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Abstract 
Electrical Impedance Tomography (EIT) has successive wide 
range in impedance imaging, but still it is difficult to extract 
cardiac-related conductivity changes and respiratory-related 
conductivity changes in spontaneous breathing subjects. Quite a 
few methods are attempted to extract these two signals such as 
electrocardiogram gated averaging, frequency domain filtering 
and principal component analysis. However, such methods are not 
able to take apart these components properly or put some effort in 
real time imaging and have their own limitations. The purpose of 
this paper is to introduce a new method in the EIT clinical 
application field, Independent Component Analysis (ICA) to 
extract cardiac and respiratory related signals in electrical 
impedance tomography. Independent component analysis has been 
introduced to use in electrical impedance tomography but this is 
the first attempt ever to implement this method to separate these 
two signals and image those independent conductivity distribution 
of respiration and cardiac changes independently. Data has been 
collected from a spontaneous breathing subject. Filtration 
technique has been used to remove random noise and multi level 
spatial ICA has been applied to obtain independent component 
signals which has been later used in reconstruction algorithm for 
imaging. 
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Introduction 
 
Electrical impedance tomography (EIT) is an imaging 
technique to image the impedance changes of the human 
body. It produces cross-sectional images of a conductivity 
distribution inside the human body using measured 
boundary voltage data sets which typically use a single ring 
external electrode. EIT has been widely used for functional 
imaging associated with the different physiological changes 
such as cardiac and respiratory changes. The first working 
device of EIT was presented by Brown et al and Seagar et 
al [1,2] and afterwards it has been developed significantly 
and used for some clinical applications. Yet it is too far to 
use EIT in daily clinical use. Beside other applications, the 
use of EIT for monitoring regional ventilation changes has 
been done in several research studies [3-6]. In Fig. 1 we 
have shown the basic EIT arrangement. Sixteen electrodes 
are attached in equidistance. In interrogated body section 

current (I) is injected in one pair and voltage (V) is sensed 
by other pair of electrodes. Neighboring current pattern is 
used for every injected pair of current and rests of the 
electrodes are used to sense the voltage.   
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Fig. 1: Basic EIT arrangement.  
 

Electrical impedance tomography (EIT) is a non-invasive, 
inexpensive and portable imaging modality which has a 
promising future to be used for bedside monitoring [7,8]. 
Numerous attempts have been taken earlier to extract 
cardiac and respiration signals properly. However those 
methods have their own limitations and are not satisfactory 
to obtain proper independent signal of cardiac and 
respiration signal. Consequently Independent Component 
Analysis (ICA) is a way to resolve signals into independent 
components based on statistical characteristics of the 
signals [9]. This method has been successfully pertained in 
EIT before. The EIT recordings are the result of linear 
combinations of the source signals. Using ICA the signal 
subspace will then be decomposed into statistically 
independent components [9]. At the present it is high time 
to apply this method in some extended clinical applications 
of EIT. 

To reconstruct images from EIT datasets it is necessary 
to get all the individual conductivity distribution of the 
source signal. ICA is a method for factoring probability 
densities of measured signals into a set of densities that are 
as statistically independent as possible under the 
assumptions of a linear model. The EIT datasets are the 
result of linear combinations of the source signals. Using 
ICA the signal subspace we will decompose the linearly 
combined source signals into statistically independent 
components. Independent component analysis (ICA) is one 
of the most widely used Blind Source Separation (BSS) 
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techniques for revealing hidden factors that underlie sets of 
random signals. It extracts individual signals from mixtures 
shown in Fig. 2. 

In this paper we want to propose a multi level spatial 
ICA based method that has been applied to acquire separate 
independent cardiac and respiration signal properly. This is 
the first ever attempt to extend the EIT based applications 
in the bed side monitoring. Firstly ICA gives the template 
function of most prominent respiration signal and again in 
the second level approximation ICA is been used to get 
another template function of cardiac signal from the time 
domain filtered signal. Then we analyze the template 
signals by using Fast Fourier Transform. Both of these 
template functions are later used in a reconstruction 
algorithm to get the impedance image. Also the 
computational time of multi-level spatial ICA is found 
reasonable to use this technique in real time system for bed 
side monitoring. 
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Fig. 2: Independent Component Analysis block diagram where 
blind source sˆ (t) is estimated from a mixing matrix A. s(t) are the 
sources. x(t) are the recordings, sˆ (t) are the estimated sources. 
Also A is mixing matrix and W is un-mixing matrix. 

 
 

Previous Relevant Research 
 

To study the previous relevant research, we organize our 
background study in three different existing approaches; 
ECG Gated Acquisition, Frequency Domain Filtering and 
recent PCA Based Methods. 

