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Abstract 
Advancement of wireless technology leads to some developments 
in current wireless electroencephalography.  Through improving 
the transmission method of brainwaves, it would be possible to 
bring more convenience for the patients in need and give this 
opportunity to others for discovering other aspects of the amazing 
brainwave. What has been proposed in this study is a new type of 
adjustable backward quantization method which exploits the 
nature of the brainwave signal. This method is based on the nature 
of the captured brainwave and its quantization boundary changes 
based on the amplitude of each EEG captured signal. The 
proposed quantization scheme has been analyzed with uniform 
and Gaussian distribution of quantization level. Consequently, the 
Backward Gaussian Quantization with Adjustable Boundary and 
two Word Memories beside the Backward Uniform Quantization 
with Adjustable Boundary and two Word Memories are 
introduced by this experiment. In addition, the performance of 
wireless transmission system and the proposed quantizer’s 
efficiency for very low frequency (up to 100 Hz) and amplitude 
EEG signal have been noticed. With doing so, we simulated the 
transmitter and receiver by MATLAB® software. To model the 
medium, channel was assumed as Additive White Gaussian Noise 
(AWGN). Meanwhile analysis is done for the whole wireless 
system performance in terms of transmission range, compared 
with current available wireless transmission systems on the 
market. It should be noticed that the transmission range of the 
proposed wireless transmission system is compared to the 
transmission range of current wireless EEG systems when there is 
no obstacle between transmitter and receiver. Furthermore, some 
relevant parameters to evaluate the quality of the proposed 
quantization method were examined. To sum up, the proposed 
quantization schemes show considerable performance in terms of 
Quantization Rate for constant MSQE and SQNR in comparison 
with Uniform Quantization method and the achieved transmission 
range of our wireless system by using this method is higher than 
available wireless EEG systems on market. 
 
Keywords: Wireless electroencephalogram, adjustable backward 
quantization, brainwave. 
 
 
Introduction 
 
The electroencephalogram, better known as EEG, has the 
ability to record the activity that takes place in the brain 
from the brain scalp. Hans Berger (1929) recorded the first 
brain activity based on studies carried out on animals as 
early as 1870. Typically a massive recording device has 
been used in different electroencephalography (EEG) 

applications. It is connected to the patients via leads and 
these patients are tied to their beds or seats. With the 
revolution in wireless telecommunication and manu-
facturing technology, the invention of the mobile electronic 
device made its debut in the market. The presence of the 
current wireless communication that has taken over old 
wired solutions is presented here in the EEG recorders. 
Moreover, the process of monitoring the brains’ activities 
wirelessly is not only convenient but also opens up the 
possibility of measuring the brain activity of moving 
subjects [1, 24].The recorded waveforms reflect the activity 
that occurs at the cortex, the surface of the brain, and are 
said to be influenced by the electrical activity from the 
brain structures located beneath the cortex.  
 
EEG applications 
Generally EEG signal application is divided into three 
major groups: medical purposes [2]; biometric purposes [3, 
20]; and entertainment purposes [2, 20]. 

In wireless EEG systems, the efficiency of using 
brainwaves for a specific purpose is strictly dependent on 
the performance of the wireless system. Undoubtedly, 
wireless communication gives us more capabilities to 
utilize EEG signals. However, a corresponding increase in 
the barriers for transmitting EEG occurs. In the next part, 
we will briefly discuss existing problems in the current 
wireless EEG systems [1, 21, 23]. 

 
Existing problems in current EEG wireless systems 
While the design of wireless systems depends on the 
intended application of EEG [4, 22], the performance of 
current wireless EEG systems will be significantly 
enhanced if some telecommunication design parameters are 
considered. These parameters include: 

1. Transmission range: Most of the current wireless EEG 
systems suffer from low transmission range, usually 
less than a few hundred meters. A common method for 
incrementing the transmission range is increasing 
power of the output signal which leads to more power 
consumption (5, 23). 

2. Output bit rate limitation: According to the bandwidth 
characteristics of the EEG signal and the Shannon 
channel capacity formula, there is a limitation for 
transmitting digital output. The output bit rate of the 
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transmitter should not overstep Shannon thresholds. 
Regarding this threshold, when the bandwidth is 
constant for a higher bit rate, a higher signal to noise 
ratio is required [6, 22, 23].  

3. Power consumption: Generally, wireless EEG systems 
use headsets instead of massive wires. This headset 
should be able to work with rechargeable batteries, thus 
requiring the design of wireless EEG systems to 
consider battery life. Since the power consumption of 
the components determines the life time of batteries, it 
is better to use techniques and devices that reduce 
power consumption without affecting the performance 
of a wireless system [7, 22].  

4. Inaccuracy of received signals: When the previous 
limitations (stated in the previous paragraphs), are 
forced in the design of a wireless EEG system, one of 
the solutions is to reduce the number of bits for 
presenting each sample. By reducing the number of bits 
per sample the power consumption decreases. 
Conversely, when converting the digitalized EEG to 
analog form at the receiver, an egregious difference 
between transmitted EEG and received signal is 
observed [8, 21, 22]. 

