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Abstract 
Using the fractional calculus approach, we present the Laplace 
analysis of an equivalent electrical circuit for a multilayered 
system, which includes distributed elements of the Cole model 
type. The Bode graphs are obtained from the numerical simulation 
of the corresponding transfer functions using arbitrary electrical 
parameters in order to illustrate the methodology. A numerical 
Laplace transform is used with respect to the simulation of the 
fractional differential equations. From the results shown in the 
analysis, we obtain the formula for the equivalent electrical circuit 
of a simple spectrum, such as that generated by a real sample of 
blood tissue, and the corresponding Nyquist diagrams. In addition 
to maintaining consistency in adjusted electrical parameters, the 
advantage of using fractional differential equations in the study of 
the impedance spectra is made clear in the analysis used to 
determine a compact formula for the equivalent electrical circuit, 
which includes the Cole model and a simple RC model as special 
cases. 

Keywords: Bioimpedance, fractional calculus, Nyquist and Bode 
diagrams, numerical Laplace transform. 

 
 
Introduction 
 
According to Rigaud [1] who at the beginning of the 20th 
century began to study the structure of biological tissues 
based on their electrical properties, biological tissues are 
conductors and their resistance varies with frequency. The 
electrical property of any biological tissue depends on its 
intrinsic structure. In the case of human skin, the impedance 
can vary with the thickness and moisture content of the 
organ, the concentration and activity of sweat glands, 
injuries, age of subject and environmental factors such as 
temperature and humidity. Electrical impedance studies in 
biological systems, including human skin, generally, relate 
to direct measurements of impedance and phase angle as 
functions of frequency, voltage, or current applied [2-6]. In 
1974, Burton [7] applied Bode analysis to measurements of 
impedance and phase angle of the skin. Through this 
method, a passive equivalent circuit can be used and 
considered as a "black box" to plot its impedance and phase 
angle versus frequency. The only necessary assumption is 
that the system consists entirely of linear passive elements 

[7-8]. Although the resulting model is not necessarily 

unique [7], it describes the system with great precision in 
the range of frequencies studied.  

Electrical impedance spectroscopy (EIS) has proven 
useful in the characterization of biomaterials by recording 
the behavior of their intrinsic properties while evaluating 
the bioelectrical response of the system as a sinusoidal 
excitation signal is applied [9]. It has also been used to 
measure biological tissues in which the electrical 
impedance depends on water content and ionic conduction 
in the body. It should be noted that the terms “electrical 
impedance” and “resistance” are often used without 
distinction in literature [10]. In terms of frequency, some 
researchers have reported that when the frequency is less 
than or equal to 10 kHz, the current does not cross the cell 
membrane, and thus the resistance obtained is relative only 
to the extracellular mass [11]. This electrical conductivity is 
small in adipose tissue compared to fat-free tissue. The 
resistivity of components such as blood (150 Ωcm) or urine 
(40-200 Ωcm) is low, muscle (250-2000 Ωcm) and fat 
(2000-5000 Ωcm) are intermediate, and bone (10 000 Ωcm) 
is high. In the measurement of bioimpedance an electrical 
stimulus is applied and the response produced on a specific 
region of the body is analyzed. Usually, the stimulus is an 
alternating current signal of low amplitude intended to 
measure the electric field or potential difference generated 
between different parts of the tissue. The relationship 
between the data of the applied stimulus and the response 
obtained as a function of frequency provides the impedance 
spectrum of tissues studied [12]. 