 
ECG Gated Acquisition 

 
ECG gated method is the first approach of separation of 
cardiac and respiration changes in electrical impedance 
tomography by McArdle et al [10]. It is based on two 
significant criteria. First, the impulse component of 
perfusion signal in the lung is in synchronization with 
cardiac changes and therefore the ECG. Second, the 
ventilation changes in impedance occur at a much lower 
rate compared to the ECG. Thus, by recording the changes 
of impedance during the cardiac cycle, triggered by a 
separated ECG module, the lung perfusion signal can be 
recorded. Furthermore, it has been shown in various studies 
that averaging the results over more than 100 cardiac cycles 
can reduce the interference of respiration. Averaging the 
measurements over 100 cardiac cycles is used in [11] and 
[12], where some cases averaging has been done for over 
200 cardiac cycles [13]. ECG-gated acquisition demands 

higher frame rates from the EIT instrument to capture the 
changes within a cardiac cycle. New generation EIT 
systems have overcome these demerits. The averaging over 
a large number of cardiac cycles requires long duration of 
data acquisition and therefore may not be suitable for 
continuous bedside or real-time monitoring. Furthermore, 
as Deibele et al [14] pointed out, this averaging over a large 
data set could result in the fact that ‘sudden changes or 
irregular anomalies cannot be detected’. In addition, with 
this method of acquisition, the ventilation component of the 
signal is lost, which is certainly not the optimal solution. 

 
Frequency Domain Filtering  

 
These methods are based on the fact that the heart rate and 
the respiratory rate are very well separated in frequency. 
The fast Fourier transform (FFT) of the global signal can 
provide a good approximation of the required cut-off 
frequency for filtering as shown in Fig. 3 showed by Grant 
et al [15]. Accordingly, FIR or IIR filters can be 
implemented as a high-pass filter to extract the cardiac-
related component from the mixed signal. Similarly, the 
respiratory component of the signal can be extracted using a 
low-pass filter, possibly with the same cut-off frequency. 
This filtration process can be carried out on the voltage 
signals or the reconstructed images [16].  

In spontaneously breathing subjects, the respiratory 
impedance changes are rarely sinusoidal, leading to 
frequency components across a wider range of spectrum 
than anticipated. Frerichs et al [17] and Grant et al [15] 
used frequency domain filtering to first separate 
components in the heart-rate domain and the respiratory 
rate domain, followed by linear regression fit to identify the 
regions of interest (ROIs). Whilst [17] used mechanically 
ventilated subjects to ensure no overlapping in the 
frequency spectrums of the ventilation and perfusion 
components of the acquired signal, [15] successfully 
separated the two components in spontaneously breathing 
subjects by combining the phase component of the signals 
with the algorithm suggested by [17]. 

 

 
Fig. 3: (a) The original time course of impedance change of a 
subject during spontaneous breathing with no filtering applied. (b) 
The Fast Fourier Transform (FFT) power spectrum of this signal 
showing the frequency characteristics [15]. 
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PCA Based Method  
 
A Principal Component Analysis (PCA) - based method for 
separating the respiratory and the perfusion-related signal 
was suggested in [14]. Their method successfully separated 
the two signals, allowing continuous beat-to-beat updates 
after a 20 s period of initiation. Time domain filtering with 
template functions was used to initially separate the cardiac 
and the ventilation signal. The results were then combined 
to obtain the best fit with the original signal, computed by 
performing least mean square (LMS) between the 
approximation and the actual signal.  

In order to achieve proper separation of the respiratory 
and cardiac-related signals, the template functions for time 
domain filtering were identified by performing the PCA on 
the original data matrix. In [18] each of the aforementioned 
techniques compares the results achieved by each of these 
approaches in their experiment. Their results showed that 
the PCA and the frequency domain filtering methods 
produced highly correlated results. On the other hand, the 
correlation between these two methods with the ECG-
gating alternative was reported considerably less. However, 
the correlations between each of these methods and a 
known standard method for perfusion imaging were not 
computed, rendering the results from their study 
inconclusive regarding as to which method is more reliable. 
 
