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Abstract 
A Block Matrix based Multiple Regularization (BMMR) 
technique is proposed for improving conductivity image quality in 
Electrical Impedance Tomography (EIT). The response matrix 
(JTJ) has been partitioned into several sub-block matrices and the 
largest element of each sub-block matrix has been chosen as 
regularization parameter for the nodes contained by that sub-
block. Simulated boundary data are generated for circular domains 
with circular inhomogeneities of different geometry and the 
conductivity images are reconstructed in a Model Based Iterative 
Image Reconstruction (MoBIIR) algorithm. Conductivity images 
are reconstructed with BMMR technique and the results are 
compared with the Single-step Tikhonov Regularization (STR) 
and modified Levenberg-Marquardt Regularization (LMR) 
methods. Results show that the BMMR technique improves the 
impedance image and its spatial resolution for single and multiple 
inhomogeneity phantoms of different geometries. It is observed 
that the BMMR technique reduces the projection error as well as 
the solution error and improves the conductivity reconstruction in 
EIT. Results also show that the BMMR method improves the 
image contrast and inhomogeneity conductivity profile by 
reducing background noise for all the phantom configurations.  
 
Keywords: EIT, MoBIIR, Jacobian, Block Matrix-based Multiple 
Regularization (BMMR), simulated boundary data, conductivity 
imaging, STR, LMR, normalized projection error, normalized 
solution error. 
 
 
Introduction 
 
Electrical Impedance Tomography (EIT) [1-4] is a 
computed tomographic technique in which the electrical 
conductivity or resistivity distribution in a closed domain 
(Ω) is reconstructed from the boundary potentials 
developed by a constant current signal injected at the 
domain boundary (∂Ω) (Fig.-1). EIT has been researched 
extensively in medical diagnosis [5-11] and other fields of 
science and engineering [12-15] due to its number of 
advantages [16-18]. A practical EIT system has, generally, 
poor signal to noise ratio [19] and poor spatial resolution 
[20] due to the factors associated with it. The boundary data 
profile [21] of the practical phantom [22-26] is highly 
sensitive to modeling parameters [27] such as the phantom 
structure [23, 26], surface electrodes geometry [21], 
experimental errors [23, 26, 28] and errors of the EIT-

instrumentation [29-32]. That is why there are a number of 
opportunities and challenges in EIT to make this 
technology as an efficient medical imaging modality like 
other popular tomographic techniques available [33] by 
improving its image quality. Reconstructed image quality 
depends on the boundary data error and the performance of 
the reconstruction algorithm. The performance of the 
reconstruction algorithm again depends on the Jacobian 
matrix (J), response matrix (JTJ), regularization technique 
used and the regularization parameter (λ).  

EIT is a nonlinear ill-posed inverse problem [27] in 
which a small amount of noise in the boundary 
measurement data can lead to enormous errors in the 
estimates. Regularization techniques [27, 34-35] are, 
generally, incorporated in the reconstruction algorithm to 
constrain its solution domain by making the problem well-
posed. Hence the image quality in EIT greatly depends on 
the regularization technique and the regularization 
parameter (λ) used in the reconstruction algorithm. The 
regularization parameter (λ) in Single-step Tikhonov 
regularization (STR) [27] is taken as a constant value along 
the diagonal elements of the response matrix JTJ. On the 
other hand, in the Levenberg-Marquardt regularization 
(LMR) [36] method, λ is taken as the largest element of the 
response matrix JTJ (max(max(JTJ))) or any other suitable 
constant real number and then it is gradually decreased by a 
factor of 10  or any other suitable constant from iteration to 
iteration. Hence, in the STR and LMR methods, the 
regularization parameter is set as a small constant number 
in all the iterations of the reconstruction process. Thus the 
regularization effect remains the same all over the domain 
(for all the nodal positions). As a result, the local or 
regional physiological attributes of the domain under test 
are not taken into account in the STR and LMR methods.  

In this paper, the local physiological information is 
preserved through the multiple regularization process which 
is then integrated to the ill-posed inverse problem to make 
the regularization more effective and optimum for the 
whole domain. In this direction a regional block matrix 
based multiple regularization (BMMR) method [37] is 
proposed for EIT. The BMMR regularization technique 
preserves the spatial information over the domain and gives 
contrast regularization along the diagonal nodes of the 
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system matrix. The BMMR method is integrated in a Model 
Based Iterative Image Reconstruction (MoBIIR) algorithm 
[38] developed and the impedance image reconstruction is 
studied using simulated data. Conductivity images are 
reconstructed for different phantom configurations using 
the BMMR technique and the results are compared with the 
STR and LMR methods.  

 

 
 

Fig.1: Current injection and voltage measurement in EIT for a 
closed domain (Ω) surrounded by surface electrodes at the 
domain boundary (∂Ω) (red and blue electrode represent the 
current and voltage electrodes respectively). 
 

Materials and methods 
 

Regularized Reconstruction in EIT 
 

For a low frequency (<100 kHz) sinusoidal constant 
current injection at the boundary (∂Ω) of a closed domain 
(Ω) containing a homogeneous and isotropic medium with 
low magnetic permeability (biological tissue) and electrical 
conductivity (σ), the electrical potential (Φ) developed at a 
point P (P = P (x, y) in Cartesian coordinate system) within 
Ω can be represented as [4, 18, 39-40]: 

 
( ) ( ) 0yx, yx,σ =Φ∇•∇                    (1) 

 
where ∇ is the gradient operator in the system. 
 
