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Abstract 
A finite difference model of a four-electrode tissue conductivity 
measurement system was developed and shown to be within 10% 
of theory. The model is useful for explaining the behavior of 
conductivity measurement electrodes in tissue. 
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Introduction 
 
Four electrode measurement (4EM) systems have been used 
to measure conductivity in tissue where electrode 
polarization would cause unacceptable inaccuracy in 
measurement results and where directional measurement of 
conductivity is required1 (1-3). The system described here is 
intended for use in testing conductivity in brain tissues in 
vitro. 

The response of the 4EM has been well characterized 
in homogeneous, isotropic media as (1, 3): 
 

V = �
���� (1)

Equation (1) assumes the four electrodes are linearly 
arranged with two high impedance potential measurement 
electrodes (V1,V2) flanked by two current injection 
electrodes (I1,I2). It also assumes the electrodes have 
uniform spacing (�) and are surrounded by a medium with 
conductivity σ. The injected current is from a point source 
(I1) and is collected by a point sink (I2) (Figure 1). 

In addition to the response function (Equation 1), 
Robillard and Poussart (4) also characterized the field of 
view of the 4EM system as approximately 3� in 
homogeneous isotropic media. In other words, conductivity 
differences in media outside a radius of 3� from any of the 
electrodes should have little effect on the response.  

Steendijk (5) found solutions for 4EM systems for 
several conductivity environments. Starting with the infinite 
space of isotropic material solution (1) (Equation 1), he 
found a solution for an infinite half space with electrodes 
placed on the air/media boundary: 
 

                                                      
1 Less polarization than a two-electrode measurement system where the current is applied by the same electrodes that measures the potential 
and directional measurement as opposed to a coaxial measurement system that measures bulk conductivity but gives no information about 
direction. 

� = �
2��� (2)

He also found equations for an infinite half space of 
anisotropic material, longitudinal (long) and transverse 
(trans) to the fiber direction: 
 

�������� = � 
2��������

 

��������� = � 
2�� � 1

������

1
�����

   

(3)

Steendijk’s solutions only hold for specific geometries. A 
real world measurement in anisotropic or mixed tissue would 
necessarily require a much more complex solution, if such a 
solution is even possible. 
 

 

Figure 1. Electrode configuration of a 4EM system. 

http://dx.doi.org/10.5617/jeb.2641
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This paper will demonstrate a finite difference numerical 
solution based on a three dimensional matrix of conductivity 
tensors to support any combination of included regions, 
limited only by the resolution and size of the grid. The 
tradeoff between either a finer grid size or increased spatial 
resolution is processing time. 

Materials and methods 

Dey and Morrison (6) developed a finite difference solution 
for regions of differing isotropic conductivity in geological 
media. This paper will extend their solution to allow 
differing anisotropic regions. The solution begins with a few 
basic equations: 

J = σE (4)

E = −∇ϕ (5)

∇ ∙ J = ∂ρ
∂t δ(xyz) (6)

Equation (4) is the differential form of Ohm’s law that relates 
current density (J) in a medium of conductivity σ to the 
electric field (E) in the medium. Equation (5) holds because 
the field is irrotational so E is the gradient of the potential 
(ϕ), and equation (6) relates the time derivative of a point 
charge (ρ) at location xyz to the divergence of J. 

Combining these equations yields: 

−� ∙ ����������� = ��
�� �(���) (7)

where the quantities ���� and ���� are conductivity and 
potential at point xyz. 

The derivative of charge with respect to time is 
equivalent to the current within a volume element: ��

�� = �
��. 

Integrating both sides over the volume element (dV): 

− � � ∙ �����������
��

�� = � �
�� �(���)��

��
 (8)

The left hand side of Equation (8) can be converted to a 
surface integral using Green’s theorem: 

− � ∇ ∙ �σ���∇ϕ����
��

dV

= − � σ∇ϕ ∙ n dA
�

= − � σ ∂ϕ
∂n dA

�
 

(9)

where dA is the surface area element. 

And the right hand side of Equation (8) is simply equivalent 
to the current at the point xyz, I���. The resulting equation 
can be discretized: 

− � σ ∂ϕ
∂n dA = I���

�
 (10)

To simplify the equations, we utilize a uniform spatial grid 
throughout the matrix where the voxels have the same 
dimension in each direction, Δx = Δy = Δz = h. The left-
hand side of Equation (10) is integrated by breaking into 
separate equations for each face and using the finite 
difference approximation for the normal derivative.  