 
These parameters should be primary considerations in the 
design of all wireless EEG systems. In contemporary 
wireless systems these parameters are strictly related to 
each other. For example, increasing the transmission range 
and output bit rate of the transmitter leads to increasing 
power consumption. Reduction of the battery power leads 
to a decreased transmission range. It is impossible to satisfy 
all the desired states in design of wireless systems perfectly. 
So there is trade-off depending on the design of the system 
[5-8, 21-23]. 
 
Motivation of the study 
EEG signals contain frequency components that are 
typically less than 100Hz and amplitudes do not exceed 
±100 µV. Since EEG signals have such a low frequency, 
signal difference between two consecutive samples’ 
amplitude would not go very far. In this project we design a 
wireless EEG transceiver to leverage this fact. By 
anticipating the next possible EEG sample interval it would 
be possible to develop a quantization method for EEG as a 
part of a telecommunication system. 

In this project, the main priority was to enhance a 
conventional telecommunication system by advanced 
wireless technology. Telecommunication parameters have 
been used to evaluate performance of this project plus 
relevant parameters to evaluate performance of the 
proposed quantizer scheme. SNR is one of the most well-
known parameters which are invoked for evaluating 
different approaches such as EEG at various stages 
(capturing and transmission) [27]. 
 

Current method of scalar quantization 
 
In this section we briefly introduce some methods of scalar 
quantization and explain the strengths and weaknesses of 
these methods when we are dealing with very low 
frequency and low amplitude. 

Generally scalar quantization can be divided into three 
major groups: uniform quantization, non-uniform 
quantization, and entropy-code quantization. Each of these 
groups can also be further subdivided into more groups [9]. 
 
Uniform quantization 
A uniform quantizer is the simplest type of quantizer in 
which quantization intervals have an equal step size, except 
perhaps for the outer intervals. In other words, the decision 
boundaries are uniformly spaced. Reconstructed values also 
have equal space when decision boundaries are even. The 
constant spacing between decision boundaries is known as 
the step size and is here denoted by Δ.  

Suppose we want to model M-level uniform quantizer 
for a source where its distribution is uniform within interval 
[-Xmax, Xmax]. So, the step size Δ is given by 
 

Δ = 2Xmax/ M ,   (1) 
 

where M represents the number of levels and Xmax shows 
maximum of absolute values of the input source. The 
distortion in this case becomes: 
 

σq2 = 2 ∑ � �� � ����
�

��
������

���/�
��� ��² �

����� �� (2) 

 
By calculating this integral, we find that the MSQE is 
Δ2/12 [9]. 

In the cases that use a fixed length code and each code 
word is presented by N bits, the number of code words or 
the number decision points, M, is 2N. The SNQR (signal to 
quantization noise ratio) is calculated by: 

 
SNQR(dB) = 6.02·N (dB) (3) 

 
According to Eq. (4) for low amplitude signals, the 
weaknesses of uniform quantization on digitalizing of EEG 
are much higher than for high amplitude signal. By using 
this method there is a high amount of distortion for low 
amplitude samples.  

SNQR = 3M 2
2

2

ˆ
)(

pm
tm

 
 

(4) 
 

Eq. (4) shows that SNQR for a low amplitude signal is 
lower than for a high amplitude signal. According to this 
Eq.(4), )(2 tm  shows the mean squared value of the signal, 
which is near to zero, and 2ˆ pm  shows the squared of the 

maximum sample value which can be up to 100 µV. 
Therefore, the effect of quantization noise on such EEG 
signals should be noticeable [10]. However, though 
simplicity of a uniform quantizer is desired, many sources 
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have a non-uniform distribution. In these cases, even if the 
input sources are bordered, dividing the maximum range of 
the input source variation into the number of quantization 
levels and assign a code word to each of them does not 
produce good results [9]. In fact, EEG signals tend to be 
such a non-uniform distribution with low amplitudes. Using 
this scheme for quantization of brainwave signals, one 
would face a mismatch between source distribution and the 
distribution of quantization level. The discussed problem 
leads to an increase in the amount of MSQE and to a 
decrease in the value of SQNR in quantization systems [9, 
10]. 

Two main approaches exist for adapting the quantizer 
parameters: the first is off-line, or forward adaptive, and the 
second is on-line or backward adaptive. In the forward 
adaptive quantization method, the output of the source is 
divided into several blocks of data. All blocks are analyzed 
individually before quantization, and the quantizer 
parameters are set accordingly. Then the settings of the 
quantizer are transmitted to the target receiver as side 
information. In the backward adaptive quantization, the 
adaptation is accomplished based on the previous sample or 
the current quantizer output. This information is available 
on both transmitter and receiver side and there is no need 
for side information transmission [11]. 

