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Abstract 
A model for current-voltage nonlinearity and asymmetry is a good 
starting point for explaining the electrical behavior of nanopores 
in synthetic or biological membranes. Using a Nernst-Planck 
model, we found three behaviors for the calculated current density 
in a membrane's pore as a function of voltage: a quasi-ohmic, slow 
rising linear current at low voltages; a nonlinear current at 
intermediate voltages; and a non-ohmic, fast rising linear current 
at large voltages. The slope of the quasi-ohmic current depends 
mainly on the height of the energy barrier inside the pore, w, 
through an exponential term, ew. The magnitude of the non-ohmic 
linear current is controlled by the potential energy gradient at the 
pore entrance, w/r. The current-voltage relationship is asymmetric 
if the ion's potential energy inside the pore has an asymmetric 
triangular profile. The model has only two assumed parameters, 
the energy barrier height, w, and the relative size of the entrance 
region of the pore, r, which is a useful feature for fitting and 
interpreting experimental data. 
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Introduction 
 
In this article, we provide a simple explanation for the 
nonlinearity and the asymmetry of the current-voltage 
characteristic of a pore in a membrane, using a Nernst-
Planck (NP) model. The NP equation is difficult to solve 
analytically because it is nonlinear. The solution of the NP 
equation becomes easy to find assuming a linear profile for 
the ion's potential energy inside the pore, in this particular 
case a triangular asymmetric profile. The model we found 
for the electrical current through a pore is bolstered by 
similar features found experimentally by other investigators 
including current nonlinearity within two voltage domains 
of linear behavior (at low and high voltages) and current 
asymmetry (rectification) where ions flow more easily 
through a pore entrance with a mild energy gradient than 
through one with a steeper energy gradient. 

The current-voltage relation of a pore is essential for 
studying ion channels [1, 2], or for designing synthetic na-
nopores or nanodevices [3-6]. The current-voltage relation 
of a porous membrane is useful in understanding the way in 
which epithelia function, especially the skin's epidermal 
stratum corneum [7] or for describing and predicting 
electroporation [8, 9]. Thus, an improved understanding of 

the current-voltage relationship of a pore in a membrane is 
of use to various research fields of biology, material 
science, bioengineering, and nanoelectronics. 

There are various approaches to modeling ion transport 
in membrane pores from molecular dynamics and Brownian 
dynamics to continuum theories [10]. A continuum model, 
like the one we are presenting herein, is an explicative 
model offering an increased understanding of the 
importance which various processes involved in the 
problem have, thus giving this type of model an increased 
predictive power. Such a model usually provides an 
analytical formula for the current-voltage relationship, a 
very useful feature for interpreting experimental data. The 
down side of the continuum model is related to the 
modeling accuracy of ion–channel interactions, because it 
works with macroscopic quantities, such as the dielectric 
constant, on a microscopic-mesoscopic scale [10, 11]. This 
drawback is to some degree compensated by the fact that 
the ion potential energy can be estimated from molecular or 
Brownian dynamics simulations.  

We will first present the proposed model with its basic 
assumptions, followed by results for the current-voltage 
relations for the assumed profiles of ion energy inside the 
pore, and their behavior at low-level and high-level 
voltages. Finally, we will discuss the implications and 
present the related work that supports our results. 

 
Model 
 
Our model assumes the existence of a cylindrical pore, with 
length h and radius R, in a plane membrane bathed by an 
electrolyte with only one monovalent ionic species. The 
generalization for multiple ionic species is straightforward 
[12, 13] but unnecessary here.  

The transport equation states that the stationary flux, F, 
of ions through the pore in the membrane is given by the 
product of the ionic concentration, c, the mobility, b, and 
the gradient of the electrochemical potential, μ [13-15]: 

 

x
cbF

d
d μ−=    (1) 

 
The mobility, b, is related to the diffusion coefficient of the 
ion, D, by Einstein's relation, b=D/(kT), where k is the 

http://dx.doi.org/10.5617/jeb.296


Bîrlea et al.: The current-voltage relation of a pore. J Electr Bioimp, 3, 36-41, 2012

37

Boltzmann constant and T is absolute temperature. The 
electrochemical potential μ is: 
 

0)()(ln μμ +++= xWxqVckT  (2) 
 

where the first term is the concentration dependence (the 
ionic activity is assumed to be unity), the second is the 
contribution of the applied potential with elementary 
charge, q, the third is the work, W, required to transfer the 
ion from a distant point in the aqueous phase to point, x, 
inside the pore, and the last term is the standard chemical 
potential in the pore, independent of position. 

