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Abstract 
A Projection Error Propagation-based Regularization (PEPR) 
method is proposed and the reconstructed image quality is 
improved in Electrical Impedance Tomography (EIT). A 
projection error is produced due to the misfit of the calculated and 
measured data in the reconstruction process. The variation of the 
projection error is integrated with response matrix in each iteration 
and the reconstruction is carried out in EIDORS. The PEPR 
method is studied with the simulated boundary data for different 
inhomogeneity geometries. Simulated results demonstrate that the 
PEPR technique improves image reconstruction precision in 
EIDORS and hence it can be successfully implemented to increase 
the reconstruction accuracy in EIT.  
 
Keywords: electrical impedance tomography, projection error 
propagation-based regularization (PEPR), simulated boundary 
potentials, image reconstruction, forward problem, inverse 
problem, finite element method. 
 

 
Introduction 
 
Electrical Impedance Tomography (EIT) [1] is being 
researched in different areas of science and technology due 
to its many advantages [2-4] over other computed 
tomographic techniques [5]. Being a non-invasive, non-
radiating, non-ionizing and inexpensive methodology, EIT 
has been extensively studied in clinical diagnosis [6], 
biomedical engineering [7] and biotechnology [8]. Attempts 
are also being made to develop a better medical-EIT system 
(Fig.-1) for different clinical investigations [9-18] and long 
time patient monitoring. The first impedance imaging 
system, the Impedance Camera, was constructed by 
Henderson and Webster to study pulmonary edema in 1978 
[19]. EIT has, generally, poor signal to noise ratio [7], poor 
spatial resolution [20] and it is highly sensitive to modeling 
parameters [21] such as the electrodes and phantom 
geometry experimental errors in the boundary data. As a 
result EIT is not yet accepted as the gold method in medical 
imaging technology. Therefore improving the image quality 
and spatial resolution is a big challenge in the field of 
impedance imaging. Using noninvasive boundary 
measurements EIT reconstructs the images of impedance 

distribution (conductivity or resistivity or permittivity) of 
the closed domain under test. 

Conductivity reconstruction in EIT is a nonlinear, 
highly ill-posed [21] inverse problem in which a small 
amount of noise in the boundary data can lead to enormous 
errors in the estimates. In fact, like many other inverse 
problems encountered in physics, EIT is a highly ill-posed 
non-linear inverse problem which causes the instability of 
the solution due to errors on the observed data. Being an ill-
posed problem EIT needs a regularization technique [21] to 
constrain its solution space. Regularization technique is 
implemented to convert the ill-posed problem into a well 
posed problem using a suitable regularization parameter (λ). 
Regularization in inverse problems not only decreases the 
ill-posed characteristics of the inverse matrix but also, it 
improves the reconstructed image quality [22]. The 
standard Tikhonov regularization [23] is the simplest 
method to implement, in which the regularization matrix is 
proportional to identity. Since the physical attenuation 
phenomena responsible for the illposed nature of the EIT 
problem is not taken into account, the standard Tikhonov 
regularization cannot provide a satisfactory solution in 
image reconstruction for EIT [24]. 
 

 

Fig.1: An EIT system with electrode array on patient under test. 

In this context a Projection Error Propagation-based 
Regularization (PEPR) method [25] is proposed to improve 
the reconstructed image quality in static EIT, which 
produces an image of the absolute resistivity distribution of 
the medium. The PEPR method is studied with resistivity 
reconstruction in EIT using simulated data. In the PEPR 
method the regularization parameter is set as a function of 
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the projection error which is produced by the mismatch 
between the calculated and measured data. In the first 
iteration, the regularization parameter is calculated with the 
projection error developed by the boundary data estimated 
by the forward solver for an initial guessed resistivity. 
According to the resistivity update vector calculated in all 
the other iterations, regularization parameter is also 
modified. At each iteration, projection error varies 
according to the misfit between the model predicted data 
and experimental data. The variation of mismatch data is 
integrated with the response matrix and the reconstruction 
is conducted.  

To illustrate the performance of this method, resistivity 
images are reconstructed using EIDORS (Electrical 
Impedance Tomography and Diffuse Optical Tomography 
Reconstruction Software) [26-27] with PEPR and compared 
with the images reconstructed with Levenberg-Marquardt 
Regularization (LMR) [25]. To study the PEPR method, 
reconstructed image parameters, normalized projection 
error (error due to the voltage mismatch) and the 
normalized solution error norm are studied for different 
iterations.  Result show that the PEPR technique improves 
image reconstruction precision in EIDORS. It is also 
observed that the PEPR technique can improve image 
quality more effectively and reduces the background noise.  

 
Materials and methods 
 
EIT 

 
Electrical Impedance Tomography is a non linear inverse 
problem [21] in which the electrical conductivity 
distribution of a closed domain (Ω) in an object under test 
called phantom,  [28-29] is reconstructed from the surface 
potential at the boundary (∂Ω) developed by injecting a 
sinusoidal current signal [30]. A low frequency (10kHz-
1MHz) and low magnitude constant current is injected 
through an array of 16 surface electrodes [31] surrounding 
the domain to be imaged using different electrode switching 
protocols [32] and the boundary potentials are measured 
[33] although, the boundary currents can also be measured 
for an applied voltage signal in Applied Potential 
Tomography [34]. The voltage data collected by the data 
acquisition system is then processed by an image 
reconstruction algorithm in a PC. 
 
Mathematical Model  
 
To calculate the nodal potential for a known conductivity a 
relationship can be established between the electrical 
conductivity (σ) and spatial potential (Φ). Electro-dynamics 
of EIT is governed by a nonlinear partial differential 
equation, called the Governing Equation [2-4] of Electrical 
Impedance Tomography, which is given by, 

 
0=Φ∇•∇ σ                                     (1) 

Forward and Inverse Problem 
 
A relation can be obtained between the voltage 
measurements made on the boundary (∂Ω) and the domain 
conductivity can be found [35-36] as, 
                                      

( )[ ][ ]IσKΦ =                                      (2) 

 
Where σ is elemental conductivity values, Ф is the vector 
of nodal potential and K is the transformation matrix 
constructed from the elemental conductivities and nodal 
coordinates.  

