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Abstract 
Electrical impedance tomography (EIT) is a relatively new imaging 
technique. It has the advantages of low cost, portability, non-
invasiveness and is free from radiation effects. So far, this imaging 
technique has shown satisfactory results in functional imaging. 
However, it is not yet fully suitable for anatomical imaging due to 
its poor spatial resolution. In this paper, we review the basic 
directions of research in the area of the spatial resolution of the EIT 
systems. The improvements to the hardware and the software 
developments are highlighted. Finally, possible techniques to 
enhance the spatial resolution of the EIT systems using array 
processing beamforming methods are discussed. 
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direct algorithms, EIT hardware, electrodes, fusion techniques, 
iterative algorithm 
 
 
Introduction 
The word ‘tomograph’ is a combination of the Greek words 
‘tomo’, meaning to slice and ‘graph’, meaning image. In 
1826, a Norwegian physicist published the concept of 
tomography for the first time for an object with axi-
symmetrical geometry [1]. The word ‘tomography’ implies a 
cross-sectional image of a particular object. Several 
tomographic techniques are available nowadays, such as, 
computed tomography (CT), gamma-ray tomography, x-ray 
tomography, ultrasonic imaging and magnetic resonance 
imaging (MRI). The aforementioned techniques are 
expensive, invasive and not safe. Most of these techniques 
consume extensive contact time which implies that 
continuous measurements would be impractical [2]. 

Electrical impedance tomography (EIT) is a relatively new 
imaging technology. A general block diagram of an EIT 
system is shown in Fig. 1. 

 
 

 
 
Fig. 1: General block diagram of an EIT system. The input current is 
injected through a pair of electrodes attached to the test object. 
The corresponding output voltages are measured and finally an 
image of conductivity distribution is reconstructed. 
 
Very small currents in terms of ‘mA’ at low frequency are 

applied to study the electrical properties of the tissues from 
the measured voltages [3]. This technique is beneficial for its 
safe use, inexpensiveness, non-invasiveness and portability. 
It is also suitable for long term monitoring of the test object. 

These advantages have helped establish EIT as a 
functional imaging tool, for example, in monitoring heart 
and lung function. Other applications include monitoring 
internal bleeding, emptying of the stomach, pelvic fluid 
accumulation, local internal temperature changes associated 
with hyper-thermic treatments and the study of breast 
cancer to name a few [4]. However, EIT is not fully suitable 
for anatomical imaging because of its poor spatial 
resolution. 
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Background principles 
Spatial resolution is an important criterion used in analyzing 
images generated by EIT imaging systems. Spatial resolution 
is defined as the number of pixels utilized in the construction 
of a digital image [5]. An image generated by an EIT system 
with low spatial resolution is of less importance. Thus, an 
improvement of the spatial resolution in EIT systems is very 
important. Currently, EIT systems suffer from low spatial 
resolution for the following reasons [6]. 
 
a) Low relative resolution of measurable data. When the 

measured data has low resolution compared with their 
own size, the reconstructed image has low spatial 
resolution. The data acquisition is highly uncertain and 
non-linear; hence, an ideal measurement of the data is 
impractical.  

b) Low signal-to-noise ratio. Use of low current excitation 
causes weak voltage measurements. Also, a small change 
in the variable leads to a large measurement error. This 
condition is called soft-field effect. For every soft-field 
condition, the resolution for the spatial reconstruction is 
relatively poor due to two reasons:  
i. The fringe effect that is due to the extension of the 

electric field. The effect mainly occurs within a 
sensing region, which is not constrained within the 
electrode plane, but extends also to a volume away 
from this region. This effect is worse for smaller 
electrodes. Although they have found that this can be 
minimized by using a larger volume of electrodes, 
they observed that this causes EIT systems to lose 
their local character of measurements. They also 
found out that it can still be used for monitoring 
average features of spatially homogenous flows. 
However, this alternative cannot be used for non-
homogenous flows because the measuring volumes 
should be as narrow as possible to get accurate 
information. It is difficult to have countermeasures 
for this effect because there has not yet been actual 
studies of the cause of the fringe effect over 
distances between dispersed non-conductive objects 
and the measuring plane.  

ii. The topography of the field strength at any point 
inside the measuring volume is a function of the 
distribution of electrical properties throughout this 
volume, which causes image reconstruction 
problems. The problem arises due to low frequencies 
and the accompanying relatively long wavelength of 
the electromagnetic radiation. Therefore it affects 
both the size and physical properties of the 
components and the objects inside the volume [7].  
     Further, the soft field effect makes the EIT imaging 
process complicated and difficult since an increment 
of the measuring data has to respond to all pixel 
variants and is thus a major reason for the low 

resolution and unstable EIT imaging results in 
practice. Since the number of measured data is much 
less than the number of imaging units, the existing 
EIT algorithms depend on solving a mathematically ill-
posed equation. A small amount of noise mixed with 
the measured data can cause very large errors, 
thereby making the EIT systems less robust [6]. 

c) Imaging algorithm. Choosing an algorithm suitable for 
high spatial resolution is often a challenging problem. 
Since, the reconstructed images do not have understand-
ability or interpretability, these problems are overcome 
by practical solutions such as simulations and visuali-
zation. However, these methods are not practically 
feasible in reality. 
 