Dey and Morrison estimated the conductivity at each 
voxel face by averaging the conductivities of four adjacent 
voxels. In order to account for anisotropic conductivities, we 
used conductivity of the adjacent cell in a direction normal 
to the face being integrated (�����). This should introduce 
minimal error as long as the change in conductivity is gradual 
local to the voxel. Care should be taken in interpreting the 
potentials immediately adjacent to a boundary between two 
conductivities. 

The discretized solutions for each face are summed to 
comprise the surface integral: 

− � σ���� �ϕ��� − ϕ����
h � h�

����
  (11)

where: 

�dA = h�
�

 

and the values of the conductivity (����) and potential (����) 
of the adjacent voxel are defined as in Figure 2. Coupling 
constants as defined by Dey and Morrison (6) are developed 
for each face and for the object voxel, refer to Figure (2) for 
definition of  conductivity for each face: 

�� = �� ∗ ℎ (12)

�� = �� ∗ ℎ 
�� = �� ∗ ℎ 
�� = �� ∗ ℎ 
�� = �� ∗ ℎ 
�� = �� ∗ ℎ 

����� = −(�� � �� � �� � �� � �� � ��)
All the analysis to this point applies to voxels in the interior 
of the volume of a conductive region. Because the size of the 
region is necessarily limited, some attention needs to be paid 
to the behavior at the limits of the computational volume. 
Voxels at the boundary of the volume require a boundary 
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condition to allow accurate prediction of potentials across 
the boundary. 

The simplest boundary condition is to assume the 
potential at the boundaries is a constant (usually zero), as if 
the boundaries are at infinite distance from the probe 
(Dirichlet boundary condition). Implementation of the 
Dirichlet boundary condition resulted in an overprediction of 
the measured potentials by 25% for anisotropic cases, 
presumably due to interactions of fields with finite 
boundaries. Although Robillard and Poussart (4) found a 
field of view of 3a in an isotropic medium, an anisotropic 
medium may alter the field of view by extending the range 
of the currents in the low conductivity direction. 

A mixed boundary condition: 

αϕ + β ∂ϕ
∂n = f(x, y, z) (13)

may yield a more accurate prediction. The field at a distance 
(r) from the point current source behaves as ϕ ∝ �

�, so the 
boundary condition becomes: 

∂ϕ
∂n ∝ − 1

r� e�� ∙ n� (14)

where e�� is the unit vector in the direction from the point 
current source to the boundary location and n�  is the unit 
vector normal to the face at the boundary. e� ∙ r� = rcos(θ) so 
the boundary condition is: 

αϕ + β ϕcos(θ)
r = f(x, y, z) (15)

where cos (θ) is the cosine of the angle between the vector 
from the point current source to the boundary voxel and the 
normal direction of the face on the boundary. And r is the 
distance from the source to the voxel. This definition greatly 
complicates the execution of the model because creation of 
a new finite difference matrix is necessary for each source 
location. To simplify model creation, we can assume the 
source is always at the middle of the geometric model 
volume. This causes minimal error when the source is near 
the center of the volume (6). 

As a result of the mixed boundary condition, the 
potential for faces on the boundary is assumed to be zero (for 
instance, C� = 0) and C���� (Equation 16) gets an extra term. 
(Note: Face 6 is opposite Face 1) . 

The subscripts ctr and bnd refer to the center of the 
geometric model volume and the voxel on the boundary, 
respectively. Because the C���� terms are zero except for the 
face on the boundary, the inclusion of the extra term only 
slightly increases the complexity of the model. 

C�ϕ� + C�ϕ� + C�ϕ� + C�ϕ� + C�ϕ� + C�ϕ�
+ C����ϕ(�,�,�) = I��� 

(17)

This equation can be written in matrix form as: 

[C][ϕ] = [S] (18)
Where [C] is the matrix of coupling coefficients, [ϕ] is the 
vector of unknown potentials and [S] is the source vector 
which is zero everywhere except at the location of the point 
current sources. 

Figure 2. Orientation, conductivity, and potential of each face of 
a cube.

In order to construct the finite difference matrix, the 3-
dimensional physical matrix must be mapped to a 2-
dimensional matrix where each column and each row 
represent one of the unknown potentials. For instance, a 
10×10×10 cell region (1000 cells or voxels) would map to a 
2-dimensional matrix with 1000×1000 elements represent-
ing 1000 equations with 1000 unknowns that must be solved 
simultaneously to determine the potential in each cell. Each 
row of the matrix is the equation for one unknown potential 
and each column element represents one unknown of the 
equation. 