Transfer function analysis is a mathematical approach 
to relate an input signal (or excitation) and the system 
response. The ratio formed by the pattern of the output and 
the input signal makes it possible to find the zeros and 
poles, respectively [12]. A space state representation is a 
mathematical model of a physical system described by a set 
of inputs, outputs and state variables related by first order 
differential equations that are combined in a first order 
matrix differential equation. So as not to be affected by the 
number of inputs, outputs, and states, the variables are 
expressed as vectors, and algebraic equations are written in 
matrix form.  

http://dx.doi.org/10.5617/jeb.225
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To analyze the behavior of the transfer function in the 
frequency domain, several graphical methods were used, 
such as Bode plots that provide a graphical representation 
of the magnitude and phase versus frequency of the transfer 
function [12]. Nyquist plots are polar plots of impedance 
modulus and phase lag [12]. One of the biggest drawbacks 
of working in polar coordinates is that the curve no longer 
retains its original shape when a modification to the system 
is made. For instance when the loop gain is altered, the 
magnitude-phase trace shifts vertically without distortion. 
However, when the properties of the phase are changed 
independently without affecting the gain, the magnitude-
phase trace is affected only in the horizontal direction. 

The Cole impedance model was postulated in its final 
form by Kenneth Cole in 1940 [13]. This impedance model 
is based on replacing the ideal capacitor in the Debye 
model [14] for a general element called constant phase 
element (CPE). The analysis of the Cole impedance model 
requires three things: (1) an equivalent circuit; (2) the 
development of the corresponding equations; and (3) a 
simulation which gives the complex impedance behavior.  

The Cole model is represented by a series resistor (Rs), 
a capacitor (Cp) and a resistor in parallel (Rp), n is the order 
of the power that best fits the model obtained. Algebraically 
the circuit can be said to represent the total impedance as: 

1 ( )
.T S

RP
nj R CP P

Z R
ω+

= +                           (1)              

Using the Cole model parameters, this model 
corresponds tissue impedance values with the values of the 
components of circuit models [15]. 

Introduction to fractional calculus 

Fractional calculus (FC) is nearly as old as the conventional 
calculus, but is not very popular within many scientific and 
engineering communities. The idea of FC seems to be quite 
a strange topic and very hard to explain, due to the fact that 
it is not related to some important physical meaning, such 
as velocity and acceleration, unlike commonly used 
differential calculus. For this reason it has long been of 
interest only to mathematicians. On the other hand, many 
physical phenomena have "intrinsic" fractional order 
descriptions and so FC is necessary in order to explain 
them. In many applications FC provides more accurate 
models of the physical systems than ordinary calculus does. 
Because of its success in description of anomalous 
diffusion [16-18], non-integer order calculus both in one 
and multidimensional space, has become an important tool 
in many areas of physics, mechanics, engineering, and 
bioengineering [19-26]. Fundamental physical consider-
ations in favor of the use of models based on derivatives of 
non-integer order are given in Caputo & Mainardi and 

Westerlund [27-28]. Fractional derivatives provide an 
excellent instrument for the description of memory and 
hereditary properties of various materials and processes. 
This is the main advantage of FC in comparison with the 
classical integer-order models, in which such effects are in 
fact neglected. The other large field requiring the use of FC 
is the theory of fractals [29]. The development of the theory 
of fractals has opened further perspective for the theory of 
fractional derivatives, especially in modeling dynamical 
processes in self-similar and porous structures.  

To analyze the dynamical behavior of a fractional 
system it is necessary to use an appropriate definition of 
fractional derivative. In fact, the definitions of the fractional 
order derivative are not unique and there exist several 
definitions, including Grünwald-Letnikov, Riemann-
Liouville, Weyl, Riesz, and the Caputo representation. In 
the Caputo case, the derivative of a constant is zero and we 
can properly define the initial conditions for the fractional 
differential equations so that they can be handled 
analogously to the classical integer case. Caputo derivative 
implies a memory effect by means of a convolution 
between the integer order derivative and a power of time 
[30-33]. For these reasons, in this paper we prefer to use the 
Caputo fractional derivative defined by: 

( )1 ( )
( ) ,1( ) 0 ( )

nt f
D f t dnn t

τγ τγγ τ
=  + −Γ − −

              (2)   

where n-1<γ<n, and f(n)(τ) represents the derivative of order 
n, real function evaluated in t. Working with this definition 
is important because of its ability to be implemented 
numerically [34]. Another very important feature in the 
form of Caputo fractional derivative is that its Laplace 
transform is: 