This nonlinear partial differential equation relating the 

conductivity to the potential in the closed domain (volume 
conductor) under test is known as the Governing Equation 
of EIT [4, 18, 39-40] and has an infinite number of 
solutions. Boundary conditions [4, 18, 39-40] are applied to 
restrict the solutions of the Eq.-1 which may be either the 
Dirichlet type or the Neumann type or a mixture of the 
previous two. Due to the insufficient known variables and 
the inherent ill-posedness of the system, direct analytical 
methods fail to get the unique solution of this problem and 
hence a minimization algorithm [39-41] is found as the best 
way to obtain its approximate solution. In the minimization 
algorithm, an objective function, formed by the difference 
between the experimental or measured data (Vm) and the 
model predicted data (Vc), is minimized by the Gauss-
Newton method [39-43] to find the approximate solution.  

Conductivity reconstruction in EIT is a nonlinear, 
highly ill-posed [39-43] inverse problem in which a small 
amount of noise in the boundary data can lead to enormous 
errors in the estimates. Hence, EIT needs a regularization 
technique [39-43] with a suitable regularization parameter 
(λ) to constrain its solution space as well as to convert the 
ill-posed problem into a well-posed one. A regularized 
solution of the inverse problem not only decreases the ill-
posed characteristics of the inverse matrix but also, it 
improves the reconstructed image quality.  

Considering Vm as the measured voltage matrix and f 
as a function mapping an E-dimensional (E is the number 
of elements in the finite element mesh [44]) impedance 
distribution into a set of M (number of the measured data 
available) measured voltage data, an object function can be 
defined as the L-2 norm of the difference between Vm and f 
[39-43]:  
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where sr is the constrained least-square error of the 

reconstruction, G is the regularization matrix and λr is a 
positive scalar called as the regularization coefficient or 
regularization parameter. 

By the Gauss Newton (GN) method the conductivity 
update vector [Δσ] is given by: 
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Neglecting higher terms and replacing f′ by J and GTG by I 
(Identity matrix), the update vector reduces to 

 

( ) ( )( )IσλfVJIλJJΔσ rm
T1

r
T −−+=

−
          (4) 

 
where the term f′ = J is known as the Jacobian matrix of 
dimension (g × h) and is defined by [39-41]: 
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Hence, the Gauss-Newton approach gives a general 
solution of the conductivity distribution for the kth iteration 
as: 
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MoBIIR Algorithm 
 
In the MoBIIR algorithm, a forward model based 

iterative image reconstruction approach based on linear 
perturbation equation is followed. The linear perturbation 
equations containing the first derivative of the forward 
operator are derived from the EIT governing equation 
(Eq.-1). It is then solved to calculate the boundary potential 
for known current conduction and conductivity using the 
finite element method (FEM) [45]. The solution of the 
forward problem is also used to compute the Jacobian (J) 
by adjoint method [46] using the Eq.-7:  

 

∫ ∇∇=
Ω ds dΩU.UJ                             (7) 

 

where Us is the forward solution for a particular source 
location and Ud is the forward solution for the adjoint 
source location (source at the detector location and detector 
at the source location). The simultaneous equation is solved 
using conjugate gradient search to obtain the update vector 
for electrical conductivities [Δσ]. 

The perturbation equation is updated by recomputing 
the first derivative after each update of the electrical 
conductivities.  
 
The MoBIIR algorithm starts with the forward solution of 
the EIT governing equation (Eq.-1) to calculate the 
boundary potential matrix [Vc] for a known current 
injection matrix [C] and a known (initial guess) 
conductivity matrix [σ0]. In the approximation algorithm a 
least square solution of the minimized object function (sr) is 
obtained which gives an estimation of a potential Vc from 
which ΔV (ΔV= Vm – Vc) is estimated for the next 
iterations. The voltage difference matrix [ΔV = Vm – Vc] is 
estimated and then it is used to calculate the conductivity 
update matrix [Δσ] using the Eq.-4. [Δσ] is used to improve 
the [σo] matrix a to new conductivity matrix [σ1 = σo + Δσ] 
(as shown in Eq.-6). In the second iteration, [σ1] is used to 
calculate a new boundary voltage matrix and a new update 
vector [Δσ1]. The [Δσ1] matrix is then used to update the 
[σ1] for obtaining a new conductivity matrix [σ2]. In this 
way at the (kth) iteration, the update vector becomes [Δσk] 
and the conductivity matrix becomes [σk+1 = σk + Δσk].  

 
Block Matrix based Multiple Regularization (BMMR) 

 
The measurement data for each projection in EIT can be 

written in the form of following system of equations: 
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where N is the number of nodes in the finite element mesh, 
xi (i = 1, 2, 3, …, N) is the conductivity at the 
corresponding nodes, aij is the coefficient of the xi 
(conductivity) at each node and bm (m = 1, 2, 3, …, M) is 
the corresponding nodal potentials and M is the number of 
boundary measurements available. From the Gauss-Newton 
method (without incorporating the regularization technique) 
the normal equation [47] can be written as:  

 
[ ] [ ] [ ] 1N1NNN BxA ××× =                           (9) 

 
where,              
 

[ ] [ ] [ ] NMMN
T

NN JJA ××× =                     (10) 
 
and,            
 

[ ] [ ] [ ] 1MMN
T

1N bJB ××× =                         (11) 
 

Hence, for EIT, Eq.-8 reduces to:      
 
 [ ] [ ] [ ] [ ] [ ] 1MMN

T
1NNMMN

T ΔVJΔσJJ ××××× =      (12) 
 
To make the ill-posed problem well-posed, a 

regularization term λI is added to the matrix A (or JTJ), 
where I is an identity matrix and λ is called the 
regularization parameter. In this context a block matrix 
based multiple regularization method is proposed which 
calculates the multiple regularization parameters from the 
system response matrix [JTJ] and form a new response 
matrix called BMMR matrix ([ZBMMR]N×N) within each of 
the inner iterations of Conjugate Gradient Search (CGS). 
The matrix [ZBMMR]N×N is formed with the diagonal 
matrices [Wi]n×n (n=√N) containing all the diagonal 
elements equal to the largest element (ηi) of the adjoint 
matrices (of their corresponding positions) of [JTJ]. 