Spatial resolution in early EIT systems 
The first electrical impedance images of the thorax using an 
impedance camera was built using an array of 144 mutually 
guarded electrodes of very low spatial resolution. A weak 
electrical signal in the form of a voltage was used to study 
the electrical properties (impedance) of the tissues. The low 
spatial resolution was due to the resistances of the 
electrodes. The electrode resistance was added to the 
resistance of the material under examination causing a 
measurement error. Guarded electrodes were used for high 
resistance tissues, but only when the current was assumed 
to travel in straight lines. The method used a constant 
voltage source and measured the variable currents. It was 
only the magnitude of the admittance that was considered 
for the reconstruction of the images of the thorax [8].  

In contrast, a computed tomography system with input 
current and output voltages was designed. The resolution of 
the images was enhanced by increasing the number of layers 
of the electrodes, as the injected current was not confined 
to two-dimensions of the measurement plane. Three layers 
of electrodes were used. The current injection was done on 
the central layer while the voltages were measured from all 
the three layers. Three individual resistivity distribution 
images were reconstructed based on the ‘method of 
sensitivity regions’ [9]. By subtracting an appropriate 
proportion of the upper layer and the lower layer from the 
central layer, the final image was obtained. This resulted in 
the image having of poor resolution due to the fact that the 
input current did not travel in a straight-line path, but rather 
spread all over the phantom under study [10]. The poor 
resolution of the reconstructed image was also due to the 
variation of conductivity, σ, in the phantom.  

Consider a point ‘P’ inside a unit circle with cylindrical 
polar co-ordinates (r, θ) and with conductivity distribution, σ 
= σ(r, θ) as seen in Fig. 2. When σ varies, it is difficult to 
interpret the current density. However, if σ is a constant i.e. 
σ is circularly symmetric, σ = σ(r) which is ‘onion –like’ then 
the current lines would travel in straight lines. 
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Fig. 2: Coordinate systems. Arbitrary point P has cylindrical polar 
coordinates (r, ϴ) with origin O and curvilinear polar coordinates 
with origin O; Φ is constant on the curved dashed lines and ρ is 
constant on the curved full line intersecting the dashed line as 
redrawn from [11]. 
 
In reality, not all practical cases have ‘onion-like’ 

conductivity distributions. An analytical method suggested 
that any reconstruction algorithm that is iterative and can 
converge, would provide a unique solution for the problem 
of impedance imaging [11].  

Since the development of the first EIT systems, more 
than three decades ago, researchers have tried their ways to 
improve the quality of the reconstructed image with regards 
to the spatial resolution of the final images. Both hardware 
improvements and software developments have been 
considered by researchers to improve the quality of 
reconstructed EIT images as discussed below. 

 
Factors limiting resolution 
Hardware 
The resolution of the reconstructed images largely depends 
on the EIT hardware. This includes the operating 
frequencies, electrodes, the current source and the 
excitation techniques.  

The sensitivity of the EIT systems ranges from 
approximately 77% to 90%. It was found to have a limited 
accuracy at higher frequencies. At higher frequencies (more 
than 100 kHz), the measurement hardware introduces an 
additional capacitive artifact, possibly caused by the distant 
location of the current source circuit with respect to the 
array of electrodes, which alters the impedance 
measurements. This limits the operating frequency to a 
maximum frequency of 100 kHz in order to produce decent 
images [12]. 

Compound electrodes, which reduce electrode contact 
impedance, were suggested for better spatial resolution of 
the reconstructed images. They have large outer current 
injection electrodes and a small inner voltage measuring 
electrodes. The smaller areas of the voltage measuring 
electrodes can sense the voltage at a specified location [13]. 
However, there are a lot of electric field lines, which 
gradually decrease when going to the center of the objects 
in the volume measured. Therefore, the measurements are 
greatly affected by the objects that are nearer to the 
electrodes [7]. Hence, the spatial resolution is low, especially 

in the areas where the current density is low, e.g. near the 
center of the sensing field. To overcome this problem, an 
inner-outer sensor structure was proposed. This sensor 
contains both internal and external electrodes. The internal 
electrode is the electrode inside the sensing field. The 
internal electrodes are mounted on the internal structures 
and have proven helpful for improving the spatial resolution. 
However, they are fixed in the center of the sensing domain 
and the number of these internal electrodes are limited.  

Under some measurement strategies, the internal and 
external electrodes work together. A 3D model was used to 
test the performance of the inner-outer sensor. Six different 
inner-outer sensor types were designed with different 
characteristics such as size, number and distribution of the 
internal electrodes. The 3D reconstruction results showed 
that the inner-outer sensor have better reconstruction 
performance than the conventional sensor with only 
external electrodes [14]. 

On the other hand, the larger area of current injection 
electrodes provide uniform current distribution, but there 
are limits to the inter electrode distance (IED) as shown in 
Fig. 3.  

 

 13mm

     28mm

Current Electrode

Voltage Electrode

 10mm

 
Fig. 3. A compound electrode uses an outer electrode to inject 
current and an inner electrode to measure voltage as redrawn 
from [13]. 
 
The contact impedance of the voltage electrode does not 

add to the measured voltage as the current flowing through 
the voltage electrodes is negligible. Only the current 
electrodes contribute towards the contact impedance and 
hence to the measured voltages. For a conventional 
electrode, the voltage drop in the contact impedance is 
included in the measured voltage [13]. 