If K and I are known, Eq.-2 can be solved numerically 
using the finite element method (FEM) [37] to calculate the 
nodal potentials of the domain for the known conductivity 
(σ). It is known as the “forward problem”. Using the Gauss-
Newton method [38] applied on EIT, the update vector of σ 
[35-36] can be expressed as:  
 

[ ][ ]dΦQσ =                                   (3) 

 
Where, Q is a function of the Jacobian matrix (J) [35-36] 
and regularization parameters [35-36]. Φd is the mismatch 
vector between calculated boundary potential (Vc) and 
measured boundary potential (Vm). That means if the 
matrix Q and the surface potentials Φ are known then the 
elemental conductivity (σe) can be mapped. This is known 
as the “inverse problem” which is discussed in the next 
section. Using the Modified Newton Raphson (MNR) 
iterative technique [35-36], a suitably assumed conductivity 
vector (initial guess), [σo], is modified to [σo + ∆σ ] for 
achieving a specified error limit in the calculated and 
measured voltage ([∆σ] denotes the conductivity update). 
 
Image Reconstruction: Gauss-Newton Approach 
 
Electrical conductivity imaging is a highly nonlinear and 
ill-posed inverse problem. The response matrix [JTJ] is a 
singular matrix. Hence in EIT, a minimization algorithm 
[35-36, 38-39] is used to obtain the approximate solution of 
the ill-posed inverse problem. In the minimization 
algorithm, the objective function formed by the difference 
between the experimental measurement data (Vm) and the 
computationally predicted data (Vc) is minimized. 
Generally in inverse problems a least square solution [35-
36] of a minimized object function (s) [38-39] obtained 
from the calculated voltage data and the measured voltage 
data  is searched by a Gauss-Newton method based 
numerical approximation algorithm (explained in the next 
sub-section) called the inverse solver [40].   

If Vm is the measured voltage matrix and f is a function 
mapping an E-dimensional (E is the number of element in 
the FEM mesh) impedance distribution into a set of M 
(number of the measured data available) approximate 
measured voltage, then the Gauss-Newton algorithm 
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[35-36, 38-39] tries to find a least square solution of the 
minimized object function s defined as [38-43]:  

 
22

mr Gσ  λ
2
1 fV 

2
1s +−=             (4) 

 
Where, sr is the constrained least-square error of the 
reconstructions, G is the regularization operator and λ is a 
positive scalar and called as the regularization coefficient. 
 

( ) ( ) ( ) ( )GσGσλ
2
1fVfV

2
1s T

m
T

mr +−−=         (5) 

 
Now, differentiating Eq.-5 w.r.t. σ, it reduces to: 
 

( ) ( ) ( ) ( )GσGλfVf s T
m

T
r +−′−=′              (6) 

 
Where the term Jf =′  is known as the Jacobian matrix of 
size g × h and which is defined by [36, 39]: 
 

[ ]
h

g
gh σ

f
fJ

∂

∂
=′=                                (7) 

Where,  
e = 1, 2 … E [E = number of elements in the FEM mesh],  
h = 1, 2…M [M = (number of data measured per current 
projections (d)) × (number of current projections (p))] 
 
By the inherent ill-posed nature of EIT, the [ ]Tf ′ matrix in 
Eq.-6 is always ill-conditioned [22], and hence small 
measurement errors will make the solution of Eq.-6 change 
greatly which is made well posed by the regularization term 
incorporated. Differentiating Eq.-6 w.r.t. σ, it reduces to: 
 

( ) ( ) ( ) ( ) GλGfVfJJs T
m

TT
r +−′′−=″     (8) 

 
By the Gauss Newton (GN) method, 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) GλGfVfJJ

GσGλfVJ

s

sΔσ
T

m
TT

T
m

T

r

r

+−′′−
−−

=″

′
−=     (9) 

 
Neglecting higher terms, the update vector reduces to: 
 

( ) ( ) ( ) ( )
( ) ( ) GλGJJ

GσGλfVJ
Δσ

TT

T
m

T

+

−−
=                         (10) 

 
Replacing GTG by I (Identity matrix) Eq.-10 reduces to: 

( )
λIJJ

λIσfVJΔσ T
m

T

+
−−

=                         (11) 

In general, for kth iteration (k is a positive integer), the 
conductivity update vector of Eq.-11 is reduced to: 
 

[ ] [ ][ ] [ ] ( )[ ]kk
T

k

1

k
T

kk λIσΔVJλIJ JΔσ −+=
−

   (12) 

 
Where Jk and ( )kΔV are the Jacobian and voltage difference 
matrix respectively at the kth iteration. 
 
Thus the Gauss-Newton method based inverse solver 
algorithm gives a regularized solution of the conductivity 
distribution for the kth iteration as: 
 

[ ] [ ][ ] [ ] ( )[ ]kk
T

k

1

k
T

kk1k λIσΔVJλIJ Jσσ −++=
−

+  (13) 

 
PEPR Method 
 
In this paper a PEPR method is proposed to improve the 
reconstructed image quality in EIT and the resistivity 
reconstruction is studied in EIDORS. Generally, the choice 
of an appropriate regularization can be evaluated or found 
empirically [25] and the regularization parameter is related 
to an objective function [38-39]. In our study, the projection 
error is utilized as the objective function; hence the 
regularization parameter would be expected to be related to 
the projection error. Furthermore, the value of 
regularization is required to vary with projection error. That 
is to say, a greater regularization value is needed for a 
larger projection error during iterations. If the projection 
error is very low, only a small regularization value is 
needed to regulate the ill-posed process [25]. Based on 
these considerations, we define the adaptive regularization 
parameter λ as follows: 
 

ΔΦe2
λ −+

Ψ
=                                  (14) 

 
Where, Ψ is a const (taken as 0.01), ∆Φ is the projection 
error which is defined as the L-2 norm of the difference 
between the calculated data and the measured data. Hence 
the regularization parameter λ in the PEPR method is given 
by:   
 

2
mc   V-V  e2

01.0λ
−+

=                            (15) 

 
In formula (15), the regularization parameter λ varies in the 
range from 0.01/3 to 0.01/2. It includes two primary 
considerations: (1) Due to the ill-posed characteristic of the 
inverse problem, the regularization should not be reduced 
with iterations to a too small value. (2) The regularization 
value should be lower than the maximum value of diagonal 
elements in the matrix JJT (calculated by the MATLAB 
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code: max(max(JJT))). In the PEPR method the 
regularization parameter is set as a function of the 
projection error which is produced by the mismatch 
between the calculated and measured data. In the first 
iteration, the regularization parameter is calculated with the 
projection error developed by the boundary data estimated 
by the forward solver for an initial guessed resistivity. 
According to the resistivity update vector calculated, the 
regularization parameter is also modified in all the other 
iterations. Hence at each iteration, the projection error 
varies according to the misfit between the model predicted 
data and experimental data. The variation of mismatch data 
is integrated with the response matrix and the 
reconstruction is carried out. 