The response matrix JTJ is rearranged by separating all 
the adjoint matrices ([Lpq]n×n: p, q = 1, 2, 3, …, n) and a 
matrix A is formed as (Fig.-2a): 

 

NNnnpq ]]L[[A ××=                       (13) 

 
where, n=√N   
 
If the matrix A is further reformed as: 

 
qp  when,]a[L nn ijpq == ×  

qp  when,Matrix, NullLpq ≠=  
 
Then, the matrix A is reduces to Y given by (Fig.-2b): 
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where, [Φ]n×n is a null matrix given by: 

 

[ ] [ ]
nnijnn aΦ

×× =                             (15) 
 

Where aij = 0 for all i and j.   
 
Now the maximum values (ηi: i=1, 2, 3, …, n) of all the 

block matrices (Lii) are calculated as:   
 

[ ]( )( )iii Lmaxmaxη =                             (16) 
 

Using ηi, n diagonal matrices ([Wi]: i=1, 2, 3, …, n) are 
formed in which all the diagonal elements of [Wi] are ηi 
and all the other elements are set as zero. Hence the [Wi] 
matrices are defined as: 
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Replacing all the diagonal adjoint block matrices ([Lii]: 

i = 1, 2, 3, …, n) by newly formed diagonal matrices [Wi] 
in matrix [Y], a matrix [ZBMMR] called the BMMR matrix is 
formed as: 

 

[ ]

[ ]
[ ]

[ ]

[ ]

[ ]
[ ]

NNnnn

nn1-n

nni

nn3

nn2

nn1

BMMR

W....
.W...

W

..W..

...W.

....W

Z

××

×

×

×

×

×

































⋅⋅⋅
⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

=

                                               

    ---- (18) 
 
Hence, the diagonal elements (nonzero elements) in the 
matrix [ZBMMR] are arranged in the following manner as 
shown as the schematic of the BMMR matrix (Fig.-2c). 
Therefore the expression of the conductivity update vector 
with BMMR technique reduces to: 
 

( ) ( )( )kBMMRm
T1

BMMR
T

k1k σλZfVJλZJJσσ −−++=
−

+        (19) 

The BMMR matrix incorporates the information produced 
by the local physiological changes in the system which is 
generally overshadowed in the STR or LMR method.   
 

 
 

 
 

 
 
Fig.2: BMMR matrix formation: (a) A matrix formation by 
defining several block matrices in JTJ matrix, (b) Y matrix 
formation from A matrix, (c) BMMR matrix or Z matrix 
formation from Y matrix. 

 

a 

b 

c 
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In the MoBIIR algorithm with STR regularization, a 
constant regularization parameter (λr= λ*η) is used where 
the η is a constant calculated as the largest element of the 
response matrix JTJ (max(max(JTJ))). Hence, in the STR 
method, the λr remains unchanged for all the iterations. On 
the other hand, in the MoBIIR with LMR method, η is 
taken as the largest element of the response matrix JTJ to 
form the λr (λr= λ*η) in the first iteration. But for all the 
other iterations, λr is gradually decreased by a factor of  

10 . Hence, in both the STR and LMR methods, the 
regularization parameter (λr) remains a small constant 
number suitably calculated (as stated above) from the 
response matrix (JTJ) in each of the iterations of the 
reconstruction process. Therefore, the local or regional 
physiological information of the nodal points in the domain 
under imaging are not taken into account in the STR and 
LMR methods. Hence, in both the STR and LMR methods, 
a constant regularization parameter is being used at each 
iteration and as a result the local or regional physiological 
attributes are not taken into account in them. Furthermore, 
due to the addition of constant regularization parameter to 
the matrix A, it perturbs the original system of equations 
and these perturbations are not based on the spectral 
information. Hence this perturbation may introduce a 
significant error in the solution as well as some unwanted 
solution could be obtained.  

For the entire study, a symmetric finite element mesh 
containing 512 triangular elements and 289 nodes is used in 
the MoBIIR both for the forward and inverse solution of the 
image reconstruction process. 
 

Image Reconstruction with Simulated Boundary Data 
 

Boundary potential data are generated by simulating a 
constant current (1 mA) injected to a circular phantom 
(Diameter (Dp) = 150 mm) with circular inhomogeneity 
with a conductivity of 0.02 S/m surrounded by a homo-
geneous background medium (conductivity = 0.58 S/m). 
Boundary data are generated with a number of phantom 
geometries simulated with circular inhomogeneities of 
different diameters (D) and situated at different distances 
(center to center distance, L) from the phantom center. Con-
ductivity images are reconstructed from all the boundary 
data in the MoBIIR with BMMR regularization technique 
and the results are compared with the STR and LMR 
methods. All the images are analyzed with their contrast 
parameters defined by their elemental conductivity profiles.  
 

Image Analysis with Contrast Parameters and Normalized 
Error Terms 

  

Contrast to noise ratio (CNR) [48], percentage of 
contrast recovery (PCR) [48], coefficient of contrast (COC) 
[48] and mean inhomogeneity conductivity (ICMean) are 
calculated for the images reconstructed by all the 
regularization techniques and regularization parameters to 
compare the reconstruction accuracy. To further analyze the 
proposed method, normalized projection error (error due to 
the voltage mismatch), EV [48] and the normalized solution 

error norm (Eσ) [48] are also calculated in the STR, LMR 
and BMMR methods for all the iterations with different 
values of λ. EV and Eσ are calculated in each iteration as: 

2
cmV VV

2
1E −=                                (21) 

 

true

truetedreconstruc
σ σ

σσ
E

−
=                          (22) 

 

Results 
 

It is observed that the projection errors (EV) in STR and 
LMR becomes minimum at λ = 0.0001 (Fig.-3a) and λ = 
0.0001 (Fig.-3b), respectively. However, in the BMMR 
method the EV becomes minimum at λ = 0.01 (Fig.-3c).  