The first approach for adapting the quantizer’s variance 
to changes in input signal variance forces the use of a delay 
since it is needed for processing the block of data. The 
attachment of side information with the transmitted signal 
also needs synchronization between transmitter and 
receiver. The synchronization leads to increased receiver 
complexity. The dimension of the block of processed data 
also influences a number of other problems.  For example if 
the size of the block of processed data is too large, then the 
matching process may not capture the variations that 
happen in the input signal statistics. Furthermore, the larger 
size of the block of data means more delay, which would 
not be acceptable in most applications. On the other hand, a 
smaller size of block of data means that one has to transmit 
the side information more often, which sequentially leads to 
an increased amount of overhead per sample. The size of 
the block of data is a trade-off between the loss of accuracy 
because of negative effect of large block sizes on variance 
estimation, and increment in the required side information 
by small block sizes. Furthermore, in this approach we 
assumed that the input signal has a mean value equal to 
zero. The information about estimated variance also 
requires it to be quantized before transmission. But the 
number of bits which is needed by the quantizer to quantize 
the value of the estimated variance is significantly more 
than the number of bits used to present each sample [9, 12]. 

In the backward adaptive quantization approach, the 
past quantized samples are accessible for adoption between 
the quantizer and source. The input sample’s values are 
only known to the quantizer and totally unknown to the 
dequantizer [9]. 
 

Non-uniform quantization 
A direct approach for designing the non-uniform quantizer, 
when the probability model of the input signal is known, is 
to find the value of bj and yj to minimize Eq. (5). In order to 
find that we should set the derivative of Eq. (5) with respect 
to yj equal to zero, and solving for yj. 
 

σq
2 = ∑ � (� � ����

����
���� )���(�)�� (5) 

 
 
Where M is number of quantization levels, b shows the 
quantization level’s boundary, x indicates original value of 
source, yj indicates the retrieved signal after quantization 
and fx(x) indicates the probability density function of the 
input source.  

We get: 
 

yj = 
� ��(�)����
����
� �(�)����
����

 
 

(6) 
 

 
By taking the derivative from Eq. (5) with respect to bj and 
setting it equal to zero, we can then represent bj by  
 

bj = (yj+1+yj)/2   (7) 
 
According to the Eq. (7), midpoints of the neighboring 
reconstruction levels can simply be chosen as decision 
boundary. By solving these two equations we achieve 
optimal values for the reconstruction levels and decision 
points that can minimize the mean squared quantization 
error. But unfortunately, to solve Eq. (6) we need to know 
the values of bj and bj-1, and to solve the Eq. (7), we need 
to know the values of yj+1 and yj [9, 13]. 

Another approach for designing a non-uniform 
quantizer is the compounded quantization method. The 
basic idea behind the compounded quantization is in 
preferentially making the step size smaller, we can make 
the interval in which the input lies with high probability 
large or expand the region in which the input lands with 
high probability in proportion to the probability with which 
the input lands in this region.  

According to Eq. (8), the amount of the quantizer’s 
distortion depends on the input sequence. However, it also 
tells us how to be released from this dependency. The 
Bennett integral is described by: 
 

σx2= � ������
����� �(�)��  (8) 

  
Where x and f(x) are the value of the original source and its 
probability density function. Furthermore, 
 

σq2= ������·σx
2 , (9) 

 
where � is constant and M is the number of levels. Signal to 
quantizer noise ratio is calculated by:    
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SNQR (dB) = 10�����(���) � �� ����� � (10)
 
Eq. (10) shows the signal to quantizer noise ratio which can 
be achieved by this method. We can see that this value is 
slightly improved compared to the uniform quantization 
results for the non-uniform and low amplitude signals [9, 
14, 15]. 
 
Entropy coded quantization 
Three important tasks when designing a quantizer are 
finding boundary values, finding reconstruction levels, and 
assigning the code words. 

Previous techniques accomplish the first and the second 
tasks. In both the performance is measured by the mean 
squared quantization error. In this part we will try to 
accomplish the third task to allocate code words to the 
quantization levels. Note that when variable length codes 
are used, the complexity of the quantizer will increase. We 
will survey the recent situation and will briefly describe the 
variable length code assigning [9, 14]. 

The variable length code assigning to the quantizer 
outputs can be subdivided into two approaches. A quantizer 
can be designed by taking into account these facts that 
influence the rate by selecting the decision boundaries or by 
leaving the quantizer unchanged, only entropy coding the 
output of the quantizer. 
 
Methodology 
 
The distribution of captured EEG signals for each electrode 
is non-uniform [19]. Tong, et al. [28] have been working on 
statistical behavior of EEG signal for asphyxic cardiac 
arrest injury.  
 

 
Fig. 1: Examples of captured EEG distribution. 