C���� = −(C� + C� + C� + C� + C� + C�)
− (C���� + C���� + C����
+ C���� + C���� + C����) 

Where 
C���� = C� ∗ |���������|

�(���������)�  �(���������)��(��������

So the discretization of Equation (10) is: 

(16)
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Figure 3 shows the top right-hand corner of the finite 
difference matrix representing the system of n equations and 
n unknowns where the Cs are the coupling coefficients with 
the adjacent cell. Because the potential in a cell only depends 
on the six adjacent potentials and its own potential, the finite 
difference matrix is sparse and can be manipulated using 
iterative techniques in Matlab (MathWorks Inc., Natick, 
MA) to solve for the potential in each cell. The full 
Matlab code is available (see bottom of page).  

Several aspects of the Matlab code deserve mention. 
The input to the Matlab code is a geometric model consisting 
of a 3 dimensional array of diagonalized conductivity 
tensors. The implementation assumes the grid spacing to be 
the same in all directions (Δx = Δy = Δz = h). The largest 
practical size of the grid is 100×100×100 voxels on a quad-
core MacBook Pro. With a grid spacing of 0.1 mm, this 
provides a space of 10 mm × 10 mm × 10 mm that is large 
enough to contain the 4EM system electrodes with a 
boundary of approximately 3a. The grid is built by a custom 
Matlab function (GM_builder.m) using a mathematical 
description of the medium. The medium can have isotropic 
and anisotropic regions and could be imported from a 
diffusion tensor image to calculate the coupling coefficients 
if the diffusion tensor is assumed to be proportional to the 
conductivity tensor.   

 The most computationally expensive part of the code 
is construction of the finite difference matrix (Matlab 
function SetUpFDMatrix_impbound.m). The matrix is built 
one line at a time using logical indexing and the command 
sub2ind that converts the three dimensional coordinates 
(i,j,k) to a serial number (1…N). Matlab references matrix 
indices in row, column, slice order so a large flat matrix can 
be built fairly efficiently. On a quad-core MacBook Pro this 
step can take from 20 minutes to one hour to complete. 
Fortunately, this step only needs to be accomplished once for 
each geometry, as it is not dependent on the location of the 
sources or measurement points. 

The final step in predicting the response of the 4EM 
system is to specify the location of the point current sources 
(one positive and one negative) and the location of the 
measurement points (as shown in Figure 1). The Matlab 
functions SinglePoint.m and MultiPoints_angulareror.m 
compute the potential for a single probe location or an array 
of probe locations within the medium. The functions take the 
center of the probe location and the direction of the probe 
axis and compute the location of each current point source 
and measurement location to maintain an appropriate 
geometry. In a physical system there could be error in the 

positioning of the probes, so the function 
MultiPoints_angularerror.m allows specification of three 
angular errors, θ�, θ�, and θ�. The function can show the 
impact of having the probes misaligned with the interface 
directions on the response of the 4EM. 

The solution of the finite difference equation cannot be 
accomplished using the straightforward Matlab backslash 
operator ([ϕ] = [S]\[C]) due to memory limitations of the 
computer. Matlab offers several methods of iterative 
solutions for sparse matrices that make the solution possible. 
The General Method of Residuals (gmres) (7) is a robust 
method that is successful at solving the system regardless of 
the content of the geometric model. However, it can take up 
to an hour to solve the equation. The Symmetric LQ 
(symmLQ) (8) method is much faster for some geometries, 
but fails to converge if the geometries are asymmetric such 
as an infinite half-space. The method we selected is the 
Quasi-minimal residual (qmr) (9) method because it is very 
fast (20-40 seconds) and converges for all geometries 
attempted. Note that all the methods give very similar results 
for conditions where they converge. 

Results 

The finite difference model can be compared to closed form 
solutions like Steendijk (5). Equation (1) provides a solution 
for an infinite space with isotropic conductivity. Equation (4) 
provides solutions for electrodes on the surface of an 
anisotropic halfspace. Equation (4) can be modified to 
predict the response in an infinite anisotropic space by 
multiplying by a factor of 1/2. As long as the distance 
between the outer electrodes and the boundary are more than 
approximately three times the electrode spacing (3×a) the 
boundary will have minimal impact on the measurement.  

Finite difference models are validated based on 
convergence to the known exact value for the solution with 
decreasing voxel size (h). Figure (4) shows a graph of 
predicted potential in an isotropic infinite space with 
decreasing ‘h’ as compared to the exact solution from 
Equation (1). Figures (5) and (6) show graphs of predicted 
potential versus ‘h’ for longitudinal and transverse probe 
orientations in an infinite anisotropic space (σ� = 0.5, σ� =
0.1). These plots show fairly close convergence to the 
analytical solution with decreasing voxel size 
(Approximately 8% difference for the anisotropic transverse 
cases, approximately 2% for the other cases).  

