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Abstract 
This paper gives a basic overview of relevant statistical methods 
for the analysis of bioimpedance measurements, with an aim to 
answer questions such as: How do I begin with planning an 
experiment? How many measurements do I need to take? How do 
I deal with large amounts of frequency sweep data? Which 
statistical test should I use, and how do I validate my results? 
Beginning with the hypothesis and the research design, the 
methodological framework for making inferences based on 
measurements and statistical analysis is explained. This is 
followed by a brief discussion on correlated measurements and 
data reduction before an overview is given of statistical methods 
for comparison of groups, factor analysis, association, regression 
and prediction, explained in the context of bioimpedance research. 
The last chapter is dedicated to the validation of a new method by 
different measures of performance. A flowchart is presented for 
selection of statistical method, and a table is given for an overview 
of the most important terms of performance when evaluating new 
measurement technology. 
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1.    Introduction 
 
When doing measurements, statistics are needed if we want 
to describe the data (descriptive statistics) or if we want to 
draw conclusions based on the data (inferential statistics). 
There is a vast amount of statistical methods in the 
literature, and the choice of method depends on what we 
want to know and what type of data we have. In this paper 
we give an overview of the most basic and the most 
relevant methods for bioimpedance analysis along with 
examples within the bioimpedance field. Because 
bioimpedance measurements often are done as frequency 
sweeps, producing large amounts of correlated and possibly 
redundant data, the implications for inferential statistics are 
discussed together with data reduction solutions. A goal of 
bioimpedance research is often to develop methods for 
prediction of a biological variable or state, and an overview 
is given for the most relevant methods for development and 
testing of a prediction model. At last, the validation of a 
new measurement technology employs distinct statistical 
methods, and an overview is given on the concepts, terms 
and methods for evaluating performance. 

 
 

2.    Hypothesis and research design 
 

Instead of beginning with the type of measurement as a 
basis for selecting the statistical method, we expand the 
perspective by beginning with the hypothesis and research 
design that should come before the measurements are 
acquired. The reason is that we generally have an idea 
about what we want to investigate with our bioimpedance 
measurement, and we do not perform measurements 
completely randomly. In order to do our investigation 
properly, it begins with a research hypothesis where we 
formulate what we want to investigate in a testable way. 
For instance, if we want to find out whether gel electrodes 
provide lower bioimpedance measurement than textile 
electrodes, our hypothesis can be formulated as: 
“Bioimpedance is lower when using gel electrodes 
compared to using textile electrodes”. We now have a 
testable hypothesis, and our hypothesis can be either be 
accepted or rejected by experiments. It is much easier to 
dismiss a hypothesis than to prove a hypothesis, because it 
takes only one piece of solid evidence to reject it, but an 
endless amount to prove it correct. That is why the 
statistical methods are based on rejecting an opposite 
hypothesis, called a null-hypothesis, instead of attempting 
to prove the hypothesis. In our example, we test whether 
“Bioimpedance is not lower when using gel electrodes 
compared to using textile electrodes”, which is our null-
hypothesis. We reject the null-hypothesis and thereby 
accept our original hypothesis if the statistical analysis of 
our measurements find that the null hypothesis is 
improbable. The statistical analysis provides a p-value, 
which is the probability of our measurement result or larger 
deviations from the null hypothesis, assuming that the null 
hypothesis is actually true. Whether or not to reject the null 
hypothesis is based on whether the p-value is lower than a 
predetermined threshold, the alpha (α) (i.e. the significance 
level). α is conventionally set to 0.05 in medicine and 
biology, implying that we reject the null hypothesis if our 
measurement result is less than 5% probable with the 
assumption that the null hypothesis is true. 

The hypothesis example above is very general and the 
testability could be improved by making it more specific, 
i.e. “Trans-thoracic bioimpedance is lower when measured 
by gel electrodes than measured by textile electrodes using 
a two-electrode setup” if this is the relevant setup we want 
to test. It is easier to test this hypothesis because it implies 
only one certain type of measurement, and reduces the 
chance of an inconclusive result. A hypothesis should be 
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simple, specific, and stated in advance [1]. It is the 
hypothesis that determines the research design, the type of 
experiments we need to conduct and the type of 
measurements we need to take. It is also the hypothesis 
which mainly determines what type of statistical test is 
appropriate. As an example, if we want to investigate 
whether the bioimpedance of two types of tissue samples 
are significantly different, this means that we have to assess 
the difference between two groups of bioimpedance 
measurements from a number of tissue samples of each 
type, and that the appropriate statistical test will be a test 
for comparison of two means in the groups such as the 
Student’s t-test. We can also do a power analysis in order to 
estimate how many tissue samples we need in order to have 
a good chance of finding a difference if there actually is 
one. Hence, the planning of a study should begin with a 
clear hypothesis. The whole process from the planning of 
the study to the statistical analysis of the measurements is 
illustrated in figure 1.  

  

Fig.1: The steps from the formulation of a hypothesis to the 
testing of the hypothesis by statistical methods. 
 

1.2. How many subjects are needed? 
 
It is a good idea to know how many units (i.e. items or 
subjects) are needed in order to test our hypothesis. Unless 
we test all the units in a population, we are only testing a 
sample of the whole population. In order to make a general 
conclusion about the population, we need to show that the 
effect that we observed was not likely due to chance from 
random variation in our sample. If we choose too few units, 
we may end up with an inconclusive result and a worthless 
study, and if we choose too many, we are wasting resources 
(e.g. sacrificing more animals than needed). Hence, sample 
size consideration is of ethical relevance [2]. 

In hypothesis testing, we want to reduce the chances of 
two types of errors: incorrectly rejecting a true null 
hypothesis (Type I error), and the failure to reject a false 
null hypothesis (Type II error). The Type I error probability 
is determined by the α (i.e. 5% usually). With a given α, we 
can also calculate the beta (β), which is the probability of a 
type II error. As an example, let us say you want to 
replicate a pilot study you did on the bioimpedance of two 
materials, material A and B. You want to test whether they 
are different based on a t-test, but you are not sure what 
sample size (N) you need in order to test the hypothesis. 
Based on the pilot data, you can estimate how large 
difference between the materials you expect, and also how 

much variation there is within each material. With an 
expected difference in means of 10 Ohms and a standard 
deviation also of 10 Ohms as an example, N=5 (for each 
material) gives a beta of 71%, which is a too large chance 
of a Type II error. Increasing N to 10, we obtain a beta of 
44%, and with N=20 the β is down to 13%. The statistical 
power of the test is 1-beta, and can be viewed as the ability 
to correctly reject the null hypothesis when it is false. The 
power requirement in a study depends on the type of 
investigation, but a power >0.8 is often considered 
acceptable. 

