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Abstract 
It is a common challenge for the surgeon to detect pathological 

tissues and determine the resection margin during a minimally 

invasive surgery. In this study, we present a drop-in sensor probe 

based on the electrical bioimpedance spectroscopic technology, 

which can be grasped by a laparoscopic forceps and controlled by 

the surgeon to inspect suspicious tissue area conveniently. The 

probe is designed with an optimized electrode and a suitable shape 

specifically for Minimally Invasive Surgery (MIS). Subsequently, a 

series of ex vivo experiments are carried out with porcine liver 

tissue for feasibility validation. During the experiments, impedance 

measured at frequencies from 1 kHz to 2 MHz are collected on both 

normal tissues and water soaked tissue. In addition, classifiers 

based on discriminant analysis are developed. The result of the 

experiment indicate that the sensor probe can be used to measure 

the impedance of the tissue easily and the developed tissue 

classifier achieved accuracy of 80% and 100% respectively. 

 

Keywords: Laparoscopic surgery; drop-in sensor probe; electrical 

bioimpedance spectroscopy; discriminant analysis. 

 

 

Introduction 

Laparoscopic surgery, also known as Minimally Invasive 

Surgery (MIS), is a specialized technique for performing 

surgery. During a laparoscopic surgery, a rigid viewing 

endoscope is inserted via a small incision adjacent to the 

umbilicus, and one or more accessory punctures are used to 

introduce various treatment tools for grasping, cutting, 

suturing and achieving hemostatic control. Compared to 

conventional open surgery, laparoscopic surgery can provide 

tremendous benefits to the patients such as less bleeding, 

smaller amounts of anesthesia, less pain and minimal 

scarring. These advantages make laparoscopic surgery a 

commonly selected method for surgical treatments inside 

the abdominal cavity. Particularly, laparoscopic surgery is 

often used for pathological tissue resection [1]. 

During a cancer surgery, making a close margin in the 

pathological area is critical, however, remains a big challenge 

because of complex pathological anatomy and tissue 

deformations [2]. If the cancer is not removed completely, 

the residual cancer tissue inside the patient’s body may 

continue growing after the surgery, thus re-operation for 

removing the cancer tissue is often required. Unlike in an 

open surgery where the surgeon can palpate and feel the 

tissue, the surgeon operating a laparoscopic surgery can 

merely rely on the vision from the endoscope to identify the 

pathological tissues. Conventionally, a pathologist examines 

the removed tissue (during or at the end of the surgery) to 

be sure that all cancer cells have been removed. However, 

the pathological examination of the resection margin will 

slow down the entire surgical procedure significantly [3]. 

Therefore, the surgeon is often required to cut out a big rim 
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area of the healthy tissue around the pathological area to 

ensure the cancer is completely removed. 

To address this challenge, advanced sensing 

technologies have been developed for tissue detection, 

aiming to make the surgery safer and more effective. One of 

the well-known commercialized examples is the Firefly 

Fluorescence Imaging system (Intuitive Surgical, Inc., U.S.), 

which use near infrared illumination to enhance the imaging 

contrast between the pathological tissue and the normal 

tissue which are dyed by fluorescent agent. In addition, BK 

Medical Inc. develops a drop-in ultrasound transducer 

(X12C4, BK Medical Holding Company, Inc., U.S.) which can 

be grasped by a robotic forceps and controlled by the 

surgeon to examine the area of interest. The effectiveness of 

both technologies was demonstrated [4,5]. Apart from the 

Fluorescence imaging and ultrasound transducer, some 

tactile and force sensors have also been designed to provide 

the touch feel during the operation, thus the surgeon may 

palpate the tumor based on the stiffness difference between 

the cancer tissues and the normal tissues [6-8]. Based on the 

designed tactile or force sensing, considerable research 

efforts have been made for tumor localization in MIS, such 

as in [9] a haptic palpation probe is designed to locate the 

subcutaneous blood vessel in robotic assisted MIS; in [10] a 

novel robotic sweeping palpation method is proposed for 

digital rectal examination (DRE); and in [11], force sensing 

uncertainties during palpation is considered and a 

compensation framework is proposed to achieve accurate 

palpation. However, the above-mentioned devices or 

designs either are too expensive or specifically be used for 

robotic surgery; few of the sensor probes are available for 

normal laparoscopic surgery.  

Recently, Electrical Bio-Impedance (EBI) sensing 

technology has been noticed to provide extra ability to 

identify different tissue types based on the tissue's electrical 

property which the human cannot naturally perceive [12-

15]. It has been reported that the EBI sensing can be used to 

detect the cancerous tissue in varies of organs areas 

effectively such as kidney [16], oral [17], neck [18], liver [19], 

brain [20] and skin [21]. Furthermore, the advantages such 

as low cost, easily miniaturization, non-invasive or minimally 

invasive, and real-time detection of this sensing technology 

have attracted ample research attention. 