{ } 1 ( ) 1( ) ( ) (0)
0

n k kL D f t s F s f s
k

γ γ γ− − −= − 
=

     (3) 

From equation (3), using the initial conditions f(k)(0) 
where k is integer we can see that the representation of the 
Caputo derivative in Laplace domain reduces to: 

{ }( ) ( )L D f t s F sγ γ=                      (4) 

This is consistent with the usual definition of the 
Laplace transform when γ is an integer. In general, a 
fractional order differential equation has the form 

( ) ( ),
0

kn
a D f t g tkk

γ
=

=

                       (5) 

where ɣk>ɣk-1 and ak are any real numbers and g(t) is the 
source of a dynamic system. The inverse transform 0<ɣ≤1 



Gómez et al.: Fractional calculus bioimpedance modeling. J Electr Bioimp, 3, 2-11, 2012

4

requires the introduction of a special function, the Mittag-
Leffler function, where Γ is the gamma function defined as 

( ) ,    ( , 0),, 0 ( )

mt
E t a ba b m am b

∞
= >

= Γ +

       (6) 

From (5) if a=1, b=1, then  we obtain the expression 
E1,1(t)=et. Therefore, the Mittag-Leffler function includes 
the exponential as a special case. 

Numerical Laplace transform  

The Laplace transform is a useful tool for analyzing linear 
systems because it simplifies the problem of dealing with 
differential equations in the time domain by converting 
them into algebraic equations within the frequency domain. 
The numerical Laplace transform (NLT) is essentially a 
modified discrete Fourier transform (DFT) through a 
windowing function (Gibbs phenomenon) and a stability 
factor (aliasing) [35]. Development of the NLT and its 
application to the analysis of systems has been well 
documented over the past 40 years [36-37]. However, its 
use has traditionally limited the analysis of problems where 
the result can be expressed in terms of simple functions that 
allow the use of tables of Laplace transforms [38]. When 
using discrete techniques in the frequency domain 
computation time becomes an important factor since it 
requires a certain amount of time to transform the data from 
the frequency domain to the time domain or vice versa. 
However, by using the fast Fourier transform (FFT) the 
time necessary for computation is greatly reduced and as a 
result the techniques of analysis in the frequency domain 
become an attractive option.  

Sheng investigated the validity of applying numerical 
inverse Laplace transform algorithms in fractional calculus 
[39]. In a paper of Gómez an overview of a methodology 
based on the NLT and its application to analysis of a three 
physical system from the point of view of FC is discussed 
[40].  

In this work for the multilayer biological system, we 
propose an analysis of an electrical circuit equivalent 
consisting of epidermis, dermis and the subcutaneous 
tissue. The response of the Bode diagram is interpreted and 
compared with the response to the modeling of integer 
order (using transfer function analysis) and fractional order 
(obtained through NLT techniques). The modeling of 
electrical impedance spectra applied to the study of 
experimental data of blood is made using the Cole model 
electrical impedance equations. The Nyquist diagrams 
(frequency response) are also compared for both integer 
and fractional order model responses.  

 
 

Methodology 
 
Complex electrical circuit in the Laplace space and its 
application to distributed elements 

In order to apply the general theory to the skin type system, 
we propose an equivalent electrical circuit for each 
component of the skin. Fig. 1 shows the schematic diagram 
to describe the proposed model of the skin, where Ra and Rb 
are the contact resistances of the electrodes, De represents 
the equivalent circuit of the dermis (R1, C1, R2, C2, R3, C3), 
G corresponding to the fat equivalent circuit (R4, C4, R5, C5, 
R7, C7), and finally, the circuit for the muscle (R6, C6). 
Dividing the equivalent circuit in the corresponding layers: 
dermis, subcutaneous tissue (fat) and muscle, we will 
consider it as an electrical network with the following 
parameter values, which in Fig. 1 appear as per unit values 
[12], and correspond to Ra=Rb=0.08, R1=R2=R3=0.4, 
C1=C2=C3=0.2, R4=R5=R7=0.7, C4=C5=C7=0.3, R6=0.5, 
C6=0.5.  