IED is another factor determining the spatial resolution 
of the reconstructed image. A divided electrode having two 
current electrodes on either side of a voltage electrode was 
developed. Currents were injected into all the current 
electrodes simultaneously and the voltages were measured 
from the voltage electrodes differentially. The number of 
impedance measurements measured at once was the 
product of the number of current electrodes, m, and the 
number of voltage electrodes, n, for a total of m×n. Thus 
high speed and high resolution readings were expected. 
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However, it was found that the spatial resolution depended 
on the IED [15].  

To achieve better resolution one has to use more 
electrodes. One can then expect better images by applying a 
sufficiently high current, which is often not practically safe. 
Also, if one uses more electrodes but uses only one current 
source, the resolution would not improve [16]. In general, as 
more electrodes are used, the contact area of the electrode 
decreases, which decreases the distinguishability. Hence, 
one has to apply currents simultaneously to all the 
electrodes when more of them are used. But this requires as 
many current sources as the number of electrodes making 
the circuit more complex and expensive [17]. Even then, the 
resolution is limited by increasing the number of electrodes. 
The best EIT image has a resolution of 32×32 pixels with 32 
electrodes. By merely increasing the number of electrodes, it 
will not increase the resolution of the reconstructed image 
[18]. 

According to Murphy and York [19], to increase the 
number of independent observations for EIT, a method of 
rotation using a mixing impeller is used. Studies show that 
when the current driving electrodes are attached to the 
impeller blades, the central sensitivity will be improved and 
an increased number of independent measuring positions is 
achieved. The number of independent measurements 
improve the resolution and information content of EIT 
reconstruction. The number of odd components of an EIT 
inversion are steady enough for recovery with an increase in 
the number of impeller orientations. This lead to more 
independent learning image content available compared to 
conventional fixed electrodes. According to the physical 
data, the amount of recoverable independent image content 
is approximately four times greater by using the impeller-
mounted electrodes. The number of impeller orientations is 
limited in terms of large data acquisition times and 
computational complexities.  

Similarly, a rotational EIT (REIT) was developed to 
enhance the quality of the EIT images through more voltage 
measurements with limited number of electrodes as shown 
in Fig. 4. Simply increasing the number of electrodes meant 
expensive hardware and slower data acquisition. The 
rotating electrodes were used to provide more voltage 
measurements. The rotations are provided through a 
stepper motor with step angles as small as 0.018 degree. 
Compound electrodes were used for the intended study. 
However, more voltage measurements consumed more 
processing time making the image reconstruction somewhat 
difficult. Applying larger currents to the electrodes would 
also increase the image resolution by reducing the effects of 
contact impedance, but not for the compound electrodes. In 
this mechanism, the adjacent method protocol was used to 
collect the data. This is because by applying this method, 20 
independent impedance measurements can be obtained. 

 
 

Fig. 4. Block diagram of a REIT system based on [20]. 
 
As such, on the next data-acquisition process, there will 

be 20 more impedance measurements available. When 
having these additional independent impedances, the 
reconstructed image undoubtedly could achieve a higher 
resolution compared to other images produced by the 
conventional EIT systems [20].   

Special electrodes with a limitation of capacitive noise 
were also designed [21]-[22] to improve the resolution of 
the images as seen in Fig. 5.  

 

     
 
Fig. 5: (a) Inflatable belt [21] (b) Active electrode belt [22]  
(c) Nano fiber web electrode belt [23]. 
 
Gaggero et al. [22] developed an active electrode EIT 

system in which each active electrode comes with its own 
signal conditioning circuitry, which reduces the input 
impedance and hence can contribute towards better 
resolution of the images. This belt can be used for one time 
study (Fig. 5(b)). The stray capacitance problems of the 
cables can be reduced by housing the signal conditioning 
circuitry close to the active electrodes. Similarly, a flexible 
belt was designed by Oh et al. [23] using Ag-plated PVDF 
nano fiber web electrode, but it came with cumbersome 
wires and larger noise levels even though the contact 
impedance was observed to be stable. 

Poor resolution could be also due to data acquisition 
electronics limitations, manifest as measurement errors. For 
example, different excitation techniques and measurement 
methods affect the signal-to-noise ratio (SNR) of the 
measured data. To address this Isaacson [24] suggested a 
measurement method for the best distinguishability. If ‘r’ is 
the resistance matrix with an actual resistivity distribution 
and ‘ř’ is for measured resistivity distribution, the voltage 
difference ‘Δv’ for a given current ‘i’ is, Δv=(r-ř) i. Here, ‘Δv’ is 
important for the estimation of the resistance. The diagonal 
method of current injection produced better quality images 
when compared with the neighboring method, but it comes 
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with some measurement errors. The Fourier based method, 
however, shows smaller measurement errors and hence is 
considered the most accurate method of current injection 
(not suitable for biological studies) [25]. 

Tafiei-Naeini and McCann [26] suggested better 
resolution with multiple current sources at the expense of 
EIT hardware. Their proposed system was not only complex 
but also required balanced output impedance and phase 
among the current sources. The SNR of the excitation 
current source also added to the spatial resolution of the EIT 
systems. A current sub-system was designed to provide an 
SNR of 80 dB.  

Excitation methods and voltage measurements also 
contribute towards the resolution of the EIT images. For a 
single current source, an adjacent current pattern can detect 
objects whose size are greater than a fist within the confines 
of chest sized test tank. For the opposite current pattern, 
objects whose size is greater than two fingers could be 
detected, and one cosine pattern was observed to detect 
with the resolution of a finger’s width [10]. 