The JTJ matrix is formed by the first derivative (J) of 
the forward solution (FS) and I is the approximation of the 
Hessian [39] which is, actually, the second derivative of the 
FS. Generally, the order of magnitude of Hessian is less 
than the JTJ due to the higher order derivative.  

Hence, in Eq.-13, I acts as the quadratic term which is 
formed with the maximum value of JTJ. The magnitude of 
the diagonal elements of λI should be less than the 
maximum value of JTJ. The identity matrix I is formed 
with the diagonal values equal to the maximum value of the 
matrix JTJ. In the LMR method the λ is taken as 10-1 in the 
first iteration and it is then modified as λ/k in the modified 
EIDORS, where k is the number of iterations. For further 
analysis the resistivity reconstruction is also conducted with 
a range of regularization parameters.  

It is observed that the projection error in LMR and 
PEPR becomes minimum at λ = 0.1 and Ψ = 0.01 
respectively. That is why in the first iteration in LMR λ is 
taken as 0.1 and in PEPR λ is calculated with Ψ = 0.01. 
Furthermore, for better understanding the regularization 
effects of both the methods, λ is calculated in PEPR 
technique (using the Eq.-14) with Ψ = 0.01. The result is 
compared with the reconstruction obtained in LMR in 
which the iteration starts with λ = 0.01 and then it is 
decreased by a factor of 10 for the other iterations [25]. 
 
Resistivity Reconstruction and Analysis 
 
Resistivity images are reconstructed using simulated 
boundary data in EIDORS with the PEPR and LMR method 
and the results are compared. Resistivity images are 
reconstructed with simulated data for different 
inhomogeneity geometries. Circular objects (diameter = 60 
mm, resistivity = 33 Ωm) with a homogeneous background 
medium (diameter (D) = 150 mm, resistivity = 2.5 Ωm) are 
simulated for boundary data generation. Resistivity images 
are also reconstructed from the boundary data combined 
with random noise of different percentages. Noisy data are 
used for reconstruction with the PEPR and LMR methods 
and the images are compared. 

To analyze the proposed method, the normalized 
projection error (error due to the voltage mismatch), EV, is 
calculated in each iteration as: 

 

2
cmV VV

2
1E −=                                (16) 

 
The normalized solution error norm (Eρ) is also 

calculated in each iteration as: 
 

true

truetedreconstruc
ρ ρ

ρρ
E

−
=                          (17) 

 
A contrast to noise ratio (CNR) [44-45] is calculated 

for the reconstructed images in this work to evaluate the 
reconstructed images with different regularization 
techniques. CNR is defined as the ratio of the difference 
between the average inhomogeneity resistivity (IRMean) and 
the average background resistivity (BRMean) divided by the 
weighted average of the standard deviations in the IR 
(SDIR) and BR (SDBR):  

 

( )2
1

2
BRB

2
IRI

MeanMean

)(SDω)(SDω

BRIR
CNR

+

−
=              (18) 

 
Where ωI is the fraction of the area of the region of interest 
with respect to the area of the whole image; ωB is defined 
as ωB=1-ωI. IRMean and BRMean are the mean values of the 
inhomogeneity and the background regions in the 
reconstructed images.  

Percentage of contrast recovery (PCR) [46] is 
calculated for the images reconstructed by all the 
regularization technique to compare the reconstruction 
accuracy. PCR in EIT is defined as the difference between 
the averaged resistivity within the reconstructed image 
(IRMean) and the reconstructed background (BRMean) divided 
by the difference between the original resistivity of the 
inhomogeneity (IROriginal) and the background (BROriginal). 
Hence mathematically the PCR is obtained by the equation: 

 

100
BR-IR
BRIRPCR

OriginalOriginal

MeanMean ×
−

=                  (19) 

 
Coefficient of Contrast (COC) in EIT is defined as the ratio 
of the mean inhomogeneity resistivity (IRmean) to mean 
background resistivity (BRmean) though in some literature 
this ratio is termed as the contrast recovery [47]: 
 

Mean

Mean

BR
IRCOC =                              (20) 
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CNR, PCR, COC, IRMean and IRMax (maximum values of 
the reconstructed inhomogeneity resistivity) are calculated 
for all the images and are compared to assess the 
reconstructed image quality with PEPR. To evaluate the 
reconstructed images the elemental resistivity along the 
phantom diameter (D), connecting the centre of the 
reconstructed object and the centre of the phantom, is 
plotted against the length of the phantom diameter. This 
resistivity plot is termed as the diametric resistivity plot 
(DRP). The normalized projection error (error due to the 
voltage mismatch) and the normalized solution error norm 
are studied for different iterations. 
 
Results 
 
Imaging with noiseless data for different object positions in 
LMR (Lambda = 0.1) and PEPR (Psi = 0.01) 

 
The reconstruction of the simulated phantom with a circular 
object near electrode 1 (Fig.-2a) shows that the CNR of the 
resistivity image reconstructed with LMR (Fig.-2b) is 3.08 
whereas the CNR of the resistivity image with PEPR (Fig.-
2c) method (Table-1) is 3.55. For the same simulated 
phantom, the PCR of the resistivity image with LMR 
technique is 32.52 whereas the PCR with PEPR is 46.57 
(Table-1). It is also noticed that the COC of the resistivity 
image with LMR technique is 2.05 whereas the COC with 
PEPR is 2.46 (Table-1). It is observed that the DRP of the 
resistivity image with PEPR (Fig.-2d) is more similar to the 
DRP of the original object. 
 