 
 
Fig.3: Projection errors (EV) calculated in the conductivity 
reconstruction at different iterations with different values of λ: 
(a) with STR, (b) with LMR, (c) with BMMR. 

a 

b 

c 



Bera et al.: Improving conductivity image quality using BMMR technique in EIT. J Electr Bioimp, 2, 33-47, 2011

38

Conductivity reconstructions show that the EV (Fig.-4a) and 
the Eσ (Fig.-4b) in STR and LMR are larger than in the 
BMMR technique.  

To compare the image reconstruction and image quality 
in the STR, LMR and BMMR methods, the conductivity 
reconstruction is conducted first with λ = 0.01 and then 
with λ = 0.0001. For further study, the conductivity 
reconstruction is also conducted with an intermediate value 
of λ (with λ = 0.00011 and λ = 0.0011). Imaging with λ = 
0.0001 in all the methods (STR, LMR and BMMR) gives a 
more clear aspect of the proposed method (BMMR) as STR 
and LMR methods show the best result at λ = 0.0001. The 
conductivity images are also reconstructed for the phantoms 
with inhomogeneities of different diameters and different 
geometric positions using the STR, LMR and BMMR 
methods with different values of λ.  = 0.0001. Conductivity 
imaging is also studied with single, double and triple 
inhomogeneity phantoms with the STR, LMR and BMMR 
methods and the results are compared.  
 

 
 
Fig.4: Error in different regularization methods for λ = 0.01: (a) 
normalized projection errors, (b) normalized solution error norm. 
 

Single Inhomogeneity Imaging 
 
Conductivity imaging of the phantoms with single 
inhomogeneity of different diameters at different positions 

shows that the BMMR technique gives better image 
reconstruction with less background noise. Reconstructed 
images obtained in STR, LMR and BMMR with λ = 0.01 
show that, for the phantom with a circular inhomogeneity 
(D = 30 mm, L = 37.5 mm) near electrode No.-3 (Fig.-5a), 
the CNRs of the reconstructed images in STR (Fig.-5b) and 
LMR (Fig.-5c) methods are 1.91 and 2.07, respectively 
(Table-1). On the other hand, for the BMMR method (Fig.-
5d), the CNR of the reconstructed image is 2.67 (Table-1). 
Results show that, for the same phantom, the PCRs of the 
reconstructed images with the STR and LMR methods are 
37.35 % and 34.72 %, respectively, whereas it is 49.06 % 
for the BMMR method (Table-1). For the same 
reconstruction, it is also observed that the COCs of the 
reconstructed images with the STR and LMR methods are 
1.52 and 1.49, respectively, whereas it is 2.14 in BMMR 
technique (Table-1). Results also show that ICMean of the 
reconstructed images in the STR and LMR methods are 
0.41 S/m and 0.40 S/m, respectively, whereas in the 
BMMR method it is 0.24 S/m (Table-1). 

 

 
 

 
 
Fig.5: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 
(λ = 0.01): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 
 

Table-1: CNR, PCR and COC of the conductivity images of Fig.-5 
 
λ = 0.01 CNR PCR COC ICMean 
STR 1.91 37.35 1.52 0.41 
LMR 2.07 34.72 1.49 0.40 
BMMR 2.67 49.06 2.14 0.24 
 
Conductivity imaging in STR, LMR and BMMR with λ 

= 0.0001 shows that, for the phantom with a circular 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode 
No.-3 (Fig.-6a), the CNRs of the reconstructed images in 
the STR (Fig.-6b) and LMR (Fig.-6c) methods are 1.98 and 
1.12, respectively (Table-2). On the other hand, for the 
BMMR method (Fig.-6d), the CNR of the reconstructed 
image is 2.67 (Table-2). Results show that, for the same 

c d 

a b 

a 

b 
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phantom, the PCRs of the reconstructed images with the 
STR and LMR methods are 46.30 % and 28.25 % 
respectively whereas it is 68.76 % for BMMR method 
(Table-2).  

For the same reconstruction, it is also observed that the 
COCs of the reconstructed images with the STR and LMR 
methods are 2.05 and 1.46, respectively, whereas it is 4.60 
in BMMR technique (Table-2). It is observed that ICMean of 
the reconstructed images in the STR and LMR methods are 
0.25 S/m and 0.34 S/m, respectively, whereas in the 
BMMR method it is 0.11 S/m (Table-2). 

 

 
 

 
 
Fig.6: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 
(λ = 0.0001): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 
 

Table-2: CNR, PCR and COC of the conductivity images of Fig.-6 
 
λ = 0.0001 CNR PCR COC ICMean 
STR 1.98 46.30 2.05 0.25 
LMR 1.12 28.25 1.46 0.34 
BMMR 2.67 68.76 4.60 0.11 
 

Conductivity imaging with λ = 0.00011 shows that, for the 
phantom with a circular inhomogeneity (D = 30 mm, L = 
37.5 mm) near electrode No.-3 (Fig.-7a), the CNRs of the 
reconstructed images with the STR (Fig.-7b) and LMR 
(Fig.-7c) methods are 1.94 and 1.30, respectively, (Table-3) 
whereas in the BMMR method (Fig.-7d), it is 2.80 
(Table-3).  