 

Fig. 1: Equivalent electrical circuit to the biological system. 

It is known that in biological systems, the module of 
the impedance is inversely dependent on frequency and 
does not show phenomena of conversion of electrical 
energy to magnetic energy [41-42]. Therefore, it is 
considered appropriate to model a biological system as only 
having capacitive and resistive behavior. Fig. 2 shows the 
circuit equivalent to the first layer of the system. Applying 
Kirchhoff's Laws the following representation of state 
equations is obtained: 

                                    x Ax Bu= +                                   (7) 
y Cx Du= +                                   (8) 

where 
1 1

1 1 1 ,
a b

A C R R R
 
  
 

= − +
+

    ( )1

1 ,
a b

B C R R= +   

 
x  is called the state vector, y is the output vector and u is a 
vector of inputs (or control). A is the matrix of states, B is 
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the input matrix, x is a column vector representing the 
voltage on the capacitor, C is the matrix output (voltage on 
the capacitor that models the dermis), C1=1 and D is the 
feedforward matrix (for this model D=0). The values of the 
parameters of the circuit in Fig. 2 correspond to 
Ra=Rb=0.08, C1=0.2 and R1=0.4. The transfer function of 
the first layer is  

.
31.25

( )
43.75

H s
s

=
+

                                (9) 

 

 

Fig. 2: Equivalent electrical circuit to the first layer of the model. 

Fig. 3 shows the corresponding Bode plot. 
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Fig. 3: Bode diagram for the first layer. 
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The circuit parameters are chosen by establishing that 
the array is not indeterminate. If any row of the matrix is 
zero, a branch of the circuit (Fig. 1) has been removed. 
 

Following the above procedure, we next obtained the 
equations of state considering only the first two layers and 
finally for all three layers and their corresponding Bode 
plots, showing the effect of each layer. In equations (10) 
and (11) the matrices and vectors for A, B, C and D, for the 
first two layers and all three layers, respectively, are 
shown. The matrix representation is a two-dimensional 
table of numbers consisting of abstract quantities that can 
be added and multiplied. The equations (10) and (11) 
describe the system of linear equations and keep track of 
the coefficients of linear recording data that depend on 
various parameters. 

The transfer functions of the second and third layers 
are shown in equations (12) and (13), respectively. 

 
3 2

380.5 5528
( ) .

55.03 862.6 3983

s
H s

s s s

+
=

+ + +
           (12)          

3 2

5 4 3 21562 16160
( )

103.9 3946 4.916 199900

66.98 73340 109400
H s

s s s

s s s s s+ +
=

+ + +

+ + +
(13) 

In each case, (12) and (13), the input passes through 
the circuit and reflects the voltage of the capacitor under 
study. Thus, the transfer function is related to a different 
output in each case for the same input. Fig. 4 shows the 
Bode diagram corresponding to the second and third layer.  
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Fig.. 4: Bode diagram for the first, second and third layers. 

Fractional analysis of the general model in the Laplace 
space and general model for the equivalent electrical 
circuit  

Applying the formalism of fractional calculus to the circuit 
of Fig. 2 gives the fractional Laplace transform. For this 

purpose, the fractional time derivative operator of order γ 
can be written as follows 

,       0 1,
d
dt

γ

γ γ< ≤                           (14) 

where γ  is an arbitrary parameter, which representing the 
order of the derivative and in the case γ=1 becomes the 
usual derivative operator d/dt.  