      

     

Fig.2: Resistivity imaging for object near electrode 1: (a) Original 
object, (b) with LMR, (c) with PEPR, (d) DRP of the images. 

 
Table-1: CNR, PCR and COC of reconstructed images of the 
object near electrode 1 

 

Regularization CNR PCR COC 
LMR 3.08 32.52 2.05 
PEPR 3.55 46.57 2.46 

For the object near electrode 3 (Fig.-3a), the reconstructed 
images (Fig.-3b-3c) show that the CNR of the resistivity 
image with LMR technique is 2.99. On the other hand, 
CNR with PEPR is 3.51 (Table-2). The PCR of the 
resistivity image with LMR technique is 31.33 whereas the 
PCR with PEPR is 46.26 (Table-2). It is also noticed that 
the COC of the resistivity image with LMR is 2.01 but with 
PEPR, it is 2.45 (Table-2). Result show that the DRP of the 
resistivity image with PEPR (Fig.-3d) is more similar to the 
DRP of the original object.  

 

      
 

     
 

Fig.3: Resistivity imaging for object near electrode 3: (a) Original 
object, (b) with LMR, (c) with PEPR, (d) DRP of the images. 

 
Table-2: CNR, PCR and COC of reconstructed images of the 
object near electrode 3 
 

Regularization CNR PCR COC 
LMR 2.99 31.33 2.01 
PEPR 3.51 46.26 2.45 

 
It is observed that for the simulated phantom with a circular 
object near electrode 5 (Fig.-4a), the CNR of the image 
reconstructed with LMR (Fig.-4b) is 2.92 whereas the CNR 
of the resistivity image with PEPR (Fig.-4c) is 3.46 
(Table-3). It is also noticed that the PCR of the image with 
LMR is 30.32 whereas the PCR with PEPR is 44.74. 
Results also show that the COC with LMR is 1.98 (Table-3) 
whereas with PEPR technique it is 2.40. It is observed that 
the DRP of the resistivity image with PEPR (Fig.-4d) is 
more similar to the DRP of the original object. 

 
Imaging with noisy data for different object positions in 
LMR (Lambda = 0.1) and PEPR (Psi = 0.01) 
 
Resistivity images are reconstructed from the boundary data 
with 25 % random noise for the object near electrode 1, 3 
and 5. Images reconstructed from the boundary data with 
added noise for the object near electrode 1 show that the 

a b 

c d 

a b 

c d 
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CNR of the resistivity image with LMR technique (Fig.-5a) 
is 1.81. On the other hand, CNR of the image with PEPR 
(Fig.-5b) is 3.17 (Table-4). The PCR of the resistivity 
image with LMR technique is 27.29 whereas the PCR with 
PEPR is 63.79 (Table-4). It is also noticed that the COC of 
the resistivity image with LMR is 1.85 but with PEPR it is 
2.90 (Table-4). Result shows that the DRP of the resistivity 
image with PEPR (Fig.-5c) is more similar to the DRP of 
the original object. 
 

      
 

     
 

Fig.-4: Resistivity imaging for object near electrode 5: (a) 
Original object, (b) with LMR, (c) with PEPR, (d) DRP of the 
images.  

 
Table-3: CNR, PCR and COC of reconstructed images of the 
object near electrode 5. 
 

Regularization CNR PCR COC 
LMR 2.92 30.32 1.98 
PEPR 3.46 44.74 2.40 

 

     
 
Fig.-5: Resistivity images with noisy (25 %) boundary data 
(object near electrode 1): (a) with LMR, (b) with PEPR, (c) DRP 
of the reconstructed image 
 
Table-4: CNR, PCR and COC of reconstructed images for noisy 
data (object near electrode 1) 

 
Regularization CNR PCR COC 
LMR 1.81 27.29 1.85 
PEPR 3.17 63.79 2.90 

 
Resistivity images reconstructed from the noisy boundary 
data of the phantom with object near electrode 3 show that 

the CNR of the image reconstructed with LMR technique 
(Fig.-6a) is 1.60. On the other hand, CNR with PEPR 
(Fig.-6b) is 1.89 (Table-5). The PCR of the resistivity 
image with LMR technique is 23.61 whereas the PCR with 
PEPR is 35.68 (Table-5). It is also noticed that the COC of 
the reconstructed image with LMR is 1.73 but with PEPR it 
is 2.12 (Table-5). It is observed that the DRP of the 
resistivity image with PEPR (Fig.-6c) is more similar to the 
DRP of the original object. 
 

   
 

Fig.-6: Resistivity images with noisy (25 %) boundary data 
(object near electrode 3): (a) with LMR, (b) with PEPR, (c) DRP 
of the reconstructed image 

 
Table-5: CNR, PCR and COC of reconstructed images for noisy 
data (object near electrode 3) 

 
Regularization CNR PCR COC 
LMR 1.60 23.61 1.73 
PEPR 1.89 35.68 2.12 

 
It is also observed that for the resistivity images 
reconstructed from the noisy data for the phantom with 
object near electrode 5, the CNR of the image reconstructed 
with LMR technique (Fig.-7a) is 1.24. On the other hand, 
CNR with PEPR (Fig.-7b) is 1.48 (Table-6). The PCR of 
the resistivity image with LMR technique is 17.59 whereas 
the PCR with PEPR is 25.91 (Table-6). It is also noticed 
that the COC of the resistivity image with LMR is 1.54 but 
with PEPR, it is 1.78 (Table-6). Result shows the DRP of 
the resistivity image with PEPR (Fig.-7c) is more similar to 
the DRP of the original object. 
 