 
Results show that, for the same phantom, the PCRs of the 
reconstructed images with the STR and LMR methods are 
45.94 % and 38.46 %, respectively, whereas it is 68.02 for 
the BMMR method (Table-3).  
 
It is also observed that the COCs of the reconstructed 
images with the STR and LMR methods are 2.04 and 1.81, 
respectively, whereas it is 4.20 in BMMR technique (Table-
3). Results show that ICMean of the reconstructed images in 

the STR and LMR methods are 0.25 S/m and 0.27 S/m, 
respectively, whereas in the BMMR method it is 0.12 S/m 
(Table-3). Hence, the conductivity reconstruction with 
different values of λ shows that the BMMR method 
improves the image quality compared to STR and LMR. 
Reconstruction with λ = 0.0001 gives a more clear aspects 
of the proposed method (BMMR) as the STR and LMR 
methods show the best result at λ = 0.0001. 

 

  
 

  
 
Fig.7: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 
(λ = 0.00011): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 
 

Table-3: CNR, PCR and COC of the conductivity images of Fig.-7 
 
λ = 0.00011 CNR PCR COC ICMean 
STR 1.94 45.94 2.04 0.25 
LMR 1.30 38.46 1.81 0.27 
BMMR 2.80 68.02 4.20 0.12 
 

The conductivity imaging (with λ = 0.0001) of the 
phantoms with circular inhomogeneity of different 
diameters shows that the BMMR technique gives better 
image reconstruction with less background noise. Imaging 
(with λ = 0.0001) of the phantom with a circular 
inhomogeneity (D = 20 mm, L = 37.5 mm) near electrode. 
No.-3 (Fig.-8a) shows that the CNRs of the reconstructed 
images with the STR (Fig.-8b) and LMR (Fig.-8c) methods 
are 0.56 and 1.17, respectively (Table-4).  
 
On the other hand, for the BMMR method (Fig.-8d), the 
CNR of the reconstructed image is 2.51 (Table-4). Results 
show that, for the same phantom, the PCRs of the 
reconstructed images with the STR and LMR methods are 
12.73 % and 20.93 %, respectively, whereas it is 50.53 for 
the BMMR method (Table-4). In the same reconstruction, it 
is also observed that the COCs of the reconstructed images 
with the STR and LMR methods are 1.18 and 1.32, respec-
tively, whereas it is 2.46 in BMMR technique (Table-4).  
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Imaging (with λ = 0.0001) of the phantom with a circular 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode 
No.-3 (Fig.-9a) shows that the CNRs of the reconstructed 
images with the STR (Fig.-9b) and LMR (Fig.-9c) methods 
are 1.94 and 1.30, respectively, (Table-5) whereas in the 
BMMR method (Fig.-9d), it is 2.80 (Table-5). 
 

 
 

 
 

Fig.8: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 20 mm, L = 37.5 mm) near electrode No.-3 
(λ = 0.0001): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 

 
Table-4: CNR, PCR and COC of the conductivity images of Fig.-8 

 
20 mm Dia. CNR PCR COC ICMean 
STR 0.56 12.73 1.18 0.40 
LMR 1.17 20.93 1.32 0.37 
BMMR 2.51 50.53 2.46 0.19 

 

  
 

   
 

Fig.9: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 
(λ = 0.0001): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 

 

Results show that, for the same phantom, the PCRs of 
the reconstructed images with the STR and LMR 
methods are 45.94 % and 38.46 %, respectively, 
whereas it is 68.02 % for the BMMR method (Table-5). 
It is also observed that the COCs of the reconstructed 
images with the STR and LMR methods are 2.04 and 
1.81, respectively, whereas it is 4.20 in BMMR 
technique (Table-5). 
 

Table-5: CNR, PCR and COC of the conductivity images of Fig.-9 
 

30 mm Dia. CNR PCR COC ICMean 
STR 1.94 45.94 2.04 0.25 
LMR 1.30 38.46 1.81 0.27 
BMMR 2.80 68.02 4.20 0.12 

 

Conductivity reconstruction (with λ = 0.0001) shows that, 
for the phantom with a circular inhomogeneity (D = 40 mm, 
L = 37.5 mm) near electrode No.-3 (Fig.-10a), the CNRs of 
the reconstructed images with the STR (Fig.-10b) and LMR 
(Fig.-10c) methods are 1.91 and 2.14, respectively 
(Table-6). On the other hand, for the BMMR method 
(Fig.-10d), the CNR of the reconstructed image is 2.98 
(Table-6). Results show that, for the same phantom, the 
PCRs of the reconstructed images with the STR and LMR 
methods are 53.07 % and 65.05 %, respectively, whereas it 
is 74.58 % for the BMMR method (Table-6). For the same 
reconstruction, it is also observed that the COCs of the 
reconstructed images with the STR and LMR methods are 
2.29 and 3.33, respectively, whereas it is 5.06 in BMMR 
technique (Table-6). 
 

 
 

 
 

Fig.10: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-3 
(λ = 0.0001): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 

 
Table-6: CNR, PCR and COC of the conductivity images of Fig.-10 

 

40 mm Dia. CNR PCR COC ICMean 
STR 1.91 53.07 2.29 0.23 
LMR 2.14 65.05 3.33 0.16 
BMMR 2.98 74.58 5.06 0.10 
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Conductivity imaging (with λ = 0.0001) of the phantoms 
with circular inhomogeneity at different positions also 
shows that the BMMR technique gives better image 
reconstruction with less background noise. Results show 
that, for the phantom with a circular inhomogeneity (D = 35 
mm, L = 22.5 mm) near electrode. No.-3 (Fig.-11a), the 
CNRs of the reconstructed images with the STR (Fig.-11b) 
and LMR (Fig.-11c) methods are 2.22 and 1.86, 
respectively (Table-7). On the other hand, for the BMMR 
method (Fig.-11d), the CNR of the reconstructed image is 
2.61 (Table-7). It is observed that, for the same phantom, 
the PCRs of the reconstructed images with the STR and 
LMR methods are 48.25 % and 44.09 %, respectively, 
whereas it is 55.67 for the BMMR method (Table-7). In the 
same reconstruction, it is also observed that the COCs of 
the reconstructed images with the STR and LMR methods 
are 1.72 and 1.60, respectively, whereas it is 2.04 in 
BMMR technique (Table-7). 
 