In general, for better readings and hence for better 
resolution, the measured voltages should account for only 
the resistance and the real component as its the impedance, 
but not the imaginary component as its parasitic 
capacitances give rise to measurement errors [27].  

Furthermore, detectability (sensitivity) is influenced by 
the current injection methods (Fig. 6) whereas 
distinguishability (spatial resolution) is influenced by the 
voltage measurement technique.  

 

 
 
Fig. 6: (a) Neighboring (b) Opposite (c) Cross methods of current 
injection. 
 
The resolution of the reconstructed images is at its worse 

at the center of the test object because it is always not 
practical to place the electrodes inside. Two layers of 16 
electrodes were considered. Both the adjacent and opposite 
current injection methods were employed. The voltages 
were then measured horizontally adjacent, vertically 
adjacent, and for all possible adjacent combinations.  

A full width half maximum (FWHM) method was then 
used to analyze spatial resolution. It gives the distances 
between the two points of an image sharing the same 
solution value, which is half of the peak value. The lesser the 
FWHM percentage, the higher will be the spatial resolution. 
The use of two layers provides somewhat better information 
about the test object [28]. 

One other reason for low resolution is that the 
measurement sensitivity decreases drastically with the 
increasing distance from the electrodes. Ts et al. [29] 
proposed an EIT system with a novel electrode configuration 
to address this limitation. In this system, two pairs of driving 
electrodes attached on four sides of the surface of the body, 
and an array of voltage sensing electrodes are placed along 
the surface as shown in Fig. 7.  

As the current injection and voltage sensing electrodes 
are separated, no current actually flows through the voltage 
sensing electrodes given their contact impedance. The 
current injected flows underneath the voltage sensing 
electrodes, allowing the voltage to be measured in the 
normal direction to the voltage sensing electrode array. 
However, blur images are unavoidable when using this 
electrode configuration when the distance from the object 
surface is too large. Therefore, a process known as de-
blurring was suggested to improve the spatial resolution of 
images. 

 

 
 

Fig. 7: Novel electrode configuration based on [30]. 
 
One such method, a layer stripping method, was 

proposed by Somersalo [30] that focused on providing good 
reconstruction near the boundary. In this method, current 
with rapid spatial variation is supplied to the surface so that 
the current does not penetrate deeply into the body or 
object. As such, the difference in boundary voltage will be 
affected mainly due to the impedance change near the 
surface. Provided there is only a small error in the 
measurement, a high-resolution image may be obtained in 
the region near the surface. In the applied potential 
tomography systems, a voltmeter having high input 
impedance must be used for measuring the voltages to 
avoid the pitfalls of electrode contact impedance. Moreover, 
the voltages of the current receiving electrodes are 
neglected for the same reason. Further, the measured 
voltages are added up to improve the SNR improving the 
resolution of the reconstructed images [11]. 

Hence, spatial resolution of EIT depends on several 
hardware factors, which include the noise of the 
measurements, the number of electrodes, the current 
excitation methods, and voltage measurement techniques 
used.  

As such, the spatial resolution of the image 
reconstructed varies from one device to another. Different 
methods and models have been proposed to overcome this 
limitation, however in practicality, it is still difficult to 
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achieve high quality images from any EIT systems without 
the state-of-the-art electronic instrumentation.  

 
Imaging Techniques 
Several reconstruction algorithms have been developed for 
the reconstruction of the EIT images focusing on the 
improvement of the reconstructed image resolution.  

Based on the type of imaging, there are two types of 
techniques that can be approached in EIT systems, dynamic 
imaging and static imaging. In dynamic imaging (with a focus 
on temporal resolution), boundary voltages are measured at 
different time intervals, and the first data at initial time (t1) is 
treated as the reference data set for another data set 
measured at a second time (t2). By back projecting the 
difference an image is reconstructed [31]. In static images 
(spatial resolution), the absolute values of a cross-sectional 
resistivity distribution are reconstructed from voltage 
measurements, which is a function of an unknown resistivity 
distribution. This makes the image of reconstruction a 
nonlinear problem. The Newton-Raphson method, 
demonstrated by Yorkey et al. [32] produced good quality 
static images provided there was no error in the modeling 
and measurement of the voltages (or, current). When errors 
are present and the number of elements increased to get a 
good spatial resolution, the images distort greatly. Isaacson 
[24] and Gisser et al. [33] proposed an optimized current 
injection method which injects a certain pattern of current 
through the electrodes. This novel method of current 
injection combined with the Newton-Raphson method yields 
a good static image. An EIT system that uses 32 electrodes of 
12-bit resolution with optimal current injection was 
developed as shown in Fig. 8.  

 

Subject ModelCurrent Source

Reconstruction 
Algorithm

Comparison of 
measured and 

calculated 
Voltage

Data 
Acquisition FEM

 
 

Fig. 8: Block diagram of the EIT system redrawn from [31]. 
 
A specially designed digital voltmeter was used to 

acquire the boundary voltages from the electrodes. The 
measured voltages were compared to the computer model 
voltages and depending on the difference in reading (error) 
the computer model voltages were adjusted accordingly. 
The computer model voltages were calculated using a finite 
element method to develop the voltages with an assumed 
model resistivity distribution since the problem is nonlinear 

[34]. Reconstruction was done based on the model 
described by: 

 
);;(, ecMaxMin ec ρϕρ   (1) 

 
where, );;( ecρϕ  is an objective function (error), ρ is 

resistivity distribution of model, c is the injection current 
pattern, and e is the electrode configuration. In this case, the 
algorithm was assumed correct but the unknowns of the 
model must be found. 