The effect size is the relative magnitude of the effect we 
are investigating. When comparing groups, the effect size 
could for example be the difference in |Z| between the 
groups divided by the pooled standard deviation, or for 
testing associations the effect size could for instance be the 
coefficient of determination R2. It follows that smaller 
effect sizes require larger samples in order to be detectable 
and avoid a type II error. In the example above, the effect 
size was 1 (10 Ohms / 10 Ohms). If the effect size was 2, 
only N=6 would be required to obtain the same power as 
with N=20 for an effect size of 1. The minimum amount of 
information needed to do a sample size estimation for a 
given statistical test is: 

  
• Desired α (probability of incorrectly rejecting a true 

null hypothesis) 
• Desired β (probability of failing to reject a false null 

hypothesis) 
• Expected sample distribution (type of distribution and 

variance) 
• Expected magnitude of difference or association. 

 
Estimation of sample sizes is not an exact science, and 
often these inputs will be “a qualified guess”, even so it is 
still important to assess whether we need something like 10 
or 100 subjects/items. We already have decided our type of 
test based on the hypothesis, and our α will conventionally 
be set to 0.05 with a beta somewhere above 0.8. What is left 
for us to provide is the effect size. If this is not known, the 
first place to look is in similar studies. Perhaps other 
investigators have published data with similar 
measurements on a similar sample. If no previous data are 
available, conducting a pilot study can give a good 
indication of these values. Perhaps we gather information 
which suggests that the sample variance may be somewhere 
between 100 to 500 Ohms, and that the difference between 
means is between 1k to 2k Ohms. In such cases it is best to 
account for the worst case (variance = 500 Ohms and 
difference between means = 1k Ohm) in the sample size 
determination.  

In practice, the sample size calculation is not done by 
hand, but by computer programs (such as the free G*Power 
©) which lets you choose a statistical test, asks for the 
necessary inputs (i.e. α, β, variance and effect size), and 
gives you the minimum required sample size. They can also 
be used to determine the power of your test given the 
sample size, α, β and effect size. Because of all these 
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unknowns, it is a good idea to consult a biostatistician on 
these matters if possible. 

 
3.    Multiple variables and data reduction 

 
Often in bioimpedance measurements, we want to examine 
more than one bioimpedance variable per sample or 
measurement. Sometimes, we have limited knowledge 
beforehand on effects in bioimpedance in our study. In 
order to maximize the changes of a finding, we may acquire 
several bioimpedance parameters (i.e. |Z|, G, theta) at 
multiple frequencies from one measurement. Say this gives 
us a set of 100 variables for comparing two different tissue 
types, it is very probable that we will find a significant 
difference in at least one of the variables purely due to 
chance. It is possible to do adjustments for such multiple 
comparison tests by e.g.  the Bonferroni correction method 
[3,4], which adjusts the significance level threshold by 
dividing the single-comparison level by the number of 
multiple comparisons included in the analysis. For 
bioimpedance analysis, this approach is often insufficient 
due to the large number of comparisons. Unless the 
numbers of comparisons are few, a better approach is to 
reduce the number of variables by data reduction or model 
based approaches. Quite often, and especially for 
bioimpedance frequency sweeps, the data will be highly 
correlated and can be reduced into a small set of variables 
which account for most of the information in the 
measurements. A common method in the bioimpedance 
field is to assume that the electrical properties of the sample 
can be described by an electrical equivalent model (see 
chapter 8 in [5]) such as the Cole model, and to estimate the 
component values by fitting the measurement to the 
mathematical expression of the model. With a good 
agreement between the model and the measurement, this 
approach reduces the measurement into a few uncorrelated 
parameters which are easier to handle statistically. Data 
reduction can also be done without equivalent model 
assumptions. One such way to reduce the data is to 
computationally transform the data into a set of 
uncorrelated components using principal component 
analysis (PCA). The transformation works in the way that 
linear combinations of the data are used to construct 
components which explain as much as possible of the 
variance in the data, with the constraint that all components 
must be uncorrelated. The PCA may provide a data subset 
by which almost all the information (i.e. 99%) is accounted 
for by just a few components. The disadvantage of PCA 
compared to the model-based approach is that the 
transformation is a “black-box” and the principal 
components are meaningless with respect to what we are 
measuring. 
 
 
 
 
 

4.    Choice of statistical method 
 
After the data has been reduced to a practical set of 
parameters (if necessary), the next step is to perform a 
statistical analysis in order to test whether our null-
hypothesis can be rejected or not. The choice of statistical 
method is mainly determined by the hypothesis, but the 
measurements may also influence the selection of the most 
appropriate method. Figure 2 provides a flowchart for 
selection of statistical method based on the type of study.  
 
4.1. Comparing two groups 
 
Let us go back to the example of the alpha parameter of two 
tissue types, with the hypothesis that the alpha is different 
between the two tissue types. Our natural choice of test is a 
two-sample Student’s t-test, which is designed to test 
whether the means of two sets of data are different. If 
however, our hypothesis is also on the direction of the 
difference between the tissue types, such as “the alpha 
parameter of tissue A is larger than for tissue B”, the 
statistical testing must also include this direction. Imagine if 
we throw five coins, the probability of getting all heads or 
all tails is 0.03 (0.55), but twice (0.06) for getting either all 
heads or all tails. In the first hypothesis (one-sided), getting 
all heads would be statistically significant by p<0.05, but 
not for the second hypothesis (two-sided). When comparing 
two groups for one direction of the difference, the one-sided 
(also called one-tailed) t-test takes this into account. In 
medicine, the two-sided hypothesis and tests should be used 
unless there is a very good reason for doing otherwise, and 
if one-sided tests are used, the direction of the test must be 
specified in advance [6]. 