Although several EBI sensing devices have been 

proposed and developed in previous studies [22,23], they 

are generally large. As for some other existing electrode 

probes such as ZedScan (Zilico Ltd.) and in [36, 37], the 

design of the electrodes may not fit to the MIS environment. 

Specifically, the electrode in previous studies were designed 

as 2-needle electrodes [24], concentric needle electrode 

[25], and 2 ball electrodes [26]. In study [27], the EBI sensing 

was proposed to be integrated directly onto the bipolar 

forceps jaws. However, these electrodes configurations 

commonly have concentrated sensitivity about a point. One 

possible way to improve the signal-noise ratio of the 

measurement can be done through distributing the sensing 

electric field in an area. In addition, the objective of this 

study is to develop a sensor probe based on the EBI sensing 

technology with considerable minimal size and specifically 

designed electrodes. The probe can be grasped by an 

endoscopic forceps and placed on the surface of the target 

tissue to inspect the pathological tissue area for in site tissue 

information in real time.  

 

Sensor probe design  

Design requirements 

As shown in Fig. 1, the proposed drop-in probe aims to assist 

the surgeon in detecting abnormal tissue areas during a 

laparoscopic surgery. The surgeon can grasp it with a 

laparoscopic forceps and slightly press on the surface of the 

suspicious tissue area for examination. An EBI meter is 

connected to the probe for providing excitation signals and 

measuring corresponding EBI values. The measured EBI 

values are then sent to the connected laptop for data 

processing. With the constructed training dataset, a tissue 

identification algorithm is developed to distinguish the 

normal and abnormal tissue.  

In order to satisfy the objectives mentioned above, the 

following criteria are considered in the design phase as listed 

below: 
 

1. The size of the designed probe should be smaller than 

12 mm so that it can enter the abdominal cavity 

through a trocar; 

2. The EBI measurement should be conducted in multiple 

frequencies in order to accurately reflect the tissue's 

electrical property; 

3. The probe should be made in a low cost and be able to 

merge to the current surgical environment easily. 

 

 
 

Fig.1: The proposed sensor probe aims to assist in the MIS for 

tissue detection. The probe connects to an EBI meter for 

measurement and the sensing data is streaming to a laptop for 

processing and display. 

 

Modelling of tissue electrical bioimpedance 

The electrical bioimpedance of the measured value can be 

modelled as shown in Fig. 2(A). The overall electrical 

impedance value consists of the tissue impedance and the 
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electrode polarization impedance 𝑍𝑒𝑝𝑖 . The tissue impe-

dance is commonly described using the Cole model [28]. This 

model imitates biological structure constructed by a resistor 

𝑅𝑖𝑛𝑡 simulating the intra-cellular component, a resistor 𝑅𝑒𝑥𝑡  

simulating the extra-cellular component and a capacitor 𝐶𝑚 

simulating the cell membrane as shown in Fig. 2(A). In order 

to extrapolate the tissue's electric property, signals of multi-

frequencies in the range from 1 kHz to 2 MHz, known as the 

𝛽 dispersion, are used for excitation. Within this range, high 

frequency signal is more capable to pass through the cell 

membrane and the measured impedance value involves 

more portions of the intra-cellular resistance, while low 

frequency current mainly passes the extra-cellular region 

and reflects the electrical impedance of this region. 

In addition, the electrode polarization effect can 

influence the measured value significantly. The electrode 

polarization impedance is generated due to the double layer 

phenomenon in the contacting layer between the electrode 

and the tissue, which is known as the Gouy-Chapman effect 

[29]. The value of 𝑍𝑒𝑝𝑖  is found to be affected by several 

factors such as temperature, electrode materials, electrode 

geometry, tissue types, environmental pH, applied pressure, 

excitation waveform and excitation frequencies [30]. Thus, 

the electrode polarization effect is commonly considered as 

a main reason of variate in the measured EBI value. 

 

 
 

Fig.2: (A) The model of the electrical bioimpedance measured by 

the proposed sensor probe; (B) Modelling the low frequency and 

high frequency current passing through biological tissue. 

 

Electrode design 

Cross-finger electrodes configuration is often exploited for 

EBI sensing [15]. In a two-electrodes configuration, the 

excitation current is injected through the electrode pair, and 

the reciprocal current is measured through the same 

electrodes. Although the measured signal mixes both 

biological impedance and the electrode impedance when 

bipolar electrode configuration is used, this configuration 

enables compact design and simple circuit connection to an 

LCR meter. In this study, the electrodes are designed as a 

plate with a popularly used pattern of bipolar electrode as 

shown in Fig. 3. With this electrode configuration, the 

injected excitation current can be distributed evenly on the 

target tissue area. The size of the electrode is designed to be 

7×9 mm, allowing it to enter the trocar and to facilitate the 

measurement on a relatively big area with good contact. It is 

necessary to mention that the key parameters of this pattern 

consists of the number of the fingers, and the electrode's 

width 𝑤𝑒  to the gap width 𝑤𝑔 . According to the study of 

Stulik et al. [31], having more fingers on the electrodes can 

not only increase the signal value but also the background 

noise, thus leading to no changes in signal-noise ratio. 