To make the EIT system more efficient, requires a 
measurement method (comprising current injection 
patterns, electrode size, position, etc.), which ultimately 
maximizes the objective function/distinguishability. An 
algorithm is needed to adjust the distribution of resistivity. It 
is required to solve the forward problem for equation (1). A 
forward problem is needed to compute boundary voltages 
of a subject with a given resistivity distribution in response 
to an injected current. This can often be challenging, as most 
samples under examination are nonhomogeneous, 
anisotropic, and irregularly shaped. Therefore, approaches 
taken to solve the forward problem often employ numerical 
methods and more specifically, finite element methods.  

A circular finite element method for EIT was developed 
by Woo et al. [35]. They describe a sparse matrix method for 
solving the forward problem and  for reconstructing the 
static EIT image, going so far as to create a finite element 
software package, which included finite element mesh 
generators, efficient sparse matrix, and vector algorithms for 
solving sparse linear system of equation. 

The distinguishability, d, of an injection pattern, c, is the 
ability to distinguish two different resistivity distributions 
[24]. The equation below shows how distinguishability can 
be calculated: 

c
vvd 21 +=    (2) 

 
where v1 and v2 are the boundary voltages due to 

distribution of resistances Ω1 and Ω2 respectively.  
This part solves the Max part of equation (1). To get a 

good static image, the electrodes were placed equally and 
the injected current pattern used was developed using the 
Walsh function [36]. 

Many EIT images are generated based on the distribution 
of conductivity changes within the volume. In this scenario, 
the most ideal case to arrive at the conductivity distribution 
via an inverse solution is to know the voltage along the 
whole surface of the volume’s boundary; however, this is 
often not possible since the voltage measurement of the 
surface is restricted by the signal-to-noise ratio. This makes 
it hard for the reconstruction algorithms to come up with 
the conductivity distribution. To compensate for such 
limitations, two approaches are employed: linear 
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approximations and non-linear approximations. Non-linear 
approximations tend to produce better images but requires 
more computation time, while conversely, linear 
approximations tend to use less computation time and 
produce images with low spatial resolution. The most 
common linear inverse solvers are – generalized vector 
sampled pattern matching (GVSPM), a pseudo-invasive 
method, and the standardized low resolution 
electromagnetic tomography algorithm (sLORETA) [37]. 

An algorithm that uses a linear approximation solver to 
produce an image with better spatial resolution was 
presented. This was done by using a focal underdetermined 
system solver (FOCUSS) algorithm which is an initialization-
dependent recursive algorithm that produces solutions 
based on a weighted minimum-norm least-squares solution 
[38]. In short, it takes a low spatial image and employs a re-
weight strategy that improves the spatial resolution during 
its iterations [39]. The linear inverse solver used in this 
experiment was sLORETA and the FOCUSS was used in the 
re-weighting. Furthermore, a shrinking strategy was used to 
reduce the processing time. The combination of the 
shrinking strategy and FOCUSS is called shrinking-FOCUSS. 
The developed algorithm is called shrinking sLORETA-
FOCUSS. The algorithm was tested on a realistic 3D head 
model around which electrodes were placed. Before the 
algorithmic implementation, the EIT forward problem was 
solved with a model of known conductivity distribution 
subjected to low frequency current. A large number of 
electrodes were connected and thus a shrinkage method 
was used to reduce the solution space and a weighing matrix 
made the process take less time since this included less 
elements for the algorithm to handle during iteration [37]. 

 

 
 
Fig. 9: Longitudinal section of the reconstructed images with the 
perturbations located in the movement region of the brain a) The 
original distributions of the two perturbations (b) The images 
reconstructed by the sLORETA alone (c) The images reconstructed 
by shrinking sLORETA-FOCUSS based on [37]. 
 
In this experiment, a 3D realistic head was used and 32 

electrodes were placed around it. The electrode placement 
was done based on 10-20 EEG electrodes system. An 
injection protocol was made with the aim of maximizing 
sensitivity to impedance changes and as such a current was 
injected to the opposite electrodes and the neighboring 
electrodes were used for measuring the voltages. A total of 
258 voltages were taken for each image. The last part of the 
experiment involved simulation of the image using different 

algorithms like perturbations and sLORETA. The final image 
was simulated using the shrinking sLORETA-FOCUSS. The 
results of the experiment are shown in Fig. 9 illustrate the 
effects of different algorithms. It can be seen that the 
shrinking sLORETA-FOCUSS method produced images with 
good spatial resolution and the shrinking strategy increased 
computation efficiency greatly. Indeed, the only shortfall of 
this algorithm appears to be that it has not been researched 
in greater detail. For example, it has not yet been used on 
live tissue or on human subjects, and thus its performance in 
real world situations is not clear. In short this algorithm 
shows great potential in 3D image reconstruction with good 
spatial resolution, but warrants further investigation [37]. 

EIT algorithms may also be categorized as iterative 
algorithms and direct algorithms. The former tends to yield 
better results but utilizing more computation time, while, 
the latter gives less accurate results provided as faster 
solutions [40]. 