Proposed Method Using ICA 

 
Impedance change of cardiac signal mixes with the 
impedance change of respiration signal and impedance 
change of blood flow. The EIT signal gets demodulated 
with the respiration signal of the human body and the 
cardiac signal gets demodulated too. As a result the output 
demodulated signal remains as the mixture of the cardiac 
and respiration signal together shown in Fig. 4. Based on 
our proposed method we are towards to put a novel impact 
in this inconveniency where we are to get the independent 
cardiac and respiration signal simultaneously. In the 
following sections our proposed method is described in 
detail. 
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Fig. 4. Separation of Cardiac and Respiration signal 

 
In Fig. 5, we have shown the block diagram of our 
proposed method steps. Firstly ICA gives the template 

function of the most prominent respiration signal and again 
in the second level approximation ICA has been used to get 
another template function of cardiac signal from the time 
domain filtered signal. Then we analyze the template 
signals by using Fast Fourier Transform. Both of these 
template functions are later used in reconstruction 
algorithm to get the impedance image. 

 
ICA Algorithm in EIT  

 
In electrical impedance tomography, we preprocess the 
acquired data to decompose them into several independent 
activation maps. The source for each activation map will 
then be localized independently [9]. To apply ICA 
algorithm in EIT, we have made some assumptions [9,19-
21]. At First, the sources must be independent and is valid 
for our multiple conductivity distribution source of 
localization problem. The mixture is linear. There is no 
delay in signal propagation from sources to sensors and 
finally, the total number of independent signal sources does 
not exceed the number of electrodes. 
 
Preprocessing  

 
To apply ICA in EIT we need to do some preprocessing [9]. 
A useful preprocessing technique in ICA is to whiten the 
observed signals. Whiten refers such transformation to 
preliminary sphere the data where the observed vector x  is 
linearly transformed to a new vector x which is white i.e. 
its components are uncorrelated and the covariance matrix 
of x equals the identity matrix. 
 

{ }TE xx I=   (1) 

 
The second step in processing the raw EIT data x is to 
decompose it into signal and noise subspaces by applying 
the PCA method in order to reduce the dimensionality of 
the data and remove some of its noise. 

 
Template Selection Using ICA 

 
The projection of the data on the signal subspace will be 
referred to as sourceV  . The signal subspace sourceV  will 
then be decomposed into statistically independent 
components 

source

jV  . Then the EIT recordings sourceV , 

which are the result of linear combinations of the source 
signals S , can therefore be expressed as: 
 

.sourceV M S=  (2) 

 
Where M is the so-called mixing matrix. If 

. sourceU V S= or 1U M −= , then S  can be found. 

Here U is the weighting matrix or unmixing matrix, which  
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Fig. 5: Proposed method to Separate Cardiac and Respiration signal; After  preprocessing ICA is applied on observed 
signal x  to get the respiration template function RT from a set of templates T1 and identically cardiac template 

function, CT is obtained from remain signal. Unwanted signals are not taken into consideration.  
  
 

inverts the mixing process. M is unknown and the only data 
we have is the sourceV matrix. The ICA process consists of 
two phases: learning and processing. During the learning 
phase, the ICA algorithm finds a U  which minimizes the 
mutual information among channels. There exist several 
different ways to estimate the U matrix. Here the natural 
gradient vector is used to speed up solution convergence by 
avoiding the complex computation of matrix inverses [19]. 
Weighting matrix U can be constructed iteratively by: 
 

1 . [ 2 ( ). ].T
i i i i i iU U I G p p Uα+ = + +  (3) 

 
where the vector ip  is defined as, 
 

.i i sourcep U I=  
(4) 

 
and for the nonlinear function G we used, 
 

( ) tanh( )i iG p p=  
(5) 

  
In the equation (3), iα is a learning rate and I is the 
identity matrix. The learning rate decreases during the 
iteration and we stop when iα becomes smaller than a 
predefined tolerance. 

The second phase of the ICA algorithm is the actual 
source separation. Independent components can be 
computed by applying the U to the signal subspace data. 

 
. sourceS U V=  (6) 

 

Projection of independent activation maps S  back onto the 
electrodes can be done by: 
 

1. . .
source

j
source kV R U Sλ −=  (7) 

 
where 

source

jV is the set of sensing voltage due to just the j

th source. λ and sourceR  are the signal subspace singular 
values and singular vectors. For each electrode voltage just 
the j th source voltage map 

source

jV , we can now 

reconstruct the different conductivity distribution in 
different regions using the sensitivity theorem for EIT 
image. 
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         Fig 6. Independent Component signals generated from  
preprocessed raw EIT data. 
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Experimental Results 
 

Experiment was done on a volunteered human subject. The 
data were collected from a normal male volunteer, without 
records of previous lung disease or smoking habits, and 
presenting a normal radiograph. The volunteer was upright 
during data collection, quietly breathing, with the electrodes 
placed at the level of the thoracic plane crossing the fifth 
intercostal space. Data was recorded using 16 channel EIT 
device for spontaneous breathing for continuous 40s. 
 