The t-test belongs to the family of parametric tests, 
which assume that our data follows a mathematical 
probability distribution, in this case the normal distribution, 
which is something we usually do not know before all the 
measurements are done. Our distribution of alpha values 
may be asymmetrical with an overweight of alphas close to 
one and fewer and fewer alphas towards zero. We then have 
two options, either to mathematically transform our data 
into a normal distribution, or use a type of statistical test 
which does not require such a distribution. The alternative 
type of test for unpaired data which do not satisfy an 
assumption about normal distribution is the Wilcoxon 
ranksum test (also called the Mann-Whitney U test), which 
is based on comparing the ranks of the values within the 
groups. This type of test does not rely on any parameter for 
describing the distribution of data (such as the standard 
deviation), and belongs to the non-parametric family of 
statistical tests, which handle different types of hypothesis 
testing, typically based on data ranking.  
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Fig.2: Flowchart for selection of statistical method based on the type of study. 
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In general, the parametric tests are a better choice if 
possible because of a higher statistical power. In 
bioimpedance analysis, we often do mathematical 
transformations of our measurements in order to interpret or 
graph them differently. When doing statistical analysis, we 
need to keep in mind that the transformations may also 
change the distribution of the data. For instance, when 
transforming a normally distributed set of |Z| measurements 
to |Y|, the distribution is likely to change into a non-normal 
one.  

In the previous example, the measurements came from 
independent samples. If we have pairs of tissue types with 
each pair coming from the same animal, we cannot consider 
the samples from the two tissue types independently, and 
we have to use statistical tests which account for the 
correlations within each pair, such as the paired t-test or the 
non-parametric Wilcoxon signed rank test. A typical 
situation where these tests are recommended is for testing 
the change in bioimpedance before versus after a treatment.  
 
4.2. Comparing more than two groups 
 
If we want to statistically compare more than two groups of 
measurements, another type of test is better suited - the 
analysis of variance (ANOVA). This test compares the 
variance within each group to the variance between the 
groups, and also overcomes the problem of multiple 
pairwise comparisons (as described in chapter 3). The 
ANOVA has the following assumptions: independence 
between groups, normal distribution and equal variances 
within the groups. For more detail on theory, testing and 
violations of these assumptions, see e.g. [7]. For non-
normal data, most statistical packages offer rank-based 
ANOVAs, and the ordinary ANOVA is also regarded as 
robust against violations of the normality assumption [8]. 
The one-way ANOVA, which is used for comparing more 
than two independent groups, first calculates an F-statistic 
(based on the ratio between between-group variability and 
within-group variability) which together with the degrees of 
freedom determines a p value for the null hypothesis that 
the data from all groups are drawn from populations with 
the same mean. Further on, the difference between each 
pairwise combination of the groups can be tested similar to 
the t-test but with correction for the multiple testing.  
 
4.3. Factor analysis 
 
The one-way ANOVA is useful when we study only one 
factor which groups the measurements (e.g. tissue type). If 
we for example want to study how electrode configuration 
in addition to tissue type affects the bioimpedance, we have 
a factorial design with two factors and may use the two-
way ANOVA. The output of this test gives us the statistics 
(F-statistic, p-value) which tell us whether each of the two 
factors have a significant effect on the bioimpedance. In 
addition, the two-way ANOVA can test whether there is a 
significant interaction between the two factors; the 

difference in bioimpedance among tissue types may depend 
on the electrode system. As a procedure for two or more 
factors, it is advised to first test for all possible interaction 
terms, and to continue with an ANOVA without these terms 
if none are found significant. If there are significant 
interaction terms, the main effects (e.g. the influence of 
tissue type and electrode system on bioimpedance) may 
essentially be rendered meaningless, since both effects will 
have to be qualified in reference to another factor. The most 
logical approach in this case is to do one-way ANOVAs for 
evaluating all levels of one factor across only one level of 
the other factor (also called simple effects). If one or more 
simple effects are significant, additional comparisons 
between specific groups within given factor levels can be 
conducted (for instance tissue type A vs tissue type B when 
using the four-electrode system). The advantages of the 
factorial design and the factorial ANOVA are that it allows 
the same set of hypotheses to be evaluated (at a comparable 
level of power) by using only a fraction of the subjects 
which would be required if separate experiments were 
conducted, and also the possibility to evaluate the 
interaction between the experimental conditions [9].  

In the same way as the unpaired or paired t-tests are 
suited for comparing independent and dependent groups 
respectively, there are also ANOVA methods which are 
suitable for dependent groups, the repeated measures 
ANOVAs. Consider the example of comparing the 
bioimpedance measurement from three different electrode 
positions. If all measurements are on different subjects, the 
one-way ANOVA is the appropriate test, but if you measure 
several times on each subject (with the different electrode 
positions), the one-way repeated measures ANOVA is the 
appropriate test. The repeated measures tests have a higher 
statistical power, and fewer subjects are needed with the 
repeated experimental design. Repeated measures ANOVA 
can also be done for factorial designs (e.g. two-way 
repeated measures ANOVA), and for non-parametric data 
(e.g. repeated measures ANOVA on ranks, Kruskal-Wallis 
test). However, some care should be taken when performing 
factorial ANOVA on ranks as the rank transform procedure 
may be erratic for certain designs [10].  

In factorial repeated measures design, the effect of time 
(or the repeated experimental condition) can be investigated 
by including it as a factor in the two-way repeated measures 
ANOVA. It is important to know that the ANOVA does not 
consider the order of the time-points, only the difference 
between them, and if we want to evaluate a trend or 
relationship, it is better to use a regression approach.  

In experiments, there may be other observable variables 
than the experimental factors, which have an influence on 
the dependent variable. This variable may be continuous, 
and therefore problematic to add as a factor in the design. In 
this case, the variable can be added as a covariate in the 
design. Let us use the example of measuring impedance in 
solutions during different chemical reactions. The 
temperature changes may be unknown and uncontrollable, 
but possibly influence the impedance. The temperature can 
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then not be added as a factor in the analysis, but as a 
covariate. The appropriate statistical method is the 
ANCOVA (analysis of covariance), which is a combination 
of ANOVA and regression. With this method, we will find 
out whether there is a significant difference between the 
impedance of the different chemical reactions when also 
controlling for the temperature effect. In some cases, we 
want to examine more than one dependent variable. If they 
are related, such as the |Z| and phase of the same 
measurement, both the dependent variables can be studied 
in the same test while controlling for the correlation 
between them by the MANOVA (multivariate analysis of 
variance). If the dependent variables are not correlated, 
separate ANOVAs are appropriate. The MANOVA assesses 
the effect of each factor on each of the dependent variables 
(with p-values for each case), and also the interactions both 
among the independent variables and among the dependent 
variables. The advantages of this method is that several 
dependent variables can be studied in one test which avoids 
the increased Type I error rate from multiple comparisons, 
the correlations between the dependent variables will be 
incorporated in the analysis, and the test may even find a 
significant result for the combined effect of all dependent 
variables when the effect on each of them are not strong 
enough. For adding covariates to the MANOVA, the 
appropriate test is the MANCOVA (multivariate analysis of 
covariance), which is the same analysis as the MANOVA, 
but adds control of one or more covariates that may 
influence the dependent variables. 