Expression (14) is not an ordinary (usual) time 
derivative operator because the dimensionality is s-γ. In 
order to retain consistency of units (dimensionality) we 
introduce a new parameter, σ, as follows  

1 ,
1       -1 ,

dd n ndt dt

γ

γ γ γ
σ −→ < ≤              (15) 

which is true if the parameter σ has dimensions of seconds,  
[σ] = s, and n is an integer [43].  

Expression (15) is a time derivative in the usual 
sense, because its dimension is s-1. The parameter σ 
represents the fractional time components in the system 
(such components change the time constant of the system). 
This non-local time is called the cosmic time in the 
literature [44]. Another physical and geometrical 
interpretation of the fractional operators is given in 
Moshre-Torbati and Hammond [45].  

The fractional differential equation for the circuit of 
Fig. 2 is 

( )( )1

1

1 1

1 1
,

( )
a

c
a b

c b

b a

dV R R R V U
C R R R C R Rdt

γ γσ σ− −    +                

+= − +
+ +

(16) 

the parameter values appear as per unit values [12] and 
correspond to Ra=Rb=0.08, C1=0.2 and R1=0.4.  

 The Laplace transform for (16) is 

[ ]

1

1 1

1
1 1 1

.( )
( )( ) a b

a b

U
V s

s C R RC R C R R

γ

γ γ
γ

σ
σ σ

−

− −=
+ + ++

 
  

  (17) 

Applying NLT algorithm to the frequency response 
obtained is shown in Fig. 5. As a case study the values of 
γ=0.95 and γ=0.98 were used. 
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Fig. 5: Bode diagram corresponding to the first layer, fractional exponent 
γ=0.95 

 Fig. 6 shows the comparison for the Bode diagram 
for the integer order and the fractional order. The second 
and third layers had similar results. 

Modeling of experimental data of blood tissue 

Three samples were obtained from the blood transfusion 
center in Leon, Guanajuato. 
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Fig. 6: Bode diagram comparison corresponding to the first layer, integer 
order and fractional exponent γ=0.95 and γ=0.98.   

All of the samples were clinically examined according to 
the blood transfusion protocol, to confirm they were free 
of contagious diseases such as HIV, hepatitis, and 
brucellosis. Cell populations were monitored through a 
counting study using a flow cytometer type Coulter. This 
was done so that cell mortality did not affect the results. 
To obtain the electrical impedance spectra a Solartron® 
1260 was used. The fidelity of the frequency sweep for 
these tests was important since it shows the characteristic 
spectrum of the sample, which is necessary for a 
comparison with the electrical parameters of an equivalent 
circuit. The frequency range used was from 10Hz to 
100kHz. The samples were placed in Bayer® strips. A 

frequency sweep with constant voltage amplitude of 25 
mV was applied through two electrodes integrated in the 
Bayer® container. All test points were coated with silver 
and therefore had negligible contributions to polarization, 
and thus did not need to be compensated for. Once the 
measurements were represented in a Nyquist diagram, we 
obtained representations of equivalent electrical circuits 
via the software ZView®. The method of "instant 
adjustment" was used to fit the data to predefined circuit 
models. Fig. 7 shows the equivalent network for the 
measurement of erythrocytes, leukocytes and plasma. 

 

Fig. 7: Equivalent electrical circuit for data of blood tissue, erythrocytes, 
leukocytes and plasma. 

Table 1: Values for the erythrocytes, leukocytes and plasma. 

 Erythrocytes Leukocytes Plasma 
 

Rs 
627.2 
673.7 
715.9 

444.4 
475.6 
460.1 

431.4 
496.5 
460.8 

 
Cp 

2.2081×10-8

2.2900×10-8 

2.2575×10-8 

2.43×10-8 
2.188×10-8 

2.2336×10-8 

2.4055×10-8 
2.1517×10-8 
2.4114×10-8 

 
Rp 

149970 
120710 
136930 

358000 
341550 
332340 

261960 
273750 
252250 

 

Table 1 shows the values for the erythrocytes, 
leukocytes and plasma, for the samples 1, 2, and 3, 
respectively. The units of resistance are in ohms and the 
capacitors are farads.  