  
 

Fig.-7: Resistivity images with noisy (25 %) boundary data 
(object near electrode 5): (a) with LMR, (b) with PEPR, (c) DRP 
of the reconstructed image 

 
Table-6: CNR, PCR and COC of reconstructed images for noisy 
data (object near electrode 5) 
 

Regularization CNR PCR COC 
LMR 1.24 17.59 1.54 
PEPR 1.48 25.91 1.78 

 

a b 

c d 

a b c 

a b c 
a b c 
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Studies on PEPR and LMR with λ=Ψ 
 
In the above study, for the LMR method the λ is taken as 
10-1 in the first iteration and it is then modified as λ/k in the 
modified EIDORS, where k is the number of iterations. For 
further analysis the resistivity reconstruction is also 
conducted with a range of regularization parameters. 
Regularization effect, normalized projection error (error 
due to the voltage mismatch) and the normalized solution 
error norm are studied for different iterations. Result show 
that the resistivity image with PEPR (Ψ = 0.01) is found 
better compared to the image obtained for LMR with a λ = 
0.01 at first iteration and then it is decreased by a factor of 

10 for the other iterations [25]. It is observed that CNR of 
the image reconstructed with LMR technique (Fig.-8a) is 
2.95. On the other hand, CNR with PEPR (Fig.-8c) is 3.26 
(Table-7). Due to the over-estimate of the inhomogeneity 
resistivity (Fig.-8b) the PCR of the resistivity image with 
LMR technique is very high compared to PEPR. For the 
similar reason COC is also found higher than the PEPR 
method. But IRMax and IRMean are both suitable in PEPR 
method whereas, in LMR technique, they are very absurd 
compared to the original value (Table-7).  
 

      

       
 

Fig.-8: Resistivity images obtained from boundary data with 
10 % noise (object near electrode 1): (a) image with LMR, (b) 
DRP of the reconstructed image shown in Fig.-1a, (c) image with 
PEPR, (d) DRP of the reconstructed image shown in Fig.-1c. 
 
Table-7: CNR, PCR, COC, IRMax and IRMean of reconstructed 
images shown in Fig.-8. 

 
Regularization CNR PCR COC IRMax IRMean 
LMR 2.95 89.15 2.90 77.03 41.46 
PEPR 3.26 46.48 2.49 33.96 23.70 

 
Studies on PEPR and LMR in Different Iterations with λ=Ψ 
 
Resistivity imaging with LMR (λ = 0.01) and PEPR (Ψ = 
0.01) techniques is studied for a number of iterations (result 
for first 12 iterations is presented). It is observed that 

resistivity images in LMR method (Fig.-9), the 
reconstruction diverges gradually after second iteration and 
become unstable with a continuously over-estimated 
resistivity (Fig.-10). On the other hand, the resistivity 
reconstruction rapidly converges in the PEPR method 
(Fig.-11) and gets stable after few iterations with a proper 
resistivity reconstruction (Fig.-12).  
 

         

         

         

         
 

Fig.-9: Resistivity images obtained from noisy boundary data 
(Error added = 10 %) with LMR (λ = 0.01) method (object near 
electrode 1) for first twelve iterations: (a) to (l) images represents 
the reconstruction of 1 to 12 iterations respectively. 

 

         

         

         

         
Fig.-10: DRP of the resistivity images shown in Fig.-9 
(reconstruction with LMR): with noisy data (object near 
electrode 3): (a) to (l) images represents the DRP of the images 
shown in Fig.-9a to Fig.-9l respectively. 
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Fig.-11: Resistivity images obtained from noisy boundary data 
(Error added = 10 %) with PEPR (Ψ = 0.01) method (object near 
electrode 1) for first twelve iterations: (a) to (l) images represents 
the reconstruction of 1 to 12 iterations respectively. 

 

         

         

         

          
 

Fig.-12: DRP of the resistivity images shown in Fig.-11 
(reconstruction with PEPR): with noisy data (object near 
electrode 1): (a) to (l) images represents the DRP of the images 
shown in Fig.-11a to Fig.-11l respectively. 

 
Studies on Projection Error and Solution Error Norm 
 
It is observed that the IRMax of the resistivity images with 
PEPR technique is more stable and closer to the original 
value, except for the first iteration (Fig.-13a). On the other 
hand, in LMR, IRMax is larger than the original value (Fig.-

13a) except in first iteration (IRMax < IROriginal) and the 
second iteration (IRMax ~ IROriginal). Result show that, for 
PEPR, the standard deviation of the IRMax during first 
twelve iterations is 1.79 whereas it is 17.59 in LMR method 
(Fig.-13a). 
 
Result show that IRMean of the resistivity images with the 
PEPR method is more stable whereas it is comparatively 
largely variable in the LMR method (Fig.-13b). Result 
show that, for PEPR, the standard deviation of the IRMean 

during the first twelve iterations is 1.79 Ωm whereas it is 
8.21 Ωm in LMR method (Fig.-13b). 

 

  
 
Fig.-13: Reconstruction parameters and reconstruction errors for the 
resistivity images obtained from noisy boundary data (Error added = 10 %) 
with LMR (λ = 0.01) and PEPR (Ψ = 0.01) methods (object near electrode 
1): (a) maximum values of the reconstructed inhomogeneity resistivity 
(IRMax), (b) mean of reconstructed inhomogeneity resistivity (IRMean). 

 
It is observed that the projection error (EV) in LMR 

method is comparatively large and it is gradually increasing 
after third iteration (Fig.-14a). On the other hand, in PEPR, 
EV is comparatively low and almost constant after second 
iteration (Fig.-114a). Result show that, in the PEPR 
method, the normalized solution error norm (Eρ) is less and 
varies from 0.74 to 0.77 (Fig.-14b). But, in the LMR 
method, Eρ is comparatively large and varies from 0.73 to 
1.31 (Fig.-14d).  

 

  
 

Fig.-14: Reconstruction parameters and reconstruction errors for 
the resistivity images obtained from noisy boundary data (Error 
added = 10 %) with LMR (λ = 0.01) and PEPR (Ψ = 0.01) 
methods (object near electrode 1): (a) projection error (EV), (b) 
normalized solution error norm (Eρ). 

 
Studies on Different Values of λ and Ψ 
 
The projection errors (EV) are calculated for different 
values of λ in LMR (Fig.-15a) and different values of Ψ in 
the PEPR method (Fig.-15b). It is observed that, for the 
LMR method, the EV becomes minimum at the third 
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iteration for λ = 1.0 and 0.1 whereas for λ = 0.01, 0.001 and 
0.0001, the EV becomes minimum at the fourth iteration 
(Fig.-15a). On the other hand, result show that (Fig.-15b), 
for the PEPR method, the EV becomes minimum at the third 
iteration for Ψ = 1.0 and 0.1, 0.01 and 0.001 whereas for Ψ 
= 0.0001, the EV becomes minimum at the fourth iteration 
(Fig.-15a). Hence it is observed that the optimum 
reconstruction (i.e. the EV is minimum) occurs in PEPR 
with Ψ = 0.01 where as the optimum reconstruction occurs 
in LMR with λ = 0.1 (Table-8). It is also observed that the 
projection errors are comparatively less (Fig.-15b) in the 
PEPR method for all the values of Ψ. Result show that the 
projection errors are comparatively more stable in PEPR 
and they also become almost constant (Fig.-15b) after 3rd 
iteration except for very low Ψ (Ψ= 0.0001).   