One type of test that incorporates all of the above (t-
test, ANOVA, ANCOVA, MANOVA and MANCOVA and 
also ordinary linear regression) is the general linear model 
(GLM). This method is included in several statistical 
software packages and is a convenient tool for analyzing 
many different types of data. 
 
4.4 Mixed models 
 
Until now, we have discussed group comparison or factor 
analysis with fixed effects. Fixed effects means that the 
levels of our independent variables will be the same (fixed) 
in any attempted replication of our experiment. We have 
chosen a certain selection of levels which are of interest, 
and do not attempt to generalize beyond these levels. As an 
example, let us consider a comparison of the impedance of 
electrode types. We could do a study where the aim is to 
compare a certain selection of electrode types with different 
characteristics, and electrode type would then be a fixed 
factor. We could also do a study where the aim is to assess 
whether the electrode type has an effect on the measured 
impedance in general. The electrode type would then be a 
random factor, and our sample of electrode types (levels) 
would be treated as a random selection of the overall 
population of possible electrode types/manufacturers. In the 
first case, our test result will be the explicit differences 
between the impedance of the selected electrode types, but 

for the second case the test result will be the general effect 
of electrode type on the impedance.  

In some cases, our experiment may include both fixed 
and random factors, and the analysis model is then called a 
mixed-effects model. Tremendous advances have been 
made over the last years in the methods for mixed model 
analysis, and the current tools available offer a lot of 
different features and advantages over other “traditional” 
methods. For instance, a mixed model analysis is not 
weakened by missing values in the same way as repeated 
ANOVA. The mixed model can also deal with hierarchies 
in our data. For instance, we may study samples of different 
electrode types from different producers, and have different 
types of electrodes from each of the different producers. In 
the statistical terms, we have two factors (electrode type and 
producer) where different levels of one factor do not occur 
at all levels of the other factor, which is called a nested (or 
hierarchical) design. A third advantage of the mixed model 
method is that our measurements do not need to be taken at 
the same time points. For instance if we are following the 
impedance of different materials during a time-dependent 
process, but are unable to measure at all materials 
simultaneously, we can add all measurements with their 
individual timestamp to the mixed model and examine the 
effects of both material type and time even though we only 
have one measurement per time point. To sum it up, mixed 
model analysis is recommended for repeated (with missing 
values) and/or nested data. The analysis can be performed 
in statistical packages such as R, SPSS, STATA and SAS. 
The procedure is more advanced compared to methods such 
as the ANOVA due to the number of choices and settings. 
Before embarking on the mixed model, it is advised to read 
up on the subject or consult a biostatistician.  
 
4.5 Association analysis 
 
Until now, we have been dealing with methods for 
investigating differences between groups and the effect that 
different factors have on these differences. Now we move 
over to the methods that assess associations between 
variables. The most basic case is testing for a linear 
relationship between two variables (also called bivariate 
association) by the Pearson Product-Moment correlation 
coefficient. The output of this test is the r statistic, which 
indicates the strength (0-1 in absolute value) and direction 
(positive or negative depending on the sign of r) of the 
relationship between the two variables. The r does not say 
anything about the causality or dependency of the 
relationship, r will be the same whether X was dependent on 
Y or Y was dependent on X, or if they were independent of 
each other but dependent on another factor. The r also does 
not say anything about the agreement between X and Y. 
You can get an r=1 (perfect correlation) with paired 
observations on completely different scales. This makes the 
r insufficient for testing agreement between two methods, 
but is useful for exploring associations between two 
variables under a linear assumption. Statistical inference (p-
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value and hypothesis test) on the correlation can be 
conducted (see e.g. eq 28.3 in Sheskin 2011). The squared r 
is also frequently used and is called the coefficient of 
determination. R2 is more convenient to interpret, especially 
for larger r, because it expresses the proportion of variance 
of one variable which can be accounted for by the variance 
of the other variable. For instance if we measure BMI and 
total body |Z| and get an r=0.5, then we can say that 25% of 
the variance in |Z| could be explained by the BMI.  

The Pearson Product-Moment correlation coefficient 
(and also the coefficient of determination) is based on an 
assumption of equal variance (in statistical terms called 
homoscedasticity). If we graph two variables against each 
other, and the scatter is roughly of the same size across the 
whole range, then the data is homoscedastic. In violation of 
this (called heteroscedasticity), the correlation will not be 
consistent across the full range of both variables. Different 
tests for homoscedasticity are available in most statistical 
software. Another pitfall of this method is that it is sensitive 
to outliers or extreme values in a way that they lead to over-
estimation of the correlation. Another matter is that a 
restriction of the range in either of the variables directly 
reduces the value of r. In general it is recommended to 
begin with plotting the variables against each other in order 
to investigate the relationship and these assumptions, and 
also provide these graphs together with the statistics in 
publication of the results (completely different graphs can 
correspond to the same r!). Graphing the variables also lets 
us know whether a linear relationship should be assumed 
not. Perhaps we see a quadratic or exponential relationship, 
and in this case we may simply transform one variable and 
use the linear methods for simplicity. If we do not want to 
consider the function of the relationship, but simply test 
whether there is a monotonic relationship (both variables 
increasing in the same or the opposite direction), we can 
apply the Spearman’s rank-order correlation. 
 