 
 

 
 

Fig.11: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 35 mm, L = 22.5 mm) near electrode No.-3 
(λ = 0.0001): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 

 
Table-7: CNR, PCR and COC of the conductivity images of Fig.-11 

 

22.5 mm Dist. CNR PCR COC ICMean 
STR 2.22 48.25 1.72 0.38 
LMR 1.86 44.09 1.60 0.41 
BMMR 2.61 55.67 2.04 0.30 

 
Imaging (with λ = 0.0001) of the phantom with a circular 
inhomogeneity (D = 35 mm, L = 37.5 mm) near electrode 
No.-3 (Fig.-12a) shows that the CNRs of the reconstructed 
images with the STR (Fig.- 12b) and LMR (Fig.- 12c) 
methods are 1.79 and 1.54, respectively, (Table-8) whereas 
in the BMMR method (Fig.- 12d), it is 2.75 (Table-8). 
Results show that, for the same phantom, the PCRs of the 
reconstructed images with the STR and LMR methods are 
48.72 % and 45.90 %, respectively, whereas it is 75.33 for 
the BMMR method (Table-8). It is also observed that the 
COCs of the reconstructed images with the STR and LMR 

methods are 2.15 and 2.06, respectively, whereas it is 6.01 
in BMMR technique (Table-8). 

Reconstruction study (with λ = 0.0001) show that, for 
the phantom with a circular inhomogeneity (D = 35 mm, L 
= 52.5 mm) near electrode No.-3 (Fig.-13a), the CNRs of 
the reconstructed images with the STR (Fig.-13b) and LMR 
(Fig.-13c) methods are 3.44 and 3.57, respectively (Table-
9). On the other hand, for the BMMR method (Fig.-13d), 
the CNR of the reconstructed image is 3.59 (Table-9). 
 

 
 

 
 

Fig.12: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 35 mm, L = 37.5 mm) near electrode No.-3 
(λ = 0.0001): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 

 
Table-8: CNR, PCR and COC of the conductivity images of Fig.-12 

 

37.5 mm Dist. CNR PCR COC ICMean 
STR 1.79 48.72 2.15 0.24 
LMR 1.54 45.90 2.06 0.24 
BMMR 2.75 75.33 6.01 0.08 

 

 
 

 
 

Fig.13: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 35 mm, L = 52.5 mm) near electrode No.-3 
(λ = 0.0001): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 
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Results show that, for the same phantom, the PCRs of the 
reconstructed images with the STR and LMR methods are 
63.75 % and 62.77 %, respectively, whereas it is 63.77 % 
for the BMMR method (Table-9). For the same 
reconstruction, it is also observed that the COCs of the 
reconstructed images with the STR and LMR methods are 
3.70 and 3.54, respectively, whereas it is 3.50 in BMMR 
technique (Table-9). 
 

Table-9: CNR, PCR and COC of the conductivity images of Fig.-13 
 

52.5 mm Dist. CNR PCR COC ICMean 
STR 3.44 63.75 3.70 0.13 
LMR 3.57 62.77 3.54 0.14 
BMMR 3.59 63.77 3.50 0.14 

 
Multiple Inhomogeneity Imaging 
 

Conductivity reconstruction studies show that, for multiple 
inhomogeneity phantoms, the MoBIIR algorithm re-
constructs better conductivity images with BMMR 
technique. As it is observed that, for the STR and LMR 
methods, EV is minimum at λ = 0.0001 and for the BMMR 
method EV becomes minimum at λ = 0.01, the multiple 
object imaging is also conducted for these two values of λ. 
For further study, the conductivity reconstruction is also 
conducted with a intermediate value of λ (with λ = 0.00011 
and λ = 0.0011). 

Conductivity imaging (with λ = 0.0001) of the 
phantoms with double inhomogeneity shows that the 
BMMR technique gives better image reconstruction with 
less background noise.  

Result shows that, for the phantom with a double 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode 
No.-3 and 15 (Fig.-14a), the quality of the reconstructed 
images with the STR (Fig.-14b) and LMR (Fig.-14c) 
methods are poor compared to the BMMR method (Fig.-
14d).  
 

 
 

 
 

Fig.14: Conductivity reconstruction of the phantom with double 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-3 
and 15 (λ = 0.0001): (a) original object, (b) image with STR, (c) 
image with LMR, (d) image with BMMR. 

It is observed that there is more background noise in STR 
and LMR. On the other hand the background noise is 
reduced in conductivity images obtained in BMMR 
technique. Results also show that the inhomogeneities are 
not separately reconstructed with their own shape in the 
STR and LMR method whereas in BMMR technique both 
the inhomogeneities are reconstructed with better 
resolution. 

Conductivity imaging (with λ = 0.01) of the phantoms 
with a double inhomogeneity (D = 40 mm, L = 52.5 mm) 
near electrode No.-3 and 15 (Fig.-15a) shows that the 
quality of the reconstructed images with the STR (Fig.-15b) 
and LMR (Fig.-15c) methods are poor compared to the 
image obtained with the BMMR method (Fig.-15d).  