To determine the equivalent equation, the impedance 
is found by the following formula in the complex 
frequency domain: 

( )
( )

( )

V s
Z s

I s
=                              (18) 

Applying Kirchhoff laws to the circuit of Fig. 7, we have: 

s pV R i Vc= +                            (19) 

R ci i i= +                               (20) 
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Before applying the Laplace transform of (19) and (20) the 
following considerations must be made 

p
R

p

Vc
i

R
=                               (21) 

p
c p

dVc
i C

dt
=                              (22) 

Working with our definition of the fractional derivative 
[33], (21) and (22) become: 

p
R

p

Vc
i

R
=                              (23) 

p
c p

d Vc
i C

dt

γ

γ=                            (24) 

Substituting (23) and (24) into (20), we obtain: 

p p
p

p

Vc d Vc
i C

R dt

γ

γ= +                    (25) 

Applying the Laplace transform to (19) and (25): 

( ) ( ) ( )s pV s R I s Vc s= +                     (26) 

1

( )
( ) ( )p p

p
p

Vc s C
I s s Vc s

R
γ

γσ −= +                 (27) 

Finally from (26) and (27) we have: 

             

1

( )
1

p
s

p p

R
Z s R

R C
sγ

γσ −

= +

+

                     (28) 

If, s=(jω), we have: 

  

1

( ) .

1 ( )

p
s

p p

R
Z j R

R C
j γ

γ

ω
ω

σ −

= +

+

                  (29) 

Equation (29) is the result of the fractional temporal 
operator in the equation for the RC equivalent circuit; this 
general formula includes an arbitrary constant, σ, which 
can be considered its own bioelectric parameter. In the 
particular case of σ=RPCP, the model is reduced to the Cole 
model. On the other hand, if we make γ=1, we obtain an 
ideal RC circuit. Figs. 8, 9 and 10 show the experimental 
results represented in the form of a Nyquist plot (lines with 
circles), the plot obtained from the solution of the circuit 

of Fig. 7 ( line with +), and the plot obtained by applying 
the definition of fractional calculus (line with *). Nyquist 
diagrams are sensitive to changes in the spectra of similar 
samples but even in this representation we can see that the 
measurements on the same type of cell (erythrocytes) 
present a similar behavior: semi-circles with a diameter of 
around 150 kΩ. The description of the spectra for both 
leukocytes and plasma leads to a similar argument about 
the reproducibility of the experiment.  

Results 
 

In this work we have analyzed in detail the transfer 
function of a multilayer system. Fig. 3 shows the Bode plot 
to the magnitude (top graph) and phase (bottom graph). In 
the first graph of Fig. 3, we see by increasing frequency, 
from the cutoff frequency (30 rad/s), the magnitude 
decreases at a rate of 20 dB/decade, while for frequencies 
below the cutoff magnitude it is almost constant. 
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Fig. 8: Nyquist diagram for erythrocytes showing reactance as a function 
of resistance. 

This means that the current through the dermis is higher 
with decreasing frequency and is lower as the frequency 
increases. This means that the current through the dermis 
increases for higher frequencies. The attenuation in the 
first layer is solely due to the resistance of the electrodes. 
The current flowing through these resistors at low 
frequencies causes a Joule effect, which raises the 
temperature and therefore the kinetic energy of the 
molecules that make up the layer [42]. As the frequency 
increases, other phenomena occur, such as displacement 
currents, ionization, polarization, and so on. Concerning 
phase, we have shown that by increasing frequency the 
displacement current and polarization are also increased 
(Fig. 3, bottom graph). This causes a decrease in phase 0° 
to -90° for very high frequencies. 
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Fig. 9: Nyquist diagram for leukocytes showing reactance as a function of 
resistance. 
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Fig. 10: Nyquist diagram for plasma showing reactance as a function of 
resistance. 