Mueller et al. [41] focuses on the direct image 
reconstruction with applicability to the medical field. The 
direct image reconstruction allows for the rapid generation 
of a series of images, thereby making it possible to monitor 
living tissues. Their work proposes a mathematical algorithm 
based on a proof of the 2D-inverse condition problem [42]. 
The algorithm, tested on a chest model, determines the 
scattering transform, t, from a Dirichlet-to-Neumann map 
from which it reconstructs the conductivity distribution. The 
experiment was designed using a virtual chest phantom. This 
virtual chest was constructed using elliptical domains to 
represent the heart and lungs. The resistivity of the models 
representing the heart and the lungs was selected based on 
the behavior that an organ with more blood has a lower 
resistivity compared to an organ with less blood. The 
resistivity of these organs also changes during different 
physiological states, e.g., the resistivity of the heart 
increases during systole while the resistivity of the lung 
decreases during exhalation. The background conductivity 
was set to a constant value of conductivity of 1. Polynomial 
smoothing was applied in smoothening the edges of the 
organs during reconstruction since the method is only valid 
for conductivities with two derivatives. The reconstructed 
images are shown in Fig. 10. The images were reconstructed 
from the conductivity of the model chest.  

 

 
 
Fig. 10: Plots of the actual and reconstructed conductivities for the 
virtual phantom chest as re-arranged from [41]. 
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Polydoride and McCann [43], implemented an algorithm 
based on Newton’s iterative techniques for nonlinear image 
reconstruction. This method integrated a linear regularized 
step based on the regularized total least square (RTLS) 
problem. Although the formula is same as the Tikhonov 
problem, the RTLS differs when the inverse problem is 
solved under the assumption, that both measurement and 
the sensitivity values are known roughly. The RTLS problem 
can formulated in the same way as the Tikhonov problem, 
which includes one additional factor and requires an 
estimation of two scalar parameters. The Jacobian method is 
another approach wherein the inverse solution can be 
calculated with a coarser model (in this case with 816 
elements). This is due to the use of a different finite model 
for the forward and the inverse problem, which largely 
reflects the perfected model. The noise is added to perfect 
the instrumentation noise, which pollutes the measurement 
when doing data acquisition. A system with 22 electrodes 
was employed to perform spatial resolution comparison 
with the conventional scheme. After applying the 11 
opposite current patterns, 198 stimulated measurements 
were collected. The images for the spatial resolution were 
obtained by calculating the normalised spatial resolution 
error. 

The modified Newton-Raphson algorithm offers good 
spatial resolution for static objects operating under the 
assumption that no significant measurement noise is 
present. However, practical applications are susceptible to 
various sources of noises [24]. An open EIT model using the 
Newton-Raphson algorithm was also developed with 
Tikhonov regularization. Good resolution was achieved, but 
the method was unsuitable for test objects lying on the 
extremes [44]. The same regularization method was 
optimized for better accuracy by Aristovich et al [45]. 

A major way of improving spatial resolution is by filtering 
or correcting the data acquired by the electrodes. This 
approach may improve the spatial resolution greatly without 
requiring improved hardware. According to Holder [46], a 
standard method of altering the error reading is by using a 
regularization technique called Tikhonov regularization. This 
method uses a suitable regularization parameter on the 
matrix of the data acquired. This method smooth the results, 
and truncates the errors in a linear way. However, the 
system is nonlinear, such that this method only improves 
spatial resolution to a certain point past which further 
application can distort the results.  

Another technique proposed by Tushar et al. [47] to 
improve the spatial resolution of EIT reconstruction images 
is projection error propagation – based regularization 
(PEPR). The PEPR method defines the regularization 
parameter as one of the functions of the projection error, 
which is caused by a difference between experimental 
measurements and calculated data. This indicates that the 
magnitude of the regularization parameter actually varies 

according to the projection error. For a larger projection 
error, a greater regularization value needs to be set to 
regulate the process during iterations. In addition, the 
regularization parameter in the image reconstruction 
algorithm will be modified automatically according to the 
noise level in the measured data. Therefore, even with noisy 
boundary data, the PEPR method is able to produce 
improved reconstruction images with high contrast. 

Based on the spatial resolution result of EIT, Yan et al. 
[48] used the coercive equipotential node model, taking the 
widths of the excitation electrode and the measurement 
electrode into consideration. The simulation platform, based 
in Visual C++, defines the estimation image reconstruction 
quality and measurement sensitivity to create a simulation 
to study EIT electrode structure and parameter impacts. The 
influences of line electrode and compound electrode were 
studied. By using the simulation result, an optimized design 
for the electrode structure and its parameter was found. For 
the line electrode, even though it is a wider electrode that 
can reduce the contact impedance between the electrode 
and skin, the simulation result proved that increasing the 
width of a line electrode width increase not necessarily 
increase performance. For instance, using too wide of a line 
electrode can reduce measurement sensitivity. To overcome 
this, an optimal measurement sensitivity was found for 
different widths of the line electrode at different 
measurement depths. The application object in this EIT is 
often an area with a circular boundary. Thus, when the 
boundary size and electrode number is determined, the sum 
of the electrode width and the distance will be fixed. It is 
reasonable to assume using a wider electrode will reduce 
the electrode distance. Furthermore, it would be difficult to 
image deep into the centre of the measured field if the 
electrode distance is too short under the measurement 
current of EIT. Hence, the measurement sensitivity will be 
affected by depth especially towards the centre area. For the 
compound electrode, increasing the distance between two 
adjacent compound electrodes can advance the 
reconstructed image quality of the centre area. This lowers 
the reconstructed image quality of the superficial layer of 
the area in favour of improved uniformity of the 
reconstructed image quality over the whole measured area. 
The compound electrode has a complex structure, which 
includes complex structure parameters. Due to the circular 
boundary, the parameters are limited to each other and 
mutual influences are more difficult. The impacts of all 
parameters should be considered carefully, especially the 
distance between two adjacent compound electrodes and 
their width.  