It is also observed that the background noise is reduced 
in conductivity images in BMMR technique. On the other 
hand there is more background noise in STR and LMR. 
Results also show that the inhomogeneities are not 
separately reconstructed with their proper shape in the STR 
and LMR methods whereas in BMMR technique both the 
inhomogeneities are reconstructed with better resolution. 
 

 

 
 
Fig.15: Conductivity reconstruction of the phantom with double 
inhomogeneity (D = 40 mm, L = 52.5 mm) near electrode No.-3 and 15 
(λ = 0.01): (a) original object, (b) image with STR, (c) image with LMR, 
(d) image with BMMR. 
 
Conductivity imaging with λ = 0.0011 shows that, for the 
phantom with two inhomogeneities (D = 40 mm, L = 50.0 
mm) near electrode No.-3 and 7 (Fig.-16a), conductivity 
images are not clear in the STR (Fig.-16b) and LMR (Fig.-
16c) method whereas the images are very clear in the 
BMMR method (Fig.-16d).  

It is observed that there is more background noise in 
STR and LMR. On the other hand the background noise is 
reduced in conductivity images in BMMR technique. 
Results also show that the inhomogeneities are not 
separately reconstructed with their own shape in the STR 
and LMR method whereas in BMMR technique both the 
inhomogeneities are reconstructed with better resolution. 
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Fig.16: Conductivity reconstruction of the phantom with double 
inhomogeneity (D = 40 mm, L = 50.0 mm) near electrode No.-3 
and 7 (λ = 0.0011): (a) original object, (b) image with STR, (c) 
image with LMR, (d) image with BMMR. 

 
On the other hand, in conductivity imaging (with λ = 
0.0011) of the phantom with two inhomogeneities (D = 40 
mm, L = 37.5 mm) near the phantom center (Fig.-17a), the 
STR and LMR method fail to reconstruct the images of two 
separate objects (Fig.-17b-17c) whereas the reconstructed 
images are very clear in the BMMR method (Fig.-17d). 
Results also show that the inhomogeneities are not 
separately reconstructed with their own shape in the STR 
and LMR methods whereas in BMMR technique both the 
inhomogeneities are reconstructed with better resolution.  
 

   
 

  
 

Fig.17: Conductivity reconstruction of the phantom with double 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-3 
and 7 (λ = 0.0011): (a) original object, (b) image with STR, (c) 
image with LMR, (d) image with BMMR. 

 
Conductivity imaging of the phantoms with three 
inhomogeneities also shows that the BMMR technique 
gives better image reconstruction with less background 
noise compared to the STR and LMR methods. 
Conductivity imaging (with λ = 0.0001) of a phantom 

(Fig.-18a) with triple inhomogeneity (D = 40 mm, L = 37.5 
mm) shows that the STR and LMR methods reconstruct the 
images of all the three objects with a lot of image blurring 
and unwanted noise (Fig.-18b and 18c) whereas all the 
three objects are reconstructed with less image blurring in 
the BMMR method (Fig.-18d). It is also observed that there 
is more background noise in STR and LMR. On the other 
hand the background noise is reduced in BMMR technique. 
Results also show that the inhomogeneities are not 
separately reconstructed with their own shape in the STR 
and LMR method whereas in BMMR technique both the 
objects are reconstructed with better resolution. 

 

  
 

  
 

Fig.18: Conductivity reconstruction of the phantom with tripple 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-1, between 
electrode No.-6-7 and  between electrode No.-11-12 (λ = 0.0001): (a) 
original object, (b) image with STR, (c) image with LMR, (d) image with 
BMMR 
 
It is also observed that, for the image reconstruction (with λ 
= 0.0011) of the phantom with three objects (D = 40 mm, L 
= 50 mm) near the phantom boundary (Fig.-19a), 
conductivity images are not properly reconstructed in the 
STR (Fig.-19b) and LMR (Fig.-19c) method whereas the 
images are very clear in the BMMR method (Fig.-19d). It is 
observed that there is more background noise in STR and 
LMR. On the other hand the background noise is reduced in 
conductivity images in BMMR technique. Results also 
show that the inhomogeneities are not separately 
reconstructed with their own shape in the STR and LMR 
method whereas in BMMR technique both the 
inhomogeneities are reconstructed with better resolution. 
 
On the other hand, for a triple inhomogeneity (D = 40 mm, 
L = 37.5 mm) phantom with objects near the phantom 
center (Fig.-20a), conductivity imaging (with λ = 0.0011) 
shows that the STR and LMR methods reconstruct very 
poor quality images of all the three separate objects (Fig.-
20b and 20c ) whereas the three objects are successfully 
reconstructed in the BMMR method (Fig.-20d). It is also 
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observed that the background noise is reduced in 
conductivity images in BMMR technique. On the other 
hand, there is more background noise in STR and LMR. 
Results also show that the inhomogeneities are not 
separately reconstructed with their own shape in the STR 
and LMR method whereas in BMMR technique both the 
objects are reconstructed with better resolution. 

 

 
 

 
 

Fig.19: Conductivity reconstruction of the phantom with tripple 
inhomogeneity (D = 40 mm, L = 50.0 mm) near electrode No.-1, 
between electrode No.-6-7 and  between electrode No.-11-12 
(λ = 0.0011): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR. 
 

  
 

  
 

Fig.20: Conductivity reconstruction of the phantom with tripple 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-1, 
between electrode No.-6-7 and  between electrode No.-11-12 
(λ = 0.0011): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR 

 

A reconstruction study (with λ = 0.00011) shows that, for 
the phantom with three objects (D = 40 mm, L = 37.5 mm) 
near the center (Fig.-21a) which is identical to the phantom 
of the previous study (Fig.-20a), conductivity images are 
improved when the regularization parameter λ is reduced to 
0.00011 in the STR (Fig.-21b) and LMR (Fig.-21c) 

methods. But the image obtained in BMMR technique 
(Fig.-21d) is still found better compared to the STR and 
LMR methods. Results also show that the inhomogeneities 
are not separately reconstructed with their proper shape in 
the STR and LMR methods whereas in BMMR technique 
both the inhomogeneities are reconstructed with better 
resolution. 
 