There is not a significant decrease in the rate of change of 
the magnitude on the frequency, as can be seen from 
equations (9) and (10), where the difference in poles and 
zeros is two. By increasing the number of layers, the 
output voltage in the layer farthest from the source is 
attenuated at a faster rate due to the resistance of the 
previous layers and the increase in frequency. Thus the 
current in the deeper layers of the skin decreases more 
rapidly with increasing frequency. Fig. 4 shows that 
adding layers to the model changes the cutoff frequency – 
hence the shift in the phase – and the magnitude decreases 
from 20 dB/decade to 40 dB/decade. For the range of 
frequency 10 to 100 rad/s a shift in the magnitude and 
phase is shown, which implies that the proposed circuit 
better defines these frequencies.  
 

In the first graph of Fig. 5, we see that by increasing 
frequency from the cutoff frequency (10 rad/s), the 
magnitude decreases at a rate of 6 dB/decade, while for 
frequencies below the cutoff magnitude it is almost 

constant. This means that the current through the dermis is 
very high with decreasing frequency and is very low when 
the frequency increases. The current flowing through these 
resistors at low frequencies causes a fractional Joule effect 
(behavior between a system conservative and dissipative), 
which raises the temperature and therefore the kinetic 
energy of the molecules that make up the layer. 
Concerning the phase Fig. 5 (bottom graph), we have that 
by increasing frequency the displacement current and 
polarization are very much increased.  

With respect to the data of blood tissue, the families 
of curves of erythrocytes, leukocytes, and blood plasma 
are found to have similar parameters (R and C). This 
capability can be exploited experimentally for 
characterization, study, and research of blood tissue. In the 
literature it is common to characterize based on least-
squares fit of equivalent electrical circuit models on 
experimental data, including Cole models. From the 
description of the fractional differential equation models it 
can be noted that the representation of Cole models is 
derived as a particular solution to the RC circuit under 
fractional calculus. The simulations obtained from the 
fractional representation provide a better description than 
those obtained by the equations of integer order. The table 
2 shows the exponent of the fractional differential equation 
that best fits the data for erythrocytes, leukocytes and 
plasma.  

Table 2. Exponent of the fractional differential equation that best fits the 
data 

 Erythrocytes Leukocytes Plasma 
 
γ 

0.97 
0.975 
0.98 

0.98 
0.99 
0.97 

0.995 
0.99 

0.9997 
 

Discussion and Conclusions  
 
Fractional calculus has been used successfully to modify 
many existing models of physical processes. The 
representation of equivalent models in integer order 
derivatives provided a good approximation of the 
bioelectric response of the model. However, with the 
formal introduction of fractional calculus to the study of 
fractional derivative systems have a better approximation 
of this response. This is due in part to the nature of 
systems described by fractional calculus. 

On the basis of Cole’s proposal to add a degree of 
extra freedom to solve the RC circuit for characterization 
purposes and to improve the correlation in the adjustment 
to experimental data, we have developed analytical 
arguments to derive this result based on integration in 
weighted individual relaxation processes. However, the 
distributions of relaxation times involve complex functions 
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and are difficult to measure. This study has shown a 
pattern in which the Cole type behavior appears as a result 
of competition between a capacitive and resistive behavior 
within the sample, characterized by the fractional order 
derivative of the applied voltage. The new generalized 
model includes the Cole model and the simple RC circuit 
as particular cases. 

The models for EIS are assumed to be linear in their 
first approximation. The electrical parameters only take a 
nonlinear behavior in the case of tissue damage due to the 
excessive power in the supply or in the presence of 
physical and chemical reactions in the sample induced by 
the input current (exothermic processes or release of 
electrons). The electrical conduction, even for alternating 
current, has impedance that depends on the temperature, 
which turns the frequency response into a function of 
temperature. 
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