 
Fig. 1 shows the probability density function of an EEG 
signal and the X-axis indicates the amplitude of the 
captured EEG signal that is on the order of microvolts. 
Since the captured EEG signals are very low frequency, the 
difference between two consecutive samples is not large. 
EEG contains low frequency components that decay as a 
function of frequency. To better express the behavior of the 
EEG signal in the time domain, a series of cosine function 
with different coefficient and frequency area is a good way. 
Generally they could be expressed by: 
 

A (t) = ∑a cos (2πft)   (11) 
 

The amplitude of the captured EEG can be estimated by 
substituting real values to the variables. As is required, the 
rate of captured EEG needs to be at least two times greater 
than maximum EEG frequency [27]. Deference between 
two consecutive EEG signals can be generally presented by 
a combination of cosine waves [16]. 
 

D = A (t1)-A (t2) =∑a1cos (ω1) 
-∑a2cos (ω2) 

(12)

 
For frequencies below 50 Hz and a sampling rate equal to 
256 the maximum variation between two consecutive 
signals is very small. If f = 50 Hz, t1 = 0, and t2 = 1/256, the 
maximum difference is around: 
 

D = A (t1)-A (t2) → 
a -0.33a = 0.67a   

(13)

 
The point is that, based on the nature of the EEG signal, the 
amplitude of EEG signals decay with increasing frequency. 
So if we assume each sample contains all frequency 
components, the amplitude difference between two 
consecutive captured EEG samples is equal to subtraction 
of their amplitudes. This fact simply shows that to design a 
quantizer, it is not necessary to allocate fixed decision 
boundaries and since variation of two tandem samples is 
small, it would be possible to estimate a possible variation 
area for each EEG sample. This introduces a new approach 
in design of a quantizer with adjustable quantization 
interval for each sample and instead of using the old 
algorithms.  
 
Comprehensive view of the proposed quantization and 
dequantization algorithm 
Based on the distribution of the EEG signals in each 
electrode, a quantization scheme with an adjustable 
quantization boundary would appear to be a suitable 
solution for solving the existing problems in quantizer 
design for very low frequency signals. It is shown by the 
quantization system process which is used in both proposed 
quantizers in this project, while fig. 2 shows the 
dequantization process at the receiver side.   

 
 

Fig. 2: Simple model of the quantization process. 
 
 

Input
Process 

(Quantizer) Output

Feedback 
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According to the fig. 2, the input of the system has feed-
back from the process box. It means that in this approach, 
the features of the past input signal which was entered to 
the quantizer affect the processing procedure of the current 
input samples. In this study we use the previous sample to 
approximate the quantization boundaries. This approxi-
mation must be same within the boundaries of the 
dequantizer.   

Accordingly in fig. 3, the output of the system is fed 
back to the process box. In this approach, the past output 
signal that entered into the dequantizer affect the processing 
procedure of the current input samples.  

 

 
 

 
 
 
 

Fig. 3: Simple model of dequantization process. 
 
Note that the input sample that receives feedback from the 
processing box in the quantizer corresponds with the output 
sample that is fed back to the processing box in the 
dequantizer. 
 
 
Backward Gaussian quantization with adjustable intervals 
and two word memories (BGAI quantizer with two word 
memories) 
In order to quantize input signals, we need to find the next 
possible interval of occurrence. In doing so, we assume 
each quantization interval includes a mean value and a 
variance value in which this parameter will change for each 
sample. The first step to reach this goal is assigning a mean 
value to our Gaussian distribution. The real mean value of 
an EEG signal is unknown for the quantizer so we must 
assume this value. But the assumption should be rational 
and can cover all the valid interval of occurrence for the 
EEG signal. So the mean value is assumed zero (µ=0) and 
variance is selected to be very large (normally all the valid 
interval of the EEG variations). This assumed distribution is 
used for quantizing the first input sample.  

In the second step, after entering the first signal to the 
quantizer, summation of amplitude of the signal and mean 
of the Gaussian function of the quantizer separated by two 
results in the mean of a Gaussian distribution quantizer of 
the next sample. The process is the same for each of the 
next signals. We create the Gaussian quantization level 
distribution for each sample by using previous sample 
feature. According to the estimated mean of the samples in 
each step, the variance is equal to square of deviation of 
estimated mean value and previous signal from half of the 

valid interval for EEG signals. The estimated mean value 
and entered signal will be saved in the memory for the next 
sample quantization.  
 
Backward Gaussian dequantization with adjustable 
intervals and two word memories (BGAI dequantizer with 
two word memories) 
The initial value of the Gaussian quantization distribution 
of the quantizer and the dequantizer is the same. So, the 
first received symbol will be dequantized when it enters 
into the dequantizer by the initial value. Then, the 
dequantized signal with initial value is summed with the 
mean (µ=0) and separated by two through the dequantizer, 
which results in a mean of Gaussian distribution 
dequantizer of the next symbol. According to the mean of 
the symbols in each time, variance is equal to the square of 
the deviation of estimated mean from the previous received 
sample and valid interval for EEG signals. The value of the 
estimated mean and previous dequantized sample in each 
stage is saved in the memory for the next sample 
quantization. Consequently, based on this method, the 
Gaussian variation of the quantization level in the quantizer 
is tracked by the dequantizer.  
 