  
 

  
 

Fig.21: Conductivity reconstruction of the phantom with tripple 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-1, 
between electrode No.-6-7 and  between electrode No.-11-12 
(λ = 0.00011): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR 

 

Image reconstruction (with λ = 0.00011) shows that for the 
phantom with three objects near the phantom center (D = 
40 mm, L = 30 mm) (Fig.-22a), conductivity images are 
very poor in the STR (Fig.- 22b) and LMR (Fig.- 22c) 
methods. But the reconstructed image is remarkably 
improved in BMMR technique (Fig.- 22d) with the same λ. 
 

 
 

 
 

Fig.22: Conductivity reconstruction of the phantom with tripple 
inhomogeneity (D = 40 mm, L = 30.0 mm) near electrode No.-1, 
between electrode No.-6-7 and  between electrode No.-11-12 
(λ = 0.00011): (a) original object, (b) image with STR, (c) image 
with LMR, (d) image with BMMR 
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Discussion 
 
Reconstructed image quality greatly depends on the 
Jacobian matrix (J), response matrix (JTJ) and 
regularization parameter (λ) of reconstruction algorithm in 
Electrical Impedance Tomography. In the MoBIIR 
algorithm with STR regularization, the highest value of JTJ 
is chosen as η to calculate λ (λr= λ*η). On the other hand, in 
the LMR method, λr is calculated as λr= λ*η (where η is the 
highest value of the response matrix JTJ) in the first 
iteration and then it is reduced by a factor of 10  as 
iteration continues. Hence, in both the STR and LMR 
methods, a constant regularization parameter is obtained at 
each iteration and as a result the local or regional 
physiological attributes are not taken into account in them. 
Furthermore, due to the addition of a constant 
regularization parameter to the matrix JTJ, it perturbs the 
original system of equations and these perturbations are not 
based on the spectral information. Hence this perturbation 
may introduce a significant error in the solution as well as 
some unwanted solution could be obtained. In this paper a 
Block Matrix based Multiple Regularization (BMMR) 
technique is proposed in which the response matrix (JTJ) 
has been partitioned into several sub-block matrices and the 
largest element of each sub-block matrix has been chosen 
as a regularization parameter for the nodes contained by 
that sub-block. A symmetric finite element mesh containing 
512 triangular elements and 289 nodes is used in the 
MoBIIR algorithm both for the forward and inverse 
solution of the image reconstruction process. Conductivity 
images of different phantom geometries are reconstructed 
in MoBIIR with STR, LMR and BMMR techniques using 
different regularization parameters. Simulated boundary 
data are generated for single and multiple inhomogeneity 
phantoms and the conductivity images reconstructed with 
BMMR technique. Reconstruction results obtained in the 
BMMR method for different regularization parameters are 
compared with the STR and LMR methods. All the images 
are analyzed with their normalized error terms and image 
contrast parameters defined by their elemental conductivity 
profiles. It is observed that the normalized projection errors 
in STR and LMR becomes minimum at λ = 0.0001 and λ = 
0.0001, respectively. On the other hand, in the BMMR 
method the EV becomes minimum at λ = 0.01. Conductivity 
reconstructions also show that the EV and the Eσ in STR and 
LMR are larger than in the BMMR technique. Imaging with 
λ = 0.0001 in all the methods (STR, LMR and BMMR) 
gives a more clear aspects of the proposed method 
(BMMR) as the STR and LMR methods show the best 
results at λ = 0.0001. Conductivity reconstruction is studied 
in detail with the simulated boundary data obtained from 
the phantoms with single and multiple inhomogeneity of 
different diameters and different geometric positions. To 
compare the image reconstruction and image quality in the 
STR, LMR and BMMR methods, the conductivity 
reconstruction is conducted first with λ = 0.01 and then 
with λ = 0.0001. For further studies, the conductivity 

imaging is also studied using the STR, LMR and BMMR 
method with some intermediate values of λ (with λ = 
0.0011 and λ = 0.00011). It is observed that the impedance 
images are improved in BMMR, not only with all the 
phantom configurations, but also for all the values of λ used 
in the present study. Results also show that the CNR, PCR 
and COC are found high in BMMR technique. It is 
observed that the ICMean of all the conductivity images are 
improved with the BMMR method. Hence, it is concluded 
that the proposed BMMR technique reduces the projection 
errors and solution error and provides improved image 
reconstruction in EIT with better image quality and 
improved image resolution. 
 
Conclusions 
 
A Block Matrix based Multiple Regularization (BMMR) 
technique is proposed for improving image reconstruction 
in Electrical Impedance Tomography (EIT). Conductivity 
images are reconstructed from the simulated boundary data 
in MoBIIR algorithm with BMMR method and results are 
compared with the STR and LMR methods. Conductivity 
imaging studies show that the BMMR technique improves 
the impedance image quality and its spatial resolution for 
single and multiple inhomogeneity phantoms of different 
geometries. It is also observed that the BMMR technique 
reduces the projection error as well as the solution error and 
improves the conductivity reconstruction in EIT. Results 
show that the BMMR method improves the reconstructed 
image quality and increases the inhomogeneity conductivity 
profile by reducing background noise for all the phantom 
configurations. CNR, PCR, COC and ICMean are improved 
in BMMR technique compared to the STR and LMR 
methods. Hence it is concluded that the reconstructed image 
quality and image resolution can be enhanced with BMMR 
technique for conductivity imaging in EIT. 
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