Image fusion techniques are one of the current research 
topics of interest for enhancing EIT image quality. An image 
fusion algorithm based on wavelet-transform was reported 
by Li et al. [49]. Two images from different algorithms (one 
from a singular value decomposition (SVD) algorithm and 
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other from a conjugate gradient (CG) algorithm [50]) were 
fused using the proposed technique. The image formed by 
this algorithm was essentially a combination of two images, 
which had been reconstructed separately by the SVD and 
the CG methods. The process of reconstructing the image 
using the algorithm proposed was formed by initially taking 
measurements of the ERT system and later using this data to 
form two images by the SVD and CG method. The images 
were then decomposed by wavelet transformation and then 
used to construct a wavelet pyramid separately. The two 
images that have been decomposed and fused separately 
have different frequencies. The different frequency 
components on the decomposed layer apply different fusion 
operators. The wavelet pyramid was then obtained. The final 
image that was reconstructed is obtained by inverse discrete 
wavelet transformation of the wavelet pyramid. The 
reconstruction algorithm was programmed in MATLAB 7.1 
and COMSOL. The image obtained from image fusion 
algorithm were compared to images obtained by the CG and 
SVD methods independently. The comparison was based on 
the relative error of image reconstruction [51]. The image 
fusion method was found to produce smaller errors 
compared to the CG and SVD methods independently in all 
the situations and different images that were tested. Even 
though the errors in the images formed by CG and SVD 
methods changed depending on the situation, the SVD 
approach was better in one situation while CG was better in 
another. The main challenge with the image fusion 
algorithm was that it required more processing time to 
reconstruct one image; for that image to be formed, it was 
required to reconstruct two images using the different 
methods and then to combining them using the proposed 
algorithm. With sufficient processing power, this approach 
could work best since, in theory, combining more images 
from different algorithms would result in better spatial 
resolution image [49]. 

Davidson et al. [52] demonstrated a scanning technique 
that offered good spatial resolution at the same time and 
provided continuous image generation to monitor patients 
using a technique to fuse EIT images with the corresponding 
magnetic resonance imaging (MRI) images. The first step 
was to convert the EIT image into a matrix with 2 mm3 
isotropic voxels by using a software package known as 
Manchester Confeitir [53]. The MRI and EIT images were 
then fused together using an open-source software called 
3D-Slicer. The images were overlaid and aligned manually. 
The algorithm developed during the experiment can be seen 
in Fig. 11 and shows that using this image to monitor any 
vital organ or area of interest is possible since the MRI image 
provides good spatial resolution while the EIT image shows 
the activity taking place continuously. This technique can 
only be implemented with the aid of an MRI imaging 
machine [52].   

 

 
 
Fig. 11: Wavelet image fusion algorithm redrawn from [52]. 
 
Similarly, Chen et al. [54] presented an approach to 

improve spatial resolution by partly solving the forward 
problem of EIT, given physical and structural information 
about the test sample. The algorithm used in this 
experiment was a conjugate gradient (CG) algorithm. The 
approach proposed in this paper was carried out on an EIT 
system that consisted of 16 electrodes, a signal generator, 
that was to deliver sinusoidal current and 2-to-16 
multiplexer was used during current injection. The function 
generator injected current with a frequency ranging from 
10Hz to 500 kHz. The sensitivity of the electrodes at the 
boundary was improved by incorporating the boundary and 
physiological stricter. This was the information of the human 
thorax taken from CT scan. The image from the CT scan was 
divided into segments, which consisted of segments of 
different organs like the heart, lungs, spinal column, and 
skeletal muscle. The segmented sample is shown in Fig. 12.  

 

 
 

Fig. 12: Meshes refined by COMSOL based on [54]. 
 
These boundary conditions were fed into the 

mathematical model and the conjugate gradient least square 
(CGLS) algorithm, which is an improved version of the CG 
algorithm that was used in the reconstruction. A differential 
imaging strategy was used with the aim of reducing 
instrumentation and modeling errors. The results are shown 
in Fig. 13.  

EIT images were taken with air in the lungs and without 
air in the lungs. In this case, the EIT images showed that the 
left lung was smaller than the right lung, a result consistent 
with those of the contemporaneous CT scan. 
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Fig. 13: Locations of 3 representative pixels in grids based on [54]. 

 
The main challenge with the approach from Chen et al. is 

that to address the forward problem, a CT scan is required. 
This means that this method can only be used for monitoring 
since for it to be effective there must be an original image 
from CT [54]. Therefore, a priori information of the test 
object is required for the fusion techniques. Usually a 
technique with good spatial information (such as MRI, CT), 
etc., is fused with a technique like EIT with good temporal 
information [55].  