Backward uniform quantization with adjustable intervals 
and two word memories (BUAI quantizer with two word 
memories) 
Based on the previous parts, we know this quantization 
method following the backward quantization idea. It 
memorizes some information about the characteristics of 
the previous signal to exploit it for the next samples. In 
order to quantize input signals, we need to find the mean 
value of the probability density function distribution. The 
first step in order to reach this goal is assigning an initial 
value for mean and variance. These initial values are used 
for quantizing the first input sample. As with the previous 
quantizer, here the mean value is assumed zero (µ=0) and 
variance is selected to be very large (normally all the valid 
interval of EEG variations). In this method the quantization 
levels within the estimated interval are distributed 
uniformly. 

After entering the first signal to the quantizer, 
summation of amplitude of the signal and assigned mean 
value of quantizer separated by two, results in the mean of 
the quantizer of the next sample. Accordingly, the process 
is the same for the next signals. Based on the mean of the 
samples in each step, variance is equal to square of 
deviation of estimated mean and previous signal from half 
of the valid interval for EEG signals. The estimated mean 
value and entered signal will be saved in the memory for 
next sample quantization. Thus we create the new interval 
for distributing of quantization level for each sample by 
using previous sample features.  
 
 
 

Input    
Process 

(Dequantizer) Output

Feedback 
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Backward uniform dequantization with adjustable intervals 
and two word memories (BUAI dequantizer with two word 
memories) 
The initial value for quantization distribution of the 
quantizer and dequantizer is the same. So, first symbols will 
be dequantized when they enter into the dequantizer by the 
initial value. Then, the dequantized initial value is summed 
with the mean (µ=0) and separated by two through the 
dequantizer, which results in the mean of distribution 
dequantizer of next symbol. According to the mean in each 
step, variance is equal to the square of minimum deviation 
of the estimated mean from previous received sample and 
half of the valid interval for the EEG signals. The value of 
the estimated mean and previous dequantized sample in 
each stage is saved in the memory for next sample 
quantization. Consequently, based on this method, the 
variation of quantizion level around the mean value in the 
quantizer is tracked by the dequantizer.   
 
Results 
 
This project is a part of large project in the Department of 
Engineering of the Multimedia University. EEG signals 
were recorded using a gMobilab+ console by Guger 
Technologies that was connected to a laptop and captured 
using the MATLAB® Data Acquisition Toolbox with a 
sampling frequency of 256 Hz. Eight electrodes were 
placed on the scalp at positions FC3 and CP3, P1 and P5, 
FC4 and CP6 and P2 and P6 to record the bipolar EEG 
signal at pointsC3, P3, C4 and P4, respectively. The 
electrodes were placed according to the standard 10–20 
international system. Fig.3 shows the position of the 
electrode placement for the bipolar EEG recording [19]. 
 

 

Fig. 4: Position of electrode placements for bipolar EEG 
recording. 

 
Data were collected from 10 subjects, in 5 separate 
recording sessions over a course of 2 weeks. All subjects 
were male students from the Faculty of Engineering, 
Multimedia University, whose age ranged from 22 to 28 

years old. Subjects were required to sit on a reclining chair 
and remain calm and relaxed throughout the whole 
recording procedure. They were also required to minimize 
any movements to avoid any contamination to the EEG 
signal. During signal acquisition, subjects were asked to 
clear their minds of any thoughts and relax [19]. 

Based on the previous discussion we focused on the 
nature and the time domain behavior brain wave in order to 
show the characteristics of the EEG signal which by relying 
on them, we enable to change the decision point 
appropriately. For this propose, first we found the 
distribution of the EEG signals captured by each electrode. 
Note that in this study for finding the distribution of the 
captured EEG, we have divided the possible EEG variation 
range in to 12×105 segments. Thereafter we have analyzed 
the number of occurrence of EEG in each segment. The 
following results are the simulation results that represent 
the distribution of captured signals for each electrode.  

 

 
Fig. 5: Histograms of EEG samples captured by channel 1. 

 
Fig. 5 shows MATLAB® simulation results for histograms 
of captured EEG signal by electrode 1. The X-axis indicates 
the absolute value of the EEG amplitude and the Y-axis 
indicates the number of occurrences of them. 
 

 
Fig. 6: Histograms of EEG sample captured by channel 2. 

 
Fig. 6 shows MATLAB® simulation results for histograms 
of captured EEG signal electrode 2.The X-axis indicates 
absolute value of the EEG amplitude and the Y-axis 
indicates the number of occurrences of them. 
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Fig. 7: Histograms of EEG sample captured by channel 3. 

 
Fig. 7 shows MATLAB® simulation results for histograms 
of captured EEG signals by electrode 3. The X-axis 
indicates the absolute value of the EEG amplitude and the 
Y-axis indicates the number of occurrence of them. 