Experimental Setup 
 
In order to test the proposed method, data was collected 
from a human subject. EIT data were acquired using 16 
channels KHU Mark2.5 with 16 electrodes. The electrodes 
were placed circumferentially (equally spaced) around the 
thorax just below the level of the axilla. An electrical 
current of 1mA was injected at 50 kHz through a pair of 
neighboring electrodes. Differential voltages were 
measured between the other non-injecting pair of electrodes 
with neighboring pattern. Following this initial current 
injection, the electrical current was then injected 

sequentially via the next pair of electrodes and repeated 
until all electrodes had served for current injection. The 
data for one complete cycle produced a so-called “frame,” 
and they were saved in a raw data file for later processing. 
The equipment has an SNR of 80 dB.  

 
Considering all current patterns, 256 measurements were 
obtained. A 2-D finite element mesh with 499 linear 
triangular elements was built, with shape and size similar to 
the cross section of the volunteer’s thorax. Using the 
sensitivity matrix algorithm, 1650 measurement vectors 
were used to generate the transition matrix. Truncated 
singular valued decomposition (tSVD) algorithm was 
applied to get the reconstruction images.  
 
Result and Discussion 
 
In the experimental section, some intermediate results of 
our algorithm stages is shown and analyzed. For our 
experiment we first analyzed the input signals of our EIT 
data. We applied some preprocessing steps like whitening, 
PCA for denoising and to ensure the input data to be 
uncorrelated. Then we applied ICA to get the independent 
signals from our uncorrelated raw data. In Fig. 6 we have 
shown the sixteen independent components (IC’s) 
generated from ICA algorithm. A typical input signal as can 
be found in the lung region is depicted. The superposition 
of a lower frequency ventilation signal and a much smaller 
higher frequency cardiac signal can be distinguished. The 
signals are represented as frame numbers (horizontally) 
along with amplitude (vertically).  

All these IC’s are representing conductivity distribution 
up to some extent, which are verified by the Fast Fourier 
Transformation later on. Firstly, we applied FFT of all the 
selected IC’s generated from ICA algorithm. For our 
experiment, we have set the upper bound of the breathing 
rate which is 0.53 Hz (32 breath / min) with no modulation. 
The lower limit is estimated in our subjects able to breathe 
at rates of 0.4 Hz (24 breath / min) in most individuals. So, 
if we analyze the FFT of the IC’s, we will get high 
amplitude or peak in the region between 0.4 Hz to 0.52 Hz. 
From our analysis we analyze the IC’s by using FFT and 
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Fig. 8: Selected IC_9 with its magnified image (a) and its FFT (b). 
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Fig. 7: Selected IC’s (left column) and corresponding  
reconstructed images (right column) 
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Fig. 9: Selected IC_3 with its magnified image and it’s reconstructed Image 
 

observe the high amplitude of the signals. The high 
spectrum sustained on the above region is selected as 
candidate IC for our experiment. By analysis, we have 
selected IC_2, IC_6, IC_7 and IC_9 as our desired signal. 
Then we generate the reconstruction image of the IC’s and 
select the proper one for our desired respiration template 
RT. In Fig. 7 we have shown the reconstructed images of 
the selected IC’s. From the reconstruction images and from 
the rigorous survey we came to the conclusion that IC_9 
represent the best respiration signal and we have chosen 
this independent respiration signal as RT and go further for 
the next step of the experiment. In Fig. 8 we have shown 
the magnified image of the RT and its FFT. 

For the next step we again use the preprocessing steps 
and the ICA algorithm as described in Fig. 5. After the first 
approximation and getting the RT, now we can get the 
remaining signal and get the cardiac signal as our desired 
template. By applying ICA on the remaining signal we can 
get the IC’s again. From the IC’s, we choose the right one 
as our desired template function CT. Then we generate the 
reconstruction image of the IC’s and select the proper one 
for our desired respiration template RT. In Fig. 9 we have 
shown the reconstructed images of the selected IC’s (right 
column). Also, the remaining IC’s which are selected and 
used for template function as cardiac template are shown in 
Fig. 10. 
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Fig. 10: Selected IC’s from observed cardiac signals.  

 

Conclusion 
 
A new method for a dynamic extraction of cardiac and 
respiration changes in EIT image is proposed based on 
Independent Component Analysis. It does not rely on 
averaging over a number of heart cycles or on frequency 
domain filtering which is barely possible to implement 
properly. This method is reliable and further studies are 
going on to apply this method for different types of patients. 
Also the processing speed of this method is so fast that a 
continuous real-time monitoring of patients seems to be 
possible in the near future using this method.  
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