Fig.-15: Projection errors (EV) calculated in the resistivity reconstruction at 
different iterations (a) with LMR (λ = 1 to 0.0001), (b) with PEPR (Ψ = 1 
to 0.0001). 

Table-8: Projection errors (EV) calculated for different values of λ in LMR 
and Ψ in PEPR. 

λ or Ψ at 4th Iteration LMR PEPR 
1.0 51.8248 53.3685 
0.1 51.3844 51.7703 
0.01 51.5016 51.3234 
0.001 55.9473 51.3802 
0.0001 70.8394 56.8654 

Discussion 

A Projection Error Propagation-based Regularization 
(PEPR) method is proposed and the reconstructed image 
quality is improved in Electrical Impedance Tomography 
(EIT). The projection error is calculated from the difference 
between the calculated and measured data in each iterations 
of the reconstruction process and then it is integrated with 
the response matrix and the reconstruction is carried out. 
The PEPR method is studied with the simulated boundary 
data obtained for different inhomogeneity geometry. 
Studying the resistivity reconstruction from simulated data 
it is observed that the Projection Error Propagation-based 
Regularization (PEPR) method improved the quality of the 
reconstructed images in Electrical Impedance Tomography 
(EIT). CNR, PCR, COC, IRMax IRMean, EV and Eρ all are 
improved in PEPR technique. Especially, the PEPR method 
improved the image quality for noisy boundary data. PEPR 

technique is also studied with the simulated boundary data 
mixed with random noise for different percentage. It is 
observed that the PEPR method gives better reconstruction 
at all the noise levels added to the boundary data. An 
iteration study shows that in LMR method, the 
reconstruction diverges gradually as the iteration goes on 
and become unstable with a continuously over estimated 
resistivity. On the other hand, the resistivity reconstruction 
rapidly converges in the PEPR method and gets stable after 
few iterations with a proper resistivity reconstruction. All 
the results demonstrate that the PEPR technique improves 
image reconstruction precision in EIDORS and hence it can 
be successfully implemented to increase the reconstruction 
accuracy in EIT.  

Conclusions 

PEPR technique is successfully implemented to regularize 
the solution domain in resistivity reconstruction in EIT. the 
PEPR method improves the image quality by increasing the 
CNR, PCR and COC for resistivity reconstruction in 
EIDORS. The simulation study proves that the PEPR 
technique improves the resistivity image quality with a 
better contrast than the traditional regularization for all 
inhomogeneity positions. Especially with noisy boundary 
data, the PEPR method provides improved reconstruction 
with high image contrast. Normalized projection error (EV) 
and the normalized solution error norm (Eρ) are found to be 
less in PEPR technique. It is observed that the resistivity 
reconstruction rapidly converges in the PEPR method and 
gets stable after few iterations with a proper resistivity 
reconstruction. On the other hand, in the LMR method, the 
reconstruction diverges gradually as the iteration goes on 
and become unstable with a continuously over-estimated 
resistivity. Hence it is observed that the PEPR is 
successfully implemented in EIDORS for better 
reconstruction in EIT.  

References 

1. Webster J. G. Electrical impedance tomography. Adam
Hilger Series of Biomedical Engineering, Adam Hilger, New
York, USA 1990.

2. Denyer C. W. L. Electronics for Real-Time and Three-
Dimensional Electrical Impedance Tomographs, PhD Thesis,
Oxford Brookes University, January 1996.

3. Metherall P. Three Dimensional Electrical Impedance
Tomography of the Human Thorax, PhD Thesis, University
of Sheffield. Jan’1998.

4. Huang C. N., Yu F. M. and Chung H. Y. The Scanning Data
Collection Strategy for Enhancing the Quality of Electrical
Impedance Tomography. IEEE Trans. Instrument. Meas.
2008;57(6):1193-1198. doi:10.1109/TIM.2007.915149

a b

http://dx.doi.org/10.1109/TIM.2007.915149


Bera et al.: Improving image quality in Electrical Impedance Tomography (EIT). J Electr Bioimp, 2, 2-12, 2011

11

5. Bushberg J. T., Seibert J. A., Leidholdt Jr. E. M., Boone J. M. 
The Essential Physics of Medical Imaging, 2nd Edition, 
Lippincott Williams & Wilkins, ISBN-10: 0683301187. 
2001. 

6. Li Y., Rao L., He R., Xu G., Wu Q., Yan W., Dong G. and 
Yang Q. A Novel Combination Method of Electrical 
Impedance Tomography Inverse Problem for Brain Imaging. 
IEEE Trans. Magnetics. 2005;41(5):1848-1851. 
doi:10.1109/TMAG.2005.846506 

7. Brown B. H. Medical impedance tomography and process 
impedance tomography: a brief review. Measurement 
Science & Technology. 2001;12:991-996.  
doi:10.1088/0957-0233/12/8/301  

8. Linderholm P., Marescot L., Loke M. H. and Renaud P. Cell 
Culture Imaging Using Microimpedance Tomography. IEEE 
Trans. on Biomed. Eng. 2008;55(1):138-146. 
doi:10.1109/TBME.2007.910649  

9. Martinsen Ø. G., Kalvøy H., Grimnes S., Nordbotten B., Hol 
P. K., Fosse E., Myklebust H. and Becker L. B. Invasive 
Electrical Impedance Tomography for Blood Vessel 
Detection. The Open Biomed. Eng. J. 2010;4:135-137. 
doi: 10.2174/1874120701004010135 

10. Borsic A., Halter R., Wan Y., Hartov A. and Paulsen K. D. 
Electrical impedance tomography reconstruction for three-
dimensional imaging of the prostate. Physiol. Meas. 
2010;31:S1–S16. doi:10.1088/0967-3334/31/8/S01  