 
Fig. 8: Histograms of EEG sample captured by channel 4. 

 
Fig. 8 shows MATLAB® simulation results for histograms 
of captured EEG signals by electrode 4. The X-axis 
indicates the absolute value of the EEG amplitude and the 
Y-axis indicates the number of occurrences of them. The 
results from figs. 5-8 and other surveys on the statistical 
behavior of the captured EEG show that EEG signal 
variation around mean is small and in none of the 
electrodes, the deviation covers all the possible EEG 
variation area in the duration of recording. So it is not 
necessary to waste quantization level by assigning decision 
point to the area which is very far from mean value. 

According to the previous discussion about backward 
Gaussian quantizers with an adjustable boundary and two-
word memory, we know that this quantizer is able to 
estimate the interval whose probability of occurrence in the 
next sample is very high. Generally no quantizer knows 
about the next sample that will enter the quantizer, but with 
the help of this technique and the nature of the EEG signal, 
we can find an interval in which the next sample definitely 
is a member. The estimated interval is significantly smaller 
than the whole range covered by the EEG signal. The 
quantizer works with this small interval and distributes the 
quantization levels in this area. Based on the previous 
discussion the distribution is in Gaussian form. After 
quantization of each sample, the real value of the sample 

and estimated mean value will be stored in the memory for 
the next sample. For all the samples the process is recurred.  

Based on them, the mean value of the previous sample 
and previous sample, we can calculate the variance value 
for the quantizer for each sample. It is noticeable that all of 
this estimation is accurate when capturing EEG in a normal 
situation. It means that if the device that acquires and 
records the brainwave does not work appropriately for any 
reason because the characteristics of the EEG signal are not 
dominant in the recorded signal, the outcome of the 
quantizer does not follow the variation of the captured EEG 
signal. In addition for better evaluation of proposed 
quantization method, we have simulated and designed the 
whole wireless transmission system. 

 

 
 

Fig. 9: Block diagram of the simulated transceiver. 
 
Fig. 9 shows the designed transceiver system’s structures. 
Note that in simulation of this model we have used Turbo 
code as our error detection and correction technique and 
applied modulation in this study is QPSK. Furthermore, we 
assume that our channel is AWGN channel and following 
results come out in these criteria. 
 
Discussion 
 
Different aspects of brain behaviors are still unknown, and 
there are so many unanswered questions about known parts 
of brain behaviors. So far comprehensive investigation has 
not been done on brainwaves. Researchers for quantization 
of EEG signals usually had to use the traditional methods 
developed for other purposes such as sound, speech, and 
video quantization. In this part, we will compare our results 
with uniform quantizer outcomes. It is worth noting that 
uniform quantization currently is used in electroencephalo-
graphy devices.       

Let us calculate the signal to noise ratio (SNR) for this 
case. The signal variance σs

2 for a Gaussian random 
variable, which takes on values in the interval [-Xmax, Xmax] 
is (10): 

 
σs

2= (2·Xmax)2= 
(2·8·10-5)2= 2.5600·10-8 

 

(14)

SNR=10log (σs
2/σq

2), (15) 
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where (σq
2) is Mean Squared Quantization Error.   

 
Bits per 
sample 

Uniform 
Quantizer 
(MSQE) 

BGAI 
Quantizer 

MSQE 

BUAI 
Quantizer 

MSQE 
5 -104.29 dB -109.86dB -118.64 dB 
6 -110.44 dB -118.26 dB -124.98 dB 
7 -116.61 dB -125.68 dB -131.14 dB 
8 -122.62 dB -131.69 dB -137.21 dB 
9 -128.65 dB -136.39 dB -143.28 dB 
10 -134.66 dB -142.84 dB -149.28 dB 
11 -140.72 dB -149.19 dB -155.24 dB 
12 -146.70 dB -155.67 dB -161.22 dB 
13 -152.76 dB -160.95 dB -167.27 dB 
14 -158.73 dB -166.65 dB -173.32 dB 
15 -164.78 dB -172.85 dB -179.37 dB 
16 -170.79 dB -185.00 dB -185.42 dB 
17 -176.80 dB -194.03 dB -191.47 dB 
18 -182.87 dB -200.19 dB -197.55 dB 
19 -188.90 dB -206.25 dB -203.49 dB 
20 -194.88 dB -212.12 dB -209.48 dB 
Table 1: The comparison among calculated MSQE of proposed 
methods and uniform quantizer. 

 
Table 1 shows estimated MSQE for different number of bits 
per samples, 5<N<20, of a uniform quantizer, a BGAI 
quantizer and a BUIA quantizer.  

In case of a uniform input signal the MSQE of the 
uniform quantizer is calculated by this formula [10]: 

 
MSQEuniform=Δ2/12 , (16) 

 
where the delta parameter, Δ, is the assigned step size in the 
uniform quantization.  

