are based on the pointwise equations of change 
for charge transport, physical material properties and the 
probe design. 
The presented mathematical model could be extended to 
include a higher resolution of the various layers that can be 
found in stratum corneum as well as viable skin. It can also 
easily be adjusted for modeling of other locations on the 
human body, different frequency ranges, as well as be 
modified for different probe designs with, e.g., rectangular-
shaped probes or more electrodes.  
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Appendix: Matlab code  
% Parameters (see Table 1 and 2) 
w1 = 2e-3;  
w2 = 1.2e-3;  
w3 = 1e-3;  
R1 = w1;  
R2 = w1+w2;  
R3 = w1+w2+w3; 
hVS = 1.2e-3;  
hSC = 14e-6; 
epsilon0 = 8.854187817E-12; 
freq = 1e3; 
omega = 2*pi*freq; 
Ainj = pi*(R3^2-R2^2); 
Asen = pi*R1^2; 
Nu = log10(freq); 
condSC = 10^-(0.011516*Nu^5-0.25509*Nu^4+ 2.2537*Nu^3-
9.9955*Nu^2+21.404*Nu-11.803); 
permSC = 10^(-0.011319*Nu^5+0.23953*Nu^4- 
2.0255*Nu^3+8.5278*Nu^2-17.961*Nu+17.57); 
condVS = 10^-(-0.015178*Nu^5+0.34167*Nu^4- 
3.0088*Nu^3+12.952*Nu^2-27.471*Nu+23.688); 
permVS = 10^(-0.044465*Nu^5+0.92429*Nu^4- 
7.7649*Nu^3+32.847*Nu^2-70.466*Nu+67.61); 
condVS_eff = condVS+1i*omega*epsilon0*permVS; 
condSC_eff = condSC+1i*omega*epsilon0*permSC; 

S = condSC_eff/hSC; 
 
% Approximate solutions (see Eqs 86 and 115) 
f=@(xi,R1,R2,R3,hVS) ((besselj(1,xi.*R1)./(pi*xi.*R1) -
(R3*besselj(1,xi.*R3)-R2*besselj(1,xi.*R2))./... 
(pi*xi.*(R3^2-R2^2)))).^2./tanh(xi.*hVS); 
Int=integral(@(xi)f(xi,R1,R2,R3,hVS),0,Inf,'RelTol',1e-7); 
Z1 = 1/S*(1/Asen+1/Ainj); 
ZH = Z1+2*pi*Int/condVS_eff; 
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