The potential energy, W(x), of an ion inside the pore is 
the key element for pore conductance and will be treated 
here as an assumed parameter of the model. The potential 
energy has two distinct parts [10]: 1) the self-energy due to 
the induced charges on the dielectric boundary, surrounding 
liquid and pore wall (Born energy and reaction-field 
energy) proportional to q2 which is always repulsive and 2) 
the Coulomb interaction with the charges on the pore's wall 
(if the pore's wall is charged), proportional to q, which can 
be either attractive or repulsive depending on the signs of 
interacting charges.  

Substituting Eq. 2 into Eq. 1 we can represent the 
stationary current density, J, as: 
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where the dimensionless energy variables are: 
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In Eq. 3 the exponential factor in front of the derivative 
may be transferred to the left side of the equation to arrive 
at 
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Eq. 5 can then integrated with respect to x 
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to give the standard expression for stationary current 
density [10, 13]: 
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It is presupposed that the ionic concentration in the bulk 
solution and at the pore's extremities are equal: 
c(0)=c(h)=c.  

The denominator can be integrated if the function 
relating energy to position is known. To this end, the profile 
of the potential energy inside the pore, W(x), is 
approximated here by an asymmetric triangle (Eq. 8), a 
symmetric triangle (Eq. 9), and a trapezium (Eq. 10) as in 
DeBruin and Krassowska (1999) [12,16], to produce the 
following formulations:  
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Here w is the dimensionless height of the energy barrier 
(the potential energy maximum in kT units) and d is the 
length of the pore entrance, or more specifically the length 
of the pore domain where the potential energy varies. It 
should be mentioned that the energy barrier height, w, and 
the pore radius, R, are tightly bound. The simplest 
relationship between them is w=5nm/R(nm) from Glaser et 
al. (1988) [16]. More complex formulas can be found in 
Kuyucak et al. (2001) [10]. This simple relation tells us that 
the model is appropriate for nanopores that are not too large 
(so that w→0) and not too narrow (to avoid ionic crowding 
or depletion, kinetic effects, steric effects, etc. [6,10, 
11,14]). 
 

 
Fig. 1: Schematic representations of the three assumed profiles 
for the ion potential energy inside a pore: asymmetric triangular 
(black line); symmetric triangular (blue line); and trapezoidal 
(broken red line). 
 

The externally applied potential V(x) is assumed to vary 
linearly across the membrane and along the pore as: 
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where u is the dimensionless transmembrane potential: 
 

kT
hVVqu )()0( −=   (12) 

 
Results 
 
We introduce two dimensionless quantities: the relative size 
of the entrance region of the pore r, Eq. 13, and a 
nondimensional current density j, Eq. 14: 
 

h
dr =   0<r<1/2   (13) 

 

cqD
Jhj =    (14) 

 
From these, we derive the formulas of the dimensionless 
current densities for the asymmetric triangular (j1), 
symmetric triangular (j2), and trapezoidal (j3) energy 
profiles: 
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It is worth noting that without an energy barrier (w=0) the 
current density behavior is ohmic for all three formulas, the 
same as that of the bulk solution current density, j0: 
 

uuj =)(0    (18) 
 

For the symmetric profiles, triangular and trapezoidal, the 
current density formulas are antisymmetric, i.e. j(u)=−j(−u). 
In other words, for these energy profiles there is no 
rectification. Only the asymmetric energy barrier generates 
asymmetry in the j-u curve as seen in Fig. 2. The rule here 
is that current will flow easier from the side with a smaller 
energy gradient to the side with a larger gradient, than in 
the opposite direction. This finding tells us about the 
importance of energy profile at the pore entrance.  
 

 
Fig. 2: A linear current density versus voltage plot of the three 
energy profiles (asymmetric triangular profile, j1, symmetric 
triangular profile, j2, trapezoidal profile, j3) and bulk current 
density (j0) for an energy barrier height of w = 2.15 (in kT units), 
a relative size of the entrance region of the pore of r = 0.3, and 
voltage, u, in kT/q units. The linear behavior at high voltages is 
clearly visible for the chosen voltage values. 
 

At large applied voltages, when |u|>>1, the behavior of the 
current density is quasilinear for all three formulas, as 
shown in Fig. 2. It is not a pure ohmic behavior, because 
the asymptotic line is shifted relative to the bulk current 
density, j0, but it has the same slope as that of the bulk 
current density. This linear behavior occurs analytically, 
using the approximation e–|u| ≈e–r|u| ≈ 0 in Eq. 15 and 17 for 
the asymmetric triangular and trapezoidal profiles. Thus the 
current density formulas for large voltages are 
 

r
wuj −≅1  for u>>1 and 

r
wuj
−

+≅
11  for –u>>1   (19) 

 

r
wuj −≅3  for u>>1 and 

r
wuj +≅3  for –u>>1   (20) 

 
Equations 19 and 20 also apply for the symmetric triangular 
profile simply by using r=1/2. The term w/r or w/(1–r) 
represents a threshold voltage, uT, which marks the region 
where the current density slope switches from a low value 
below uT (|u|<uT) to a large value above uT (|u|>uT). 