Table 1 shows the value of MSQE for the quantization 
method. Both of the proposed quantizers present better 
performance compared to uniform quantization. 
Differences between the BGAI quantizer with two-word 
memories and uniform quantizer increases with an 
increasing number of bits per sample. According to this 
table for N equal to sixteen bits per sample the difference is 
around 15 dB which is a considerable value. By using this 
method we can achieve a certain MSQE with 1 to 3 bits per 
sample less than for a uniform quantizer. Thus, this 
quantizer works very well when the accuracy is our priority 
in the received signal.  

According to table 1, for N smaller than sixteen bits per 
sample, the performance of a BUAI with two word 
memories in terms of MSQE is better than the others. So 
for certain MSQE, it approximately needs one bit per 
sample less than the BGAI quantizer with two word 
memories and two bits per sample less than the uniform 
quantizer. When N is greater than sixteen bits per sample, 
the BGAI quantizer with two word memories shows better 
performance and it approximately needs one bit per sample 
less than the BUAI quantizer with two word memories and 
3 bits per sample less than the uniform quantizer for certain 
MSQE. 

The relationship between SNR or MSQE and the number of 
bits per sample in the BGAI quantization model is not 
linear. The MSQE has nonlinear behavior because of 
Gaussian distribution of the quantization level and based on 
Eq. 15, the SNR is influenced by the MSQE. According to 
our observation the MSQE and SNR for this kind of 
quantizer has small dependency to the input signal. Based 
on the previous chapters, captured EEG from different parts 
of the brain has totally different and unpredictable Gaussian 
distribution. 

 
Bits per 
sample 

Uniform 
Quantizer 

(SNR) 

BGAI 
Quantizer 

(SNR) 

BUAI 
Quantizer 

(SNR) 
5 28.38 dB 33.95 dB 42.72 dB 
6 34.52 dB 42.34 dB 49.06 dB 
7 40.69 dB 49.77 dB 55.22 dB 
8 46.70 dB 55.77 dB 61.29 dB 
9 52.73 dB 60.47 dB 67.37 dB 
10 58.74 dB 66.92 dB 73.37 dB 
11 64.80 dB 73.28 dB 79.33 dB 
12 70.79 dB 79.75 dB 85.30 dB 
13 76.84 dB 85.04 dB 91.35 dB 
14 82.86 dB 90.73 dB 97.40 dB 
15 88.86 dB 96.93 dB 103.38 dB 
16 94.87 dB 109.09 dB 109.51dB 
17 100.88 dB 118.11 dB 115.56 dB 
18 106.95 dB 124.27dB 121.63 dB 
19 112.98 dB 130.34 dB 127.57 dB 
20 118.96 dB 136.20 dB 133.56 dB 

 
Table 2: The comparison among calculated SNR of the proposed 
methods and a uniform quantizer. 

 
Table 2 shows the estimated SNR for different amount 
of quantization rate, 5<N<20, for a uniform quantizer, a 
BGAI quantizer and a BUIA quantizer. The SNR value 
is calculated by Eq. (15).  

As we know for uniform quantization when the input 
signal has uniform distribution the signal to noise ratio for 
the quantizer is calculated by Eq. (3) [9]. 

But for this case the input signal has Gaussian 
distribution and the value of the signal to noise ratio is 
estimated by Eq. (15). The calculated SNR by this equation 
is smaller than Eq. (3) which is predictable. When the 
distribution of the quantization error is not matched with 
the input distribution, the MSQE is increased and as result 
the SNR is reduced. 

Both proposed methods have significant performance in 
terms of SNR compared to the uniform quantizer. For N 
smaller than sixteen bits per sample BUAI quantizers with 
two word memories have better MSQE, so the value of 
SNR for this method is higher than the other discussed 
methods. For N more than sixteen bits per sample, BGAI 
quantizers with two word memories show higher 
performance in comparison with other methods. For N 
greater than sixteen bits per sample the MSQE for BGAI 
quantizer with two word memories rapidly reduce and this 
phenomenon affect the value of the SNR for this quantizer 
and increases it rapidly. 



Nezhad et al.: Improvement of wireless transmission system performance. J Electr Bioimp, 4, 62-72, 2013

70

 

 

We are using the AWGN channel which means that we just 
consider the effect of white noise on the transmitted signal.  

Fig. 10 shows the simulation results of bit error rate for 
the received signal with signal to noise ratio between -2 dB 
to 2 dB. There are 5 lines with different color which 
correspond to the number of iterations in the error decoding 
process. Results show that for SNR equal to 2 dB we 
achieve Bit Error Rate (BER) =3.5×10-5 or maximum 4 bits 
error in 105 bits. 

 

 
Fig. 10: The achieved BER for received SNR in (-2dB, 2dB) 
intervals in different iterations. 