4.6 Regression methods 
 
The relationship between two variables can also be 
described mathematically by regression methods. Perhaps 
we have found a significant association between 
bioimpedance and total body water (TBW), and we want to 
find the function that expresses their relationship. The basic 
method is simple linear regression. It estimates the straight 
line that best fits with the variables plotted against each 
other, and provides the intercept and slope of this line. 
Using the intercept and slope values together with the 
bioimpedance measurements, we can make predictions 
about the TBW. The difference between the measured TBW 
and the predicted TBW is called the residuals. The residuals 
can be used for inspecting whether or not the selected 
model (in this case linear) is valid. A scatterplot of the 
residuals (in this case bioimpedance vs residuals) provides 
information on linearity, homoscedasticity, normality and 
independence of the error terms, which are all assumptions 
for doing regression analysis. If for instance we see that the 

distribution of points is asymmetrical around the x-axis 
(also called skewed), the normality assumption might be 
violated (the robust regression method is an alternative to 
the ordinary method using least squares, which can be 
appropriately used for non-normal distributions or outliers). 
From the residuals we also obtain a value for the error of 
the prediction, such as the root-mean square error (RMSE) 
which is the average of how close the regression line is to 
all of the points. Both the r, R2 and RMSE are measures for 
goodness of fit, but the RMSE is better at telling us how 
large an error is in terms of the quantity we are trying to 
predict. It is important to note that the RMSE or similar 
error values represent the error in the sample of 
measurements we have analyzed, and not the whole 
population.  
 

Perhaps we have found that the RMSE of our TBW 
prediction based on bioimpedance was rather large, and that 
we need to reduce this error if we want to develop a TBW 
device. We might know of other factors which are also 
related to TBW, or factors which give changes in 
bioimpedance but are not related to TBW (confounding 
variables). If these variables are independent, we may be 
able to reduce the prediction error by including them as 
predictor variables in a multiple linear regression. For 
instance we may add BMI and Age together with the 
assumption that they will correct for the discrepancies in the 
estimation of TBW from bioimpedance. The multiple 
regression gives us an R2, and the same error quantities such 
as the RMSE. Again, these statistics represent the sample 
and not the population, and the results from a multiple 
regression are optimized for the sample it is based on. The 
chance of spurious inflation of the statistics and a type-I 
error increases as more predictor variables are added, and it 
has been recommended that the number of data points 
should be at least 10 times the number of predictor variables 
[11, page 1456]. It is advised to keep the number of 
predictor variables low (5 or less), and that these variables 
are close to uncorrelated, in order to find the simplest 
possible predictive model. Including all points of a 
bioimpedance frequency sweep is an example of a bad 
prediction set for multiple regression.  

Selection of the prediction variables may be done based 
on preexisting empirical data or theory, but there are also 
semi-automatic methods which can assist in sifting out 
redundant predictors. One of these methods is called 
stepwise regression, which suggests a model based on 
successively adding or removing variables based on the t-
statistics of their estimated coefficients. This procedure can 
either be forward or backward. In the forward procedure, 
variables are added one by one based on the degree to 
which they produce a significant increase in prediction until 
the addition of more variables no longer make significant 
contributions. A similar procedure is employed for 
backward selection, but beginning with a model including 
all predictor variables. In general, the forward procedure is 
best suited for finding few significant predictors among 
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many candidates, while the backward procedure is best 
suited for elimination of few variables for fine-tuning of a 
pre-selected model. Still, there is always a chance of over-
fitting (obtaining a poor model with spuriously inflated 
statistics), and it is always recommended that the resulting 
regression model is validated (more on this in chapter 5).  
For data as e.g. bioimpedance frequency sweeps, when we 
may have many predictor variables compared to the number 
of observations, and/or highly correlated predictor 
variables, there are other type of regression methods which 
could be more suitable such as principal components 
regression (PCR) and partial least squares regression 
(PLS). Both methods employ transformations of the initial 
set of predictor variables by constructing linear 
combinations of these into a new set of orthogonal 
(independent) components. In PCR, these components, 
which may explain most of the variance of the predictor 
variables, are regressed against the dependent variable. 
Often the first few principal components explain most 
(typically more than 90%) of the variance, and these 
components are used in the PCR model. However, this 
selection of regression set is based on including the largest 
variance of the predictor variables, not the independent 
variable. The PLS deals with this problem by finding the 
components of the predictor variable set which are most 
relevant to the dependent variable (by a simultaneous 
decomposition of both the predictor variables and the 
dependent variable with the constraint of explaining as 
much as possible of the covariance between them). 
Selecting how many components to include is a matter for 
both PCR and PLS and has for long been subject for 
discussion in the statistical field [12]. In general, some kind 
of cross-validation (see chapter 5.2) should be used in order 
to compare the predictive ability as a function of the 
number of components included.  
 
4.7 Classification methods 
 
Until now, we have been dealing with predictions of a 
continuous outcome as the dependent variable. Suppose we 
have investigated bioimpedance with respect to tissue type 
and found a significant difference between two types of 
tissue, and now we want to test how well bioimpedance 
could be used to discriminate between these tissue types. 
Logistic regression is such a method, which finds an 
optimal model based on the predictors and calculates the 
percentage of correct classification for each of the 
categories and for the overall classification. For more than 
two outcomes, the method is referred to as multinomial 
logistic regression. The independent variables can be 
continuous and real-valued, binary, categorical or a 
combination of these types. The R2 statistic (calculated as in 
linear regression) gives a misleading indication of the 
goodness of fit for logistic regression, and several 
alternative analogues have been suggested (see e.g. ch 9.5.1. 
in [13]). In the case that the outcome is ordinal (i.e. good, 
better, best), another variant called ordered logistic 

regression is suitable. The logistic regression methods do 
not require normal distribution of the predictor variables 
[14, p.575].  

Another classification method is the discriminant 
function analysis, which instead of regression as the 
mathematical framework is based on the same principle as 
the MANOVA. While the MANOVA deals with whether a 
number of groups differ significantly with respect to 
differences on a number of dependent variables, the 
discriminant function analysis deals with whether a linear 
combination of predictor variables can differentiate between 
the groups. The assumptions are normality of the predictor 
variables, homoscedasticity, linear relationships between all 
predictor variables within each group and absence of 
multicollinearity and outliers in the predictor variables 
(same as for MANOVA) [9]. The discriminant function 
analysis is in general reasonably robust against violations of 
these assumptions, especially for large samples and equal 
number of observations per group [9].  

Other classification methods used in biomedical 
research include artificial neural networks (ANN), decision 
trees, support-vector machines (SVM), naïve Bayes 
classifier and k-nearest neighbors. These methods are 
important approaches in the field of machine learning, 
where algorithms are being developed by learning from 
sample data in order to classify unseen data. These methods 
are increasingly being adopted in the biomedical 
engineering fields, including bioimpedance. 