Models can be further validated by comparing them 
to theory over a range of values. Figures (7), (8), and 
(9) compare model predictions at increasing depth 
with theoretical predictions (Equation (4)) at the surface 
of an infinite half space and at depth (essentially an infinite 
space). Note that the finite difference model slightly

________________________________________________  
Matlab code:
https://github.com/joeb-files/2016_Montgomery

…����    ����    ����    ��
����    ����    ��

� ���
��

�=���
��

�

⋮ 
Figure 3. Top right had corner of finite difference 
matrix. C is the multiplier of the unknown 
potential at each adjacent face. 

http://dx.doi.org/10.5617/jeb.2641
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Figure 4: Convergence plot for an isotropic infinite space. 

Figure 5: Convergence plot for an anisotropic infinite space, 
transverse direction 

Figure 6: Convergence diagram for an anisotropic infinite 
space, longitudinal direction 

Figure 7: Potential on the surface and at depth in an isotropic 
infinite halfspace 

Figure 8: Potential on the surface and at depth in an anisotropic 
infinite halfspace, transverse direction 

Figure 9: Potential on the surface and at depth in an anisotropic 
infinite halfspace, longitudinal direction 

underpredicts (by 8%) the value at the interface. This may be 
inaccuracy caused by the simplistic formulation (kernel) of 
the finite difference model. However, at depth, the model 
predicts within approximately 5% of the theoretical value. 

Accepting that the finite difference model is a fairly 
good predictor of the response of the 4EM, a number of 
configurations can be examined. In use, the 4EM is advanced 
down through tissue through a layer that is thought to be 
anisotropic. In order to understand the response as the probes 
traverse the anisotropic layer, a geometry model was built 
with an anisotropic layer, 2mm in thickness, flanked by 
infinite isotropic layers. Additionally, an isotropic infinite 
space, and an isotropic infinite halfspace will be analyzed 
(Figure (10)).  

Figure (11) shows the predicted response of the 4EM 
system as the probe is traversed from 3 to 7mm in depth (the 
z direction) in the center (x and y directions) of the space. 
The isotropic media in these analyses have an electric 
conductivity of σ = 0.2 mS/cm and the anisotropic media 
have conductivities longitudinal σ� = 0.5 mS/cm, and 
transverse σ� = 0.1 mS/cm. 

The response of the 4EM system probes in the 
anisotropic layer is reduced by interactions with the 
surrounding medium as compared to the infinite case. In the 
transverse direction, the response is reduced by 30.2% and in 
the longitudinal direction the response is reduced by 20.2%. 
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Figure 10: Geometries for analysis of 4EM system response. Top 
figure: infinite space. Central figure: infinite halfspace with 
probes on surface. Bottom figure: layer inclusion in infinite space. 

 

 
Figure 11: Predicted response of the 4EM system at depths from 3 to 7 mm

 

Figure 12: Probe with 5 degree positioning error 

 

 

Figure 13: Effect of 5 degree positioning error on 4EM system 
response 

Isotropic Layer 

Isotropic Layer 

Anisotropic Layer 
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Another use of the finite difference model is to explore the 
impact of probe positioning error on the 4EM response. 
Figure (12) shows the probe configuration with a 5-degree 
positioning error. Note that the probes enter the layer at 
different probe ‘z’ depths. The effect of this can clearly be 
seen in the graphs in Figure (13). The error causes the 
response of the 4EM system to be reduced by 4% in the 
longitudinal direction and 3.3% in the transverse direction. 

 
Discussion 
 
The FD model converges to the closed form result and agrees 
with the closed form solutions across a range of values within 
10% in all cases. Furthermore, the predicted response of the 
4EM system is reasonable as the probes traverse down 
through an anisotropic layer. Future work on this effort could 
include measurement of anisotropic media of known 
conductivity to further validate the model. 

The FD model will be extremely useful to those who 
need to directly measure conductivity with depth in tissue if 
the nature of the tissue structure is known well enough to 
form a geometric model. It is also useful to analyze a range 
of tissue and geometric properties (e.g. layer thickness, 
anisotropy ratio) for comparison to measured data and to 
explain 4EM system response in anisotropic heterogeneous 
media. The demonstrated errors caused by a 5-degree error 
in probe positioning as shown in Figure 13, help provide 
confidence in the usefulness of the 4EM system in a practical 
measurement situation.  
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