Below |u|<1, the current densities of the two triangular 
profiles practically coincide, as shown in the double 
logarithmic plot of current density versus voltage of Fig. 3. 
The logarithmic slope of the three current densities is 
similar to that of the bulk current density, j0, i.e. there is a 
quasi-ohmic, linear dependence between current and 
voltage at low voltages. This is analytically confirmed 
using a Taylor series expansion for |u|<<1 of the current 
density formulas. Neglecting higher order terms, we may 
represent the current density formulas for low voltages as 
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≅≅ w
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In the case of small applied voltages, the current density has 
a quasi-ohmic behavior with a gentle slope, expressing a 
low conductance, high resistance behavior imposed by the 
energy barrier height, w, through the exponential term ew.  

 

 
Fig. 3: The double logarithmic current density versus voltage 
plot of the three energy profiles (asymmetric triangular profile, 
j1, symmetric triangular profile, j2, trapezoidal profile, j3) and 
bulk current density (j0) for an energy barrier height of w=2.15 
(in kT units), a relative size of the entrance region of the pore of 
r=0.3, and voltage u>0 (kT/q units). This plot mainly shows the 
linear behavior of the current densities at small voltages. 
 

For the "inverse current" region, u>0, the current density 
for the asymmetric triangular profile, j1, coincides with the 
current density for the symmetric triangular profile, j2, at 
low voltages (u<1) and for large voltages, above uT, j1 it is 
similar with the current density of the trapezoidal profile, j3, 
as shown in Figs. 2 and 3.  

For the j-u characteristic plotted here, there are two 
distinct regions of quasi-linear behavior: near the origin 
(|u|<1), a slow rising quasi-ohmic current density described 
by Eq. 21 or 22, and a fast rising linear, non-ohmic current 
density described by Eq. 19 or 20, when the potential 
exceeds a certain threshold (|u|>uT). The transition between 
these two regimes is made in a smooth nonlinear fashion.  
 
Discussion 
 
This Nernst-Planck model for the current density in a 
membrane's pore shows that the current density as a 
function of voltage has three distinct regions: 1) a low 
voltage region with a quasi-ohmic, slow rising linear 
current density whose slope depends mainly on the height 
of the energy barrier, w, through the exponential term ew; 2) 
an intermediate voltage region with a nonlinear current-
voltage dependence; and 3) a high voltage region with a 
non-ohmic, fast rising linear current whose slope is equal to 
that of the bulk current density, but shifted relative to it by a 
threshold voltage, uT, which is also the potential energy 
gradient at the pore entrance, w/r.  

Here we consider the j-u relationship quasi-ohmic at 
low voltages because the ratio j/u is constant and thus 
follows the standard Ohm's law. For the linear j-u 
relationship at high voltages the ratio j/u is not a constant 
and for this reason we consider it non-ohmic.  

For voltages u>>1, the current density for the 
asymmetric triangular profile, j1, coincides with the current 
density for the trapezoidal profile, j3, as seen in Fig. 2. This 
fact indicates that the potential energy gradient at the pore 
entrance, w/r, controls the current density behavior and that 
the potential energy gradient at the pore exit has no 
influence upon the current density, as shown by Eqs. 19 and 
20. 

Such a behavior of the current is found in porated 
bilayer lipid membranes [17] and in protegrin 
transmembrane pores [18], for example. There are other 
experimental situations where these two linear regimes are 
clearly visible. In some lipid pores the I–V curve is linear 
from approximately −150 to +150 mV, and the I–V relation 
becomes non-linear when |V|>150 mV [19]. At 
intermediate pH values of the bathing solution, in 
polymeric-synthetic nanopores (double-conical pore) the I–
V curve deviates from the linear behavior in a similar 
fashion with our model [4]. In a synthetic conical nanopore, 
the current-voltage curve shows a mild linear slope for 
"inverse current" and a steeper slope for "direct current", 
the milder slope for the "direct current" being less visible 
for the chosen voltage scale, but more visible for 20 mM 
KCl [20]. The I–V relation in cellular ion channels, usually 
asymmetric, has a similar aspect with ours [2, 21]. 