ANN is a classification method inspired by the 
workings of the central nervous system. By constructing a 
network of interconnected nodes (“neurons”) organized in 
layers, a classification algorithm is developed (also called 
trained) by optimizing the weights of each node-to-node 
connection, representing the connection strength between 
them. As new inputs of selected features are fed through the 
network, the output layer at the end of the network will 
provide the suggested classification. 

Decision trees are based on an algorithm for splitting 
the input data in a way that maximizes the separation of the 
data, resulting in a tree-like structure [15]. There are 
algorithms that can suggest the structure of the tree such as 
the Hunt’s algorithm, but these algorithms usually employ a 
greedy strategy that grows a tree by making a series of 
locally optimum decisions. Another drawback with the 
method is that continuous variables are implicitly 
discretized by the splitting process, losing information 
along the way [16]. 

SVM has become popular due to the performance the 
method has demonstrated in problems such as handwriting 
recognition. The principle is based on representing the data 
as points in space, and then finding an optimal surface 
called a hyperplane, which maximizes the margin between 
the classes. If the classes are not linearly separable in the 
original data space, the data is mapped into a much higher 
dimensional space (called feature space) by employing a 
mathematical projection called the kernel trick, where a new 
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hyperplane is found. This makes the SVM also efficient for 
non-linear classification.  

Naïve Bayes classification uses the Bayes’ theorem 
together with a “naïve” independence assumption to 
calculate probabilities of class membership. Predicting class 
membership can be done directly using Bayes’ theorem 
with only one feature and the prior probability. As an 
example, consider we are investigating bioimpedance as a 
marker for wound healing. Suppose we gathered 100 
measurements after wounding in an experiment where 50 of 
the wounds healed by themselves. Among the wounds that 
healed, the impedance increased during the healing process 
in 35 of the 50 wounds, and in 5 out of the 50 wounds that 
did not heal. We can now calculate the conditional 
probability of a wound belonging to the “healing” class 
based on whether or not the impedance increases using the 
Bayes’ Theorem, giving us 88% if impedance increases and 
25% if the impedance does not increase. When including 
several conditional features, the mathematics would 
normally become problematic due to the relations between 
the features, but the naïve Bayes classifier assumes that all 
the features are independent which allows for easy 
computation.  

The k-Nearest Neighbors (kNN) algorithm predicts the 
class of a point in a feature space based on the known 
attributes of the neighboring k number of points in this 
space. For instance, say we want to predict tissue status 
based on a set of independent bioimpedance features, such 
as the Cole parameters. Using a dataset of measurements 
with known tissue states, the kNN algorithm will first 
construct class-labeled vectors in a multidimensional space 
with one dimension for each feature. Class prediction of a 
new measurement will then be done based on the majority 
of class-memberships of the k number of nearest neighbors 
based on the distance (usually Euclidian) to the new point.  

These classification methods use different principles 
and rules for learning and prediction of class membership, 
but will usually produce a comparable result. Some 
comparisons of the methods have been given [i.e. 17, 18]. 
Although the modern methods such as SVM have 
demonstrated very good performance, the drawback is that 
the model becomes an incomprehensible “black-box” which 
removes the explanatory information provided by e.g. a 
logistic regression model. However, classification 
performance usually outweighs the need for a 
comprehensible model. Principal component analysis 
(PCA) has been used for classification based on 
bioimpedance measurements. Technically, PCA is not a 
method for classification but rather a method of data 
reduction, more suitable as a parameterization step before 
the classification analysis. 
 
1. Validation methods 

 
Until now, we have been dealing with exploratory methods, 
where the bioimpedance measurements have been used to 
explore differences between groups of measurement, effects 

of different factors or associations between bioimpedance 
and other parameters. We have also been dealing with 
predictions of either continuous or discrete outcomes, but 
not the validation1 of these. If we have come one step 
further and developed a potentially useful method based on 
our research, we need other types of testing and statistical 
methods to validate its performance. These statistics are 
very important, as they will mainly determine how good the 
developed method is, together with for instance availability, 
usability, price etc. 
 
5.1. Evaluating performance 
 
For bioimpedance measurements, the performance is in 
most cases determined by the agreement between a 
developed bioimpedance parameter and a reference (“gold 
standard”). For example, if we develop a probe to detect 
breast cancer, we need to find out how often it correctly 
detects cancerous tissue (the sensitivity) and how often it 
correctly detects healthy tissue (the specificity). These two 
statistics are what the potential users will mainly look for 
when considering the method. Our approach will then be as 
follows. We have already explored the difference in 
bioimpedance between healthy and cancerous tissue by the 
procedure shown in figure 1, and based on our previous 
results we have also selected which bioimpedance 
parameters and algorithm we will use for discriminating 
between the two tissue types. We now do a new study using 
the selected method on a new sample of subjects. The 
sample size should be adequate in order to obtain an 
estimate with acceptable precision, and can be estimated 
based on the prevalence and the anticipated sensitivity and 
specificity [20, 21]. Say we did 500 measurements, among 
which 100 were confirmed positive by a reference 
measurement. Among these 100, our method detected 85 as 
positive, and among the 400 negative, our method detected 
350 as negative. We can now calculate the sensitivity and 
specificity by: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                           (1) 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                           (2) 

 
Where TP is the number of true positives (85), FN is the 
number of false negatives (100-85=15), TN is the number 
of true negatives (350) and FP is the number of false 
positives (400-350=50). Our sensitivity and specificity then 
becomes 85% and 87.5% respectively. It is also often of 
interest to see how the sensitivity and specificity depends on 
the decision threshold (i.e. the level of our bioimpedance 
parameter which separates healthy and cancerous tissue). 
The ROC (receiver operating characteristic) curve is 

                                                      
1 Provision of objective evidence that a given item fulfils specified 
requirements, where the specified requirements are adequate for an 
intended use [19] 
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constructed by plotting the sensitivity (the true positive rate) 
against 1-specificity (the false positive rate) for the whole 
range of decision thresholds. This plot allows us to see what 
kind of sensitivity and specificity we may obtain according 
to what we consider important with respect to the 
application. The area under the curve (AOC) is usually 
reported together with the ROC curve as a measure of total 
classification performance. 