Olmi et al. [56] introduced another reconstruction 
method, called genetic algorithm EIT (GA-EIT). The first part 
of this reconstruction deals with the underlying mathe-
matical principles, which will not be covered here since they 
delve more deeply into the double-constraint (DC) and 
Newton-Raphson (NR) methods. For the reconstruction to 
be accurate, it is assumed that no current escapes the test 
sample and the resistivity distribution is derived from 
boundary voltages, which are a result of injected current. In 
implementing the GA-EIT, a number of images that is 
referred to as a set or population is generated. A fitness 
value is assigned to each element of conductivity. The fitness 
values are then ranked based on the quality or correctness 
of the image. The fitness value with a good image are given a 
better ranking or a better chance for them to contribute to 
the successive generation and mutation. A termination 
criterion is applied after this stage. The termination is done 
when convergence has been reached or if the maximum 
number of generation has been exceeded. When the 
convergence has not occurred, the process is repeated for 
the selected population or otherwise the fittest individuals 
are considered the solution of EIT problem. The genetic 
algorithm process was modified as it was implemented in 
the experiment. To reduce the time taken, three stages were 
followed to generate the population. These steps eliminate 
the random generation of population. The first two stages 
supply useful genetic material to the target population and 
this reduces the time to get an accurate solution. The GA-EIT 
implementation uses a fixed sized overlapping population 
and hence GA-EIT provides its own constraints. GA-EIT 
images were compared to those generated by a modified NR 
method [32] and a DC method [57]. In both cases, the GA-EIT 

used 16 and 32 individuals. The DC image was inferior when 
compared to the GA-EIT image. With 32 individuals, GA-EIT 
produced a good image but took longer to reconstruct the 
image. GA-EIT image that used 32 individuals looked better 
than the NR image, but the NR method produced a better 
image compared to that of the DC method. The GA-EIT 
approach in reconstruction is computationally expensive in 
the sense that it requires and a good processor to compute. 
The GA-EIT approach, due this limitation, is now being used 
in static image reconstruction only. 

In summary, the best way to improve the spatial 
resolution of EIT is to select a good algorithm to regularize 
the data, and another good algorithm to reconstruct the 
image from the data.  

EIDORS is an open source software for EIT applications, 
which can be used as a reference software for the newly 
developed algorithms of EIT systems. It uses a finite element 
model to formulate the forward problem and regularization 
techniques to solve the inverse problems. The EIDORS 
environment comprises four main blocks: forward model, 
data, inverse model, and image. 

The forward model formulates the forward problem of 
the EIT systems by defining the input currents and electrode 
specifications based on the finite element method. The data 
refers to the measured voltages or the simulated voltages. 
The inverse model gathers all the necessary information 
from the forward model and the data. Finally, the data is 
reconstructed in the form of an image.  

Although EIDORS has been accepted by many 
researchers for its inverse problem solving, it currently 
experiences problems when dealing with a large set of data. 
It has been observed that there are interactions among the 
different parts of the algorithms when handling large data, 
which results in the misinterpretation of the results. In 
addition, care must be taken during the noise selection and 
during the assumption of the inputs and variables. Model 
errors are also visible, but this cannot currently be 
addressed in the EIDORS software [58]. 

 
Further Possible Improvements 
Based on a review on the literature, it can be seen many 
factors contributing to the spatial resolution of EIT images. A 
new approach toward enhancing spatial resolution is an 
array processing technique. The purpose of this proposal is 
to overcome the problem that arises upon image 
reconstruction, which is sacrificing computational efficiency 
and time for better image accuracy or sacrificing image 
accuracy for a quicker and efficient processing time. The 
proposed algorithm provide a balance, producing more 
accurate results more efficiently. It can provide a better 
image of accuracy or resolution in the shortest time possible. 

An array processing technique uses an array of similar 
sensors that are spatially separated to analyze the area in 
between (this includes signals such as those from radar, 
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sonar, radio astronomy, satellite communications, direction 
finding, seismology, tomography, etc. [59]). Array processing 
techniques have been used previously in medical appli-
cations includes ultrasonic imaging for fetal development 
monitoring and observation of the blood flow in the heart 
valves [60] and EEG signal processing for neurological 
disorders [61]. Both of these applications use the concept of 
beamforming [62], which estimates a signal from a specific 
sensor in a desired direction and separates signals from the 
remaining sensors from other directions. A major advantage 
of the beamforming technique is its spatial discrimination of 
the signals with an array of sensors [63].  

Wideband beamformers have been previously used for 
medical diagnosis. An ultra-wide band beamformer was used 
to detect early breast tumors using microwave technology. If 
for the presence of a tumor, the beamformer output shows 
a large energy signal. Thus, the signal as a function of 
location provides an image. However, neither the shape nor 
the size of the tumor is known, and further analysis is 
required [64]. Cao and Nehorai [65] used a delay-and-sum 
beamforming algorithm to reconstruct an image of the 
breast. Peak-to-peak value indicates abnormality in the 
breast. Tumor localization was done using optical 
tomography and beamforming. This method was effective in 
improving the spatial resolution up to 1.5 cm and above. 
However, the resolution was affected by an increase in the 
noise levels [66]. The beamforming technique was also 
proposed to study the temporal changes. Prior computed 
tomographic images were used as a reference set for the 
study [67]. The beamforming technique can be introduced to 
the EIT systems in order to study conductivity changes. In 
spite of simpler computations, the noise effect was a major 
drawback in this system [7]. 

 
Conclusion 
An extensive review on the spatial resolution of the 
electrical impedance tomography systems is covered in this 
paper. Hardware improvements and software developments 
are highlighted. An array processing technique could be the 
possible new dimension towards the improvement of spatial 
resolution for the future EIT applications.  
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