11. Bagshaw A. P., Liston A. D., Bayford R. H., Tizzard A., 
Gibson A. P., Tidswell A. T., Sparkes M. K., Dehghani H., 
Binnie C. D. and Holder D. S. Electrical impedance 
tomography of human brain function using reconstruction 
algorithms based on the finite element method. NeuroImage 
2003;20:752–764. doi:10.1016/S1053-8119(03)00301-X  

12. Murphy D., Burton P., Coombs R., Tarassenko L. and Rolfe 
P. Impedance Imaging in the Newborn. Clin. Phys. Physiol. 
Meas. 1987;8(Suppl. A):131-40. 
doi:10.1088/0143-0815/8/4A/017  

13. Tyna H. A. and Iles S. E. Technology review: The use of 
electrical impedance scanning in the detection of breast 
cancer. Breast Cancer Research. 2004;6(2):69-74.  

14. Moura F. S., Aya J. C. C., Fleury A. T., Amato M. B. P., and 
Lima R. G. Dynamic Imaging in Electrical Impedance 
Tomography of the Human Chest With Online Transition 
Matrix Identification. IEEE Trans. Biomed. Eng. 
2010;57(2):422-431. doi:10.1109/TBME.2009.2032529  

15. Ferraioli F., Formisano A., and Martone R. Effective 
Exploitation of Prior Information in Electrical Impedance 
Tomography for Thermal Monitoring of Hyperthermia 
Treatments. IEEE Trans. Magnetics. 2009;45(3):1554-1557. 
doi:10.1109/TMAG.2009.2012740  

16. McArdle F. J., Suggett A. J., Brown B. H., and Barber D. C. 
An assessment of dynamic images by applied potential 
tomography for monitoring pulmonary perfusion. Clin. Phys. 
Physiol. Meas. 1988;9(Suppl. A):87-91. 
doi:10.1088/0143-0815/9/4A/015  

17. Hoetink A. E., Faes T. J. C., Marcus J. T., Kerkkamp H. J. J. 
and Heethaar R. M. Imaging of Thoracic Blood Volume 
Changes During the Heart Cycle With Electrical Impedance 

Using a Linear Spot-Electrode Array. IEEE Tran. on Med. 
Imaging. 2002;21(6):653-661. 
doi:10.1109/TMI.2002.800582  

18. Ferrer A. R. Z., Castro G. M., Gaona G. A., Aguillon M.A., 
Rosell F. P. J. and Carrera B. J. Electrical Impedance 
Tomography: An Electronic Design, with Adaptive Voltage 
Measurements and A Phantom Circuit for Research in The 
Epilepsy Field, Proceedings - 19th Internl Conf. - 
IEEE/EMBS Oct. 30 - Nov. 2, 1997, pp 867-868, USA. 

19. Henderson R. P., Webster J. G. An impedance camera for 
spatially specific measurements of the thorax. IEEE 
Transactions on Biomedical Engineering. 1978;Bme-
25(3):250-254. doi:10.1109/TBME.1978.326329  

20. Hou W. D., and Mo Y. L. Increasing image resolution in 
electrical impedance tomography. Electronics Letters. 
2002;38:701-702. doi:10.1049/el:20020477  

21. Lionheart W. R. B. EIT reconstruction algorithms: pitfalls, 
Review Article, challenges. Physiol. Meas. 2004;25:125–142. 
doi:10.1088/0967-3334/25/1/021  

22. Wei. D. H. and Yu-Long M. New Regularization Method in 
Electrical Impedance Tomography. Journal of Shanghai 
University (English Edition) . 2002;6(3):211–215. 
doi:10.1007/s11741-002-0036-x  

23. Vauhkonen M., Vadasz D., Karjalainen P. A., Somersalo E., 
and Kaipio J. P. Tikhonov Regularization and Prior 
Information in Electrical Impedance Tomography. IEEE 
Transactions on Medical Imaging. 1998;17(2):285-293. 
doi:10.1109/42.700740  

24. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, 
and K. D. Paulsen. Contrast-detail analysis for detection and 
characterization with near-infrared diffuse tomography. Med. 
Phys. 2000;27:2693-2700. doi:10.1118/1.1323984  

25. Niu H., Guo P., Ji L., Zhao Q. and Jiang T. Improving image 
quality of diffuse optical tomography with a projection-error-
based adaptive regularization method. Optics Express. 
2008;16(17):12423. doi:10.1364/OE.16.012423  

26. Polydorides N. and Lionheart W. R. B. A Matlab toolkit for 
three-dimensional electrical impedance tomography: a 
contribution to the Electrical Impedance and Diffuse Optical 
Reconstruction Software project. Meas. Sci. Technol. 
2002;13:1871–1883. doi:10.1088/0957-0233/13/12/310  

27. Vauhkonen M., Lionheart W. R. B., L. M. Heikkinen, P. J. 
Vauhkonen, J. P. Kaipio. A Matlab package for the EIDORS 
project to reconstruct two dimensional EIT images. Physiol. 
Meas. 2001;22:107–111. doi:10.1088/0967-3334/22/1/314  

28. Bera T. K. and Nagaraju J. A Stainless Steel Electrode 
Phantom to Study the Forward Problem of Electrical 
Impedance Tomography (EIT). Sensors & Transducers 
Journal. 2009;104(5):33-40.  