 
Now if we assume that the minimum SNR of the received 
signal is 2 dB we can find the reliable transmission distance 
between transmitter and receiver. For this propose we used 
Friis free space Eq. (17). This model can be used when 
transmitter and receiver has unobstructed line of sight path 
between them [17]. 
 

Pr (d) =  , (17) 

 
where Pt presents the transmitter’ signal power, Gt and Gr 
present transmitter and receiver’s antenna gain, in this case 
the antenna gains are assumed to have unity gain, L 
presents system loss factor that in case of free space 
propagation model is equal to 1, d represents transmitter-
receiver separation, and λ presents wavelength of the 
transmitted signal [17]. 

In this study we assume the λ is equal to one meter 
which means the system works at 300 MHz. Based on 
application of this system we can choose a lower frequency 
band. According to Eq. (17), higher value of the 
wavelength leads to increasing transmission range.  

 
Bits per 
sample 

Minimum 
received SNR 

SNR of 
transmitted 

signal 

Transmission 
range for λ=1 m 

5 2 dB 42.72 dB 8.62 m 
6 2 dB 49.06 dB 17.90 m 
7 2 dB 55.22 dB 36.39 m 
8 2 dB 61.29 dB 73.19 m 
9 2 dB 67.37 dB 147.40 m 
10 2 dB 73.37 dB 281.83 m 

Table 3: The transmission range for λ = 1 meter. 

Table 3 indicates the value of the transmission range for a 
BUAI quantizer for N smaller than eleven. Note that within 
interval,4 <quantization rate<11, the output bit rate of the 
transmitter is less than the maximum channel capacity bit 
rate which is determined by the Shannon channel theory. 
Beyond that interval, according to this formula, BER 
increases enormously.  
 

 
Fig. 11: The transmission range for λ = 1 meter. 

 
Fig. 11 also shows the achieved distance for reliable 
communication by the BUAI quantizer for different number 
of quantization rate. In this study we did not apply any 
amplification before transmission, however for long 
distance transmission we have to amplify the output signal 
by increasing the power of the carrier signal.  

If value of the λ promote to two meter the transmission 
range in previous figure will promote to four times more 
than before and when the λ becomes four meter the 
transmission range will become sixteen times more than 
before. 

 
Bits per 
sample

Transm. 
range 

λ = 0.33m 

Transm. 
range      
λ = 1 m 

Transm. 
range      
λ=2 m 

Transm. 
range      
λ=3 m 

Transm. 
range        
λ=4 m 

5 0.95 m 8.62 m 34.48 m 77.58 m 137.92 m 
6 1.98 m 17.90 m 71.6 m 161.11 m 286.4 m 
7 4.04 m 36.39 m 145.56 m 327.51 m 582.24 m 
8 8.15 m 73.19 m 292.76 m 658.71 m 1171.04 m 
9 16.37 m 147.40 m 589.6 m 1326.6 m 2358.4 m 

10 31.31 m 281.83 m 1127.32 m 2536.47 m 4509.12 m 

Table 4: The transmission range for different amount of λ. 
 
Table 4 shows the value of the transmission range at 
different frequencies by using the Friis free space, Eq. (17). 
According to the results we can achieve a line of sight 
transmission range equal to 4.5 km at 18.75 MHz. 
To sum up, the study compare the system throughput with 
TEL100M-C, which is one of the products of the BIOPAC® 
Systems Corporation. According to the production’s 
information this device is able to achieve an SNR of 50 dB 
(nominal) for 0.05-35 Hz and 40 dB (nominal) for 0.05-500 
Hz and transmission range equal to 150 meter line of sight. 
In addition this device works in the UHF band. Table 2, 
Table 3 and Fig. 10 show our simulation output results for 
EEG signals from 0.3 Hz to 100 Hz. As can be seen for N 
equal to ten bits per sample and λ = 1 meter, we achieve a 
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transmission range equal to 281 meter which is 
approximately 2 times larger than the transmission range 
(line on sight) of this device. For λ greater than one meter 
the results is considerably higher than for this product. 
According to table 3 the achieved SNR by the proposed 
method, by utilizing QPSK modulation, is in the [42dB, 
72dB] interval which is much higher than the achieved 
SNR by this device.  
 
Conclusion 
 
Advancement of wireless technology has made some 
developments in current wireless EEG. For instance, by 
improving transmission systems for brainwave signals, 
more opportunities for discovering other aspects of 
brainwaves have appeared, and patients will benefit from 
these devices. What has been done in this project is to take 
advantage of the nature of brainwaves to design a quantizer. 
Such quantizers have better performance with respect to 
other scalar quantizers in dealing with brainwave signals. 
Our experiment has been done with uniform and Gaussian 
distribution of quantization level and BUQAB and BGQAB 
have been introduced. They have been compared with other 
quantization schemes in wireless EEG devices. Furthermore 
we examined them in a simulated wireless system. 
Achieved results show significant improvement in the 
quantization parameter and other related system parameters 
such as SNR, BER and transmission range. 
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