The energy profiles used here simplify calculations and 
are also good approximations for many practical problems. 
For example, a triangular profile for the energy barrier 
arises from a more elaborate calculation of the ion self-
energy inside the pore [22, 23], and the asymmetrical 
triangular profile explains the ratchet mechanism in 
Brownian motors [5].  

The effects of asymmetry are now used in nanofluidic 
diodes [3, 4], for example, and in nanoslits [24]. The energy 
asymmetry can be obtained from the geometrical 
asymmetry of the pore, like in synthetic conical pores [25] 
or intentional misalignment in nanoslits [24], and from 
surface charges due to manufacturing processes [3,20,26]. 
Similarly, in biological channels, this asymmetry can arise 
from the inherent geometrical asymmetry of the protein 
pore [1,18] and/or from the charged state of the protein pore 
or the phospholipids heads of the lipid membrane [18,27]. 
In addition, the charged state of the pore's wall can be 
trimmed by the surrounding solution pH [2] or by changing 
the surface chemical composition [20]. 

The asymmetry of the potential energy profile at the 
pore extremities is very important for the rectification effect 
to occur. Other researchers have demonstrated this fact with 
somewhat different theoretical approaches, using the 
Smoluchowski equation [28] and Poisson-Nernst-Planck 
equations [29]. Our approach has the advantage of 
providing a direct link between cause and effect, 
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embedding the complicated part of the pore physics into the 
potential energy profile. Molecular or Brownian dynamics 
can estimate the potential energy profile inside the pore by 
computer simulation [10,26].  

Finer details and a more rigorous analytical approach 
that includes kinetic effects, steric effects, large voltages, 
etc. can be achieved using the method employed by Bazant 
[11,14]. Different I-V curves that markedly differ from the 
one presented here are obtained in low concentration 
electrolytes or at large voltages [24], but such cases that 
imply ionic crowding or depletion are beyond the scope of 
this paper. 

This simple model tells us that an uncharged conical 
pore will rectify equally well the ionic current for anions 
and cations because the self-energy is proportional to q2. If 
the pore has a charged wall, the ionic current for anions and 
cations will differ markedly, because the Coulomb 
interaction is proportional to q. Therefore, the pore will 
present charge selectivity because the anions and the 
cations will sense a different potential energy inside the 
pore, a fact already found experimentally [20].  

Another important practical problem is the current-
voltage characteristic of the skin. The manner in which 
human skin responds to an externally applied electric field 
is of importance for several medical applications with either 
a diagnostic or treatment purpose [30]. The skin and 
particularly the outer stratum corneum is a porous 
membrane with a strong nonlinear response to applied 
voltages or currents [31, 32], which also has a measurable 
asymmetry [33-35].  

Usually, Bode plots, Nyquist representations, Cole 
diagrams/formulas, or equivalent electrical circuits 
descriptively present the skin's electrical response. In order 
to understand the large changes in skin resistance at high 
voltages, Weaver and his collaborators have developed an 
explicative theoretical model for the skin electrical behavior 
[8], starting from electroporation studies in bilayer lipid 
membranes [16]. The electroporation phenomenon 
drastically changes the electrical behavior of the skin. The 
applied voltage modifies the number of pores in the skin, 
with a rate of pore creation that depends exponentially on 
the squared voltage [36].  

Electroporation theory consistently describes skin 
behavior at large voltages, but for low voltages there is not 
yet an accepted theory for skin electrical nonlinearity and 
asymmetry. Current models for skin at low voltages have 
taken into account the appendageal macropores [36] and 
sweat pores [33], but for low voltage across the skin (<5V) 
where electroporation is supposed to be absent, however, 
the current-voltage characteristic of the skin has a strong 
similarity to our model [36]. In order to develop medical 
applications based on the electrical properties of human 
skin such as low voltage iontophoresis for drug delivery 
[37, 38], an in-depth understanding of these properties is 
required. Complex modeling of the skin [7,8,36] can be 
improved by taking into account the single pore effects 
described by our model. 

The Nernst-Planck model presented in the current paper 
has only two assumed parameters with a clear physical 
meaning, the energy barrier height, w, and the relative size 
of the entrance region of the pore, r. This is an important 
advantage for fitting and interpreting experimental data. 
The low voltage domain of linear current shown by this 
model has not yet experimentally explored, despite the fact 
that it offers direct information about the energy barrier 
inside a membrane's pore. Additionally, the high voltage 
domain of linearity validates the values for w and r, when it 
is accessible. For all these arguments, we believe this 
simple model for the current-voltage nonlinearity and 
asymmetry of a pore is a good starting point for explaining 
the electrical behavior of pores, with wide applications to 
many research fields. 
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