29. Bera T. K. and Nagaraju J. A Reconfigurable Practical 
Phantom for Studying the 2 D Electrical Impedance 
Tomography (EIT) Using a FEM Based Forward Solver, 10th 
International Conference on Biomedical Applications of 
Electrical Impedance Tomography (EIT 2009), School of 
Mathematics, The University of Manchester, UK, 16th-19th 
June 2009.  

http://dx.doi.org/10.1109/TMAG.2005.846506
http://dx.doi.org/10.1088/0957-0233/12/8/301
http://dx.doi.org/10.1109/TBME.2007.910649
http://dx.doi.org/10.2174/1874120701004010135
http://dx.doi.org/10.1088/0967-3334/31/8/S01
http://dx.doi.org/10.1016/S1053-8119(03)00301-X
http://dx.doi.org/10.1088/0143-0815/8/4A/017
http://dx.doi.org/10.1109/TBME.2009.2032529
http://dx.doi.org/10.1109/TMAG.2009.2012740
http://dx.doi.org/10.1088/0143-0815/9/4A/015
http://dx.doi.org/10.1109/TMI.2002.800582
http://dx.doi.org/10.1109/TBME.1978.326329
http://dx.doi.org/10.1049/el:20020477
http://dx.doi.org/10.1088/0967-3334/25/1/021
http://dx.doi.org/10.1007/s11741-002-0036-x
http://dx.doi.org/10.1109/42.700740
http://dx.doi.org/10.1118/1.1323984
http://dx.doi.org/10.1364/OE.16.012423
http://dx.doi.org/10.1088/0957-0233/13/12/310
http://dx.doi.org/10.1088/0967-3334/22/1/314


Bera et al.: Improving image quality in Electrical Impedance Tomography (EIT). J Electr Bioimp, 2, 2-12, 2011

12

30. Bera T. K. and Nagaraju J. A Study of Practical Biological 
Phantoms with Simple Instrumentation for Electrical 
Impedance Tomography (EIT), Proceedings of IEEE 
International Instrumentation and Measurement Technology 
Conference (I2MTC2009), Singapore, 5th - 7th May 2009, 
pp 511-516.  

31. Bera T. K. and Nagaraju J. Studying the Boundary Data 
Profile of A Practical Phantom for Medical Electrical 
Impedance Tomography with Different Electrode 
Geometries, Proceedings of The World Congress on Medical 
Physics and Biomedical Engineering-2009 Sept 7–12, 2009, 
Munich, Germany, IFMBE Proceedings 25/II, pp. 925–929.  

32. Malmivuo J. and Plonsey R. Bioelectromagnetism: principles 
and applications of bioelectric and biomagnetic fields, 
Chapter-26, Sec.-26.2.1, New York, Oxford University Press, 
1995.  

33. Bera T. K. and Nagaraju J. A Simple Instrumentation 
Calibration Technique for Electrical Impedance Tomography 
(EIT) Using A 16 Electrode Phantom, Proceedings of The 
Fifth Annual IEEE Conference on Automation Science and 
Engineering (IEEE CASE 2009), Bangalore, August 22 to 
25, pp. 347-352.  

34. Brown B. H., Barber D. C., A. D. Seagar. Applied potential 
tomography: possible clinical applications. Clin. Phys. 
Physiol. Meas. 1985;6:109-121.  
doi:10.1088/0143-0815/6/2/002  

35. Graham B. M. Enhancements in Electrical Impedance 
Tomography (EIT) Image Reconstruction for 3D Lung 
Imaging, PhD thesis, University of Ottawa, April 2007.  

36. Yorkey T. J. Comparing reconstruction methods for electrical 
impedance tomography, PhD thesis, University of. Wisconsin 
at Madison, Madison, WI 53706, 1986.  

37. Reddy J. N. An Introduction to the Finite Element Method, 
3rd Ed., 2nd Reprint, TATA McGraw-Hill Pub. Co. Ltd, 
2006.  

38. Biswas S. K., Rajan K., Vasu R. M. Interior photon 
absorption based adaptive regularization improves diffuse 
optical tomography, Proc. SPIE, Volume 7546, 754611 
(2010). doi:10.1117/12.853421  

39. Grootveld C. J. Measuring and Modeling of Concentrated 
Settling Suspensions Using Electrical Impedance 
Tomography, PhD Thesis, Delft University of Technology, 
The Netherlands, 1996.  

40. Arridge S. R. Optical tomography in medical imaging, 
Topical Review. Inverse Problems. 1999;15:R41–R93. 
doi:10.1088/0266-5611/15/2/022  

41. Soleimani M., Yalavarthy P. K. and Dehghani H. Helmholtz-
type regularization method for permittivity reconstruction 
using experimental phantom data of electrical capacitance 
tomography. IEEE Trans. Instrum. Meas. 2010;59(1):78-83. 
doi:10.1109/TIM.2009.2021645  

42. M. Soleimani and W. R. B. Lionheart. Nonlinear image 
reconstruction in electrical capacitance tomography using 
experimental data. Meas. Sci. Technol., 2005;16(10):1987–
1996. doi:10.1088/0957-0233/16/10/014  

43. Chan T. F. and Tai X. C. Level set and total variation 
regularization for elliptic inverse problems with 
discontinuous coefficients. J. Comput. Phys. 2004;193(1):40–
66. doi:10.1016/j.jcp.2003.08.003  

44. Bera T. K. and Nagaraju J. Resistivity Imaging of A 
Reconfigurable Phantom With Circular Inhomogeneities in 
2D-Electrical Impedance Tomography. Measurement. 
2011;44(3):518-526. doi:10.1016/j.measurement.2010.11.015  

45. Song X., Pogue B. W., Jiang S., Doyley M. M., Dehghani H., 
Tosteson T. D., and Paulsen K. D. Automated region 
detection based on the contrast-to-noise ratio in near-infrared 
tomography. Appl. Opt. 2004;43:1053-1062. 
doi:10.1364/AO.43.001053  

46. Kanmani B. and Vasu R. M. Diffuse optical tomography 
using intensity measurements and the a priori acquired 
regions of interest: theory and simulations. Phys. Med. Biol. 
2005;50:247–264. doi:10.1088/0031-9155/50/2/005  

47. Reyes M., Malandain G., Koulibaly P. M., González-
Ballester M. A. and Darcourt J. Model-based respiratory 
motion compensation for emission tomography image 
reconstruction. Phys. Med. Biol. 2007;52:3579–3600. 
doi:10.1088/0031-9155/52/12/016  

 

http://dx.doi.org/10.1088/0143-0815/6/2/002
http://dx.doi.org/10.1117/12.853421
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1109/TIM.2009.2021645
http://dx.doi.org/10.1088/0957-0233/16/10/014
http://dx.doi.org/10.1016/j.jcp.2003.08.003
http://dx.doi.org/10.1016/j.measurement.2010.11.015
http://dx.doi.org/10.1364/AO.43.001053
http://dx.doi.org/10.1088/0031-9155/50/2/005
http://dx.doi.org/10.1088/0031-9155/52/12/016