A very relevant case in the field of bioimpedance is the 
validation of an estimate of a continuous physiological 
parameter, where we want to find out how well our estimate 
agrees with a reference measurement of this parameter. 
Among the methods used for evaluating agreement in 
medical instruments measuring continuous variables, the 
Bland-Altman method [22] is the most popular [23]. By this 
method, a plot is constructed with the means of all 
measurement pairs (estimate and reference pairs) on the x-
axis and the difference between them on the y-axis. In 
addition to this, the mean difference line is plotted along 
with two lines representing the 95% limits of agreement 
(LOA), given by the mean difference ± 1.96 standard 
deviation of the difference. By this simple method, the 
reader can easily see how much the two measuring methods 
differ according to the magnitude of the measurement, and 
also inspect for systematic differences such as bias or 
trends. The LOA tell us that most (95%) of the 
measurements had a difference within the upper and lower 
LOA. It is not possible to give any general criterion for an 
acceptable LOA because it depends on the intended use of 
the proposed method. As an example, limits of agreement of 
up to ±30% have been recommended as acceptable for 
introducing new techniques within cardiac output 
measurements [24]. It is important to note that the 
correlation coefficients or the coefficient of determination is 
not sufficient for reporting agreement, as two variables may 
have a perfect linear relationship but at the same time be 
very different in magnitude. Another type of correlation 
which avoids this problem is the intraclass correlation 
coefficient (ICC). Although it was originally devised to 
assess reliability (see chapter 5), it has also been used to 
assess agreement [23]. The appropriateness for this use of 
the ICC has been criticized [25] and considered doubtful 
[23], but also regarded as the best traditional approach for 
assessing agreement [26].  
 
5.2. Cross-validation 
 
Models should always be validated in order to avoid 
overfitting and inflated performance results. When a 
predictive model, such as a regression model, is developed 
and tested based on the same sample of measurements, 
there is a chance that the model parameters are optimized in 
a way that fits better with the sample than the population it 
comes from and produces an overoptimistic result. This is 
more relevant the more complex (i.e. number of 
independent variables) the model is. Therefore, the model 
should always be tested against an independent sample in 

order to see how well the model will generalize and perform 
in practice. The model can be validated by replicating the 
results on one or more independent samples from the same 
population, but in most cases it is more practical to split the 
data in one part which is used to develop the model 
parameters (the training sample) and use the remaining data 
(the validation sample) to test the performance of the 
model. The validation data can then play the role of “new 
data” as long as the data are independent and identically 
distributed [27]. This is called the hold-out method [28] and 
is performed by splitting the data in a training sample and a 
validation sample with e.g. 2/3 for training and 1/3 for 
validation. The training sample is used to fit the model 
parameters against the independent variable, and the model 
along with its fitted parameters is then used to predict the 
independent variable in the validation sample, based on the 
predictor variables in the validation sample. A large 
difference between the results of training and validation is 
an indication that the model is wrong. Whereas one such 
split yields a validation estimate, averaging over several 
splits is called cross-validation [29]. Cross-validation 
overcomes the risk of a misleading performance (i.e. 
accuracy, sensitivity, specificity) estimate due to an 
“unfortunate” split in the hold-out method. There are 
several procedures which can be employed for cross-
validation, among these the most popular are: (See [27] for 
a comprehensive list of cross-validation procedures): 

Random subsampling. The data is split by random 
selection of data points without replacement into training 
and validation samples. The model is then fit to the training 
sample and the performance of the model is evaluated on 
the validation sample. This is repeated a number of times, 
and the total performance is found by averaging the 
performance of all iterations. This process is similar to the 
hold-out method and is also referred to as repeated hold-out. 
A drawback of this method is that different validation sets 
may overlap. 

k-Fold Cross-Validation. The data is first divided into k 
(e.g. 10) parts as evenly as possible. Each part is used in 
turn as a validation sample and the remaining for training. 
The performance results are then averaged from the k runs 
to provide an overall estimate. 

The leave-one-out method. Each data-point is 
successively “left out” from the sample and used for 
validation. The performance is calculated for the left-out 
data point based on the fitted model obtained from the 
remaining data. The average of all iterations gives an 
estimate of the overall performance. This method makes 
maximum use of the data, but is also computationally 
expensive because the number of iterations is the same as 
the number of data points.  
  
5.3 Concepts of performance 
 
There are several terms which are important in validating a 
new measurement method. A list of the most relevant 
aspects of validation is given in table 1, along with a 
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definition of each term and how it is usually reported. The 
definitions of the terms vary among different fields and 
standards, sometimes giving an inconsistent meaning. The 
table is an attempt at giving an unambiguous overview of 
the terms based on the most common uses.  

The concept of error in a measurement is quite 
straightforward, and is the difference between the measured 
value and a reference value. If the error in replicate 
measurements remains constant or varies in a predictable 
manner, the error is referred to as a systematic measurement 
error. If the error varies in an unpredictable manner, it is 
referred to as random measurement error. The 
measurement error can be a combination of the two. 
The term agreement can be regarded as a general term for 
the degree to which the measurements are identical (either 
in nominal, ordinal or continuous variables) and it is of 
main interest in method comparison studies.  

Accuracy is the closeness of agreement between the 
result of a measurement and a true value, and depends on 
both trueness and precision. The difference between 
trueness and precision is easiest explained through the 
example of throwing darts. Trueness is high if the darts are 
centered around the middle, but low if they are all on one 
side of the board (bias), regardless of how much they are 
spread. Precision is high if they are close and low if they are 
spread far apart, regardless of the center they are spread 
around. Precision is further divided into repeatability and 
reproducibility according to the measurement condition. 
When new measurements are taken with the same setup by 
the same operator on the same items/subjects (i.e. 
replicated), the repeatability of the method is tested. When 
new measurements are taken with the same method on the 
same items/subjects but with different devices and 
operators, the reproducibility is tested. Repeatability can be 
thought of as the minimum variability between results, and 
reproducibility the maximum variability between the 
results. With measurement of thoracic bioimpedance as an 
example, the repeatability of the method can be assessed by 
replicating the measurement by the same operator using the 
same equipment (i.e. device and electrodes) on the same 
subjects, with measurements taken in quick succession such 
as on the same day. When clinical implementation is 
considered, it is also important to know how large this 
variation becomes under realistic conditions. Factors such 
as electrode positioning (operator related), calibration 
(device-related) and ambient humidity (laboratory-related) 
may cause variations in the measurement. The 
reproducibility of the method can then be assessed by 
performing measurements on the same subjects at two or 
more different laboratories having different operators and 
equipment (but of the same type), providing a realistic 
estimate of the precision. Specific reproducibility, such as 
inter-electrode reproducibility, can be assessed for the 
factors which influence the measurement, telling us how 
these factors influence the measurement precision.  

Agreement and reliability are two distinct concepts in 
the medical literature [30, 31, 32]. While agreement is the 

degree to which scores or ratings are identical, reliability is 
the ability of a measuring device to differentiate among 
subjects or objects [31]. Agreement concerns the 
measurement error while reliability relates the measurement 
error to the variability between the subjects or items which 
are tested [30]. Reliability is assessed during certain 
conditions such as different equipment or users (inter-rater 
reliability) or with the same equipment and users (intra-rater 
or test-retest reliability). As an example, if we test our 
impedance measurement system against a set of calibration 
resistors once each month, and each time measure a 10% 
positive offset, the system has a low agreement (and 
accuracy), but a high test-retest reliability. Given these 
definitions, the test-retest reliability may seem to be the 
same as the repeatability of a measurement, but we make a 
distinction here. Repeatability is assessed through repeated 
measurements on identical subjects/items within a short 
time relative to any changes in the property being measured, 
whereas test-retest reliability is assessed from 
measurements taken at different occasions with the same 
conditions, and allowing changes in the property being 
measured. The same goes for reproducibility vs inter-rater 
reliability in that reproducibility is assessed using identical 
test items under different conditions (which is the source of 
variation) while inter-rater reliability also involves testing 
under different conditions, but in addition allows changes in 
the property being measured. This also implies that 
precision and reliability are two different concepts.  

An advantage of using reliability to compare 
measurement methods is that it can be used to compare 
methods when their measurements are given on different 
scales or metrics [32]. For continuous variables, reliability 
is usually determined by the ICC. The ICC is a ratio of 
variances derived from ANOVA, with a maximum value of 
1.0, indicating perfect reliability. There are different types 
of the ICC, including one- or two-way model, fixed or 
random-effect model, and single or average measures (see 
[33] for more on selection), and the type should be reported 
in a reliability study [34]. For assessing reliability in 
categorical data, kappa statistics such as Cohen’s kappa 
provide useful information [31]. Instead of simply taking 
the percentage of equal decisions relative to the total 
number of cases, Cohen’s kappa provides a measure of 
association which is corrected for equal decisions due to 
chance.  

Which of these measures to report should be chosen 
based on how the measurements are to be used in the future. 
The same goes for the importance of the measurement 
performance. A certain degree of measurement error may be 
acceptable if measurements are to be used as an outcome in 
a comparative study such as a clinical trial, but the same 
errors may be unacceptably large in individual patient 
management such as screening or risk prediction [32]. For 
some applications, there are specific ways of reporting 
performance which have become standard, such as the 
Clarke-Error Grid together with MARD (Mean absolute 
relative deviation) for blood glucose measurement.
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Table 1. List of important terms in the validation of new measurement technology along with the most usual and recommended ways of reporting. 1There are 
numerous different definitions in the literature, which can be inconsistent and confusing. These definitions provide one version with the aim of reducing 
ambiguity. 2Accuracy has previously been defined as the same as trueness only, but with ISO 5725-1 [37], and reflected in the JCGM 200:2012 [19], the 
definition of accuracy has for the most changed to include both trueness and precision as given here. The old definition is still in use in some areas. 
Term Definition1 Reported as 
Measurement error Measured quantity value minus a reference quantity 

value [19] 
 
Systematic measurement error: Component of 
measurement error that in replicate measurements 
remains constant or varies in a predictable manner 
[19]  
 
Random measurement error: Component of 
measurement error that in replicate measurements 
varies in an unpredictable manner [19] 

Quantity on the same scale as the measurement 
scale, relative error, percentwise error, mean 
square error, root mean square error. 
 
Systematic measurement error: Bias 
 
Random measurement error: Standard deviation, 
variance, coefficient of variation. 

Sensitivity The sensitivity of a clinical test refers to the ability 
of the test to correctly identify those patients with 
the disease. [36]. 

Eq. (1) 
 
A part of the ROC curve which shows the 
relation between sensitivity, specificity and the 
detection threshold. 

Specificity The specificity of a clinical test refers to the ability 
of the test to correctly identify those patients 
without the disease. [36] 

Eq. (2) 
 
A part of the ROC curve which shows the 
relation between sensitivity, specificity and the 
detection threshold. 

Agreement The degree to which scores or ratings are identical 
[31] 

Continuous: Bland-Altman plot 
 
Discrete: Percentage agreement 

Trueness Closeness of agreement between the average value 
obtained from a large series of results of 
measurement and a true value [37].  

Bias (i.e. the difference between the mean of the 
measurements and the true value) 

Precision Closeness of agreement between independent 
results of measurements obtained under stipulated 
conditions [37].  

Standard deviation, coefficient of variation 

Repeatability Precision determined under conditions where 
independent test results are obtained with the same 
method on identical test items in the same 
laboratory by the same operator using the same 
equipment within short intervals of time [37] 

Within-subject standard deviation [38] 
 
Repeatability coefficient [38] 
 

Reproducibility Precision determined under conditions where test 
results are obtained with the same method on 
identical test items in different laboratories with 
different operators using different equipment [37] 

Standard deviation, coefficient of variation 

Accuracy2 Closeness of agreement between the result of a 
measurement and a true value (both trueness and 
precision) [37] 
Measurement accuracy: Closeness of agreement 
between a measured quantity and a true quantity 
value of a measurand [19] 

Bias (trueness) and standard deviation/ 
coefficient of variation (precision) 
 
Diagnostic accuracy:  
Sensitivity and specificity 
 
Sensitivity and specificity corrected for 
prevalence as: 
(sensitivity)(prevalence)+(specificity)(1-
prevalence) [39] 

Reliability Ratio of variability between subjects or objects to 
the total variability of all measurements in the 
sample [31] 

Intraclass correlation coefficient  
 
Kappa statistics (categorical data) 
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At last, it is important to also mention the concept of 
validity, originating from psychometrics and addresses the 
inference of truth of a set of statements [35]. A study may 
provide perfect test results on accuracy, but if the 
experiments are not testing what it is supposed to, the 
results are not valid. For instance, testing the agreement 
between a new method and an existing method with barely 
acceptable clinical accuracy may provide a good 
agreement between the two, but the results are not valid 
with respect to the accuracy of the new method. Validity is 
also used to describe the same concept as trueness within 
psychometrics. 
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