Meanwhile, wider electrode fingers provide more electrode 

surface area, but lose some of the radial diffusion pattern. 

Therefore, while the overall signal increases, nonspecific 

surface reactions (background signals) increase with a 

slightly faster rate, and further decreasing the signal-noise 

ratio. With fully consideration of the above-mentioned 

analysis, the electrodes plate is made with three fingers, the 

electrode width 𝑤𝑒 is set to be 24 mil and the gap width 𝑤𝑔is 

set to be 48 mil.  

 

 
 
Fig.3: (A) The electrode pattern; (B) Modelling the EBI sensing of 

soft tissue with the designed electrode; (C) the current density 

simulation of the section indicated in (A).  

 

The measurement sensitivity using the designed 

electrode is analyzed as follows. We assume that the tissue 

material is homogeneous. According to previous studies 

[32], the impedance of tissue is calculated as an integration 

of the sensitivity density distribution 𝑆, the tissue's electrical 

conductivity 𝜎  and the tissue's relative permittivity 𝜀  over 

the measured tissue volume 𝛺: 

 

 𝑍 = ∫
1

𝜎 − 𝑗𝜔𝜀𝛺

𝑆𝑑𝛺 (1) 

where the sensitivity 𝑆 for a bipolar configuration is equal to 

the square of the current density 𝐽:  𝑆 = | 𝐽⃗ |2.  
Furthermore, the inverse problem based on the 

designed electrode pattern is analyzed as follows. The 

inverse problem in the EBI measurement is the procedure to 

derive the material's impedance given the injected current 

value and the measured voltage. Here, we simplify the 

electrode pattern as a dipole model, in which the electric 

current flows into the tissue via the electrode pair. Assuming 
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that the tissue does not generate induced current flow, the 

current density 𝐽 is approximated to be proportional to the 

electric field strength 𝐸:  

 

 𝐽⃗ = (𝜎 − 𝑗𝜔𝜀0𝜀𝑟) ⋅ 𝐸⃗⃗⃗ (2) 

As shown in Fig. 3(B), the electric field of a random point 

𝑃 in the region caused by applied excitation current, can be 

calculated according to Coulomb's law as 

 

 𝐸𝑝
⃗⃗ ⃗⃗⃗ = ∫

𝑑𝑞1

4𝜋(𝜎 − 𝑗𝜔𝜀)𝑟1
2

𝑆1

+ ∫
𝑑𝑞2

4𝜋(𝜎 − 𝑗𝜔𝜀)𝑟2
2

𝑆2

 
(3) 

 

where 𝑆1 and 𝑆2 are the area of two electrodes, respectively. 

𝑟𝑖(𝑖 = 1,2)  represents the distance from an element on 

electrode 𝑖 to point 𝑃, and 𝑑𝑞𝑖  is the charge on this element.  

Considering the complexity of the inverse problem, the 

Finite Element Method is utilized for the simulation based on 

COMSOL Multiphysics® software. Through the simulation 

results of the current density distribution, the depth of the 

tissue to which the excitation current flows, can be 

estimated. The model is simplified by using direct current in 

the simulation. As shown in Fig. 3(C), the electrode pattern 

is placed on the top surface of the material, and a direct 

current is injected between the electrodes. The simulation 

results indicate that 80% of the energy is contained within 

the depth of 4.5 mm. 

 

Probe design and fabrication 

A prototype is fabricated as shown in Fig.4, which is made as 

a piece of PCB, which potentially can be bio-compatible [35]. 

Gold plated electrodes are used in order to minimize the 

electrode polarization effect [38]. The casing is made by 3D 

printing due to the low-cost consideration. 

A small extrusion structure is added to the casing to 

allow the force grasping it in different angles and mani-

pulation. The width, the length and the height of the probe 

are 8 mm, 11 mm, and 16 mm, respectively, allowing it to 

pass through the trocar used for MIS to insert surgical tools 

such as laparoscopy. In addition, all the corners of the probe 

are rounded so as not to scratch the tissue during the 

manipulation. 

 

 
 

Fig.4: The prototype of the sensor probe, which can be grasped by 

a surgical forceps for measuring the area of interest. 

 

 

Algorithm for tissue classification  

In order to judge the measurement for distinguishing 

between healthy tissue and pathological tissue, supervised 

machine learning algorithm is used. Then new sensing data 

can be estimated from the training dataset.  

Discrimination Analysis is a supervised algorithm using 

information of classes to find new features in order to 

maximize its separability. Based on different feature 

assumptions, this classification method includes 2 main 

applied methods: Linear Discriminant Analysis (LDA) and 

Quadratic Discriminant Analysis (QDA). LDA assumes the 

feature covariance matrices of both classes are the same, 

which results in a linear decision boundary. In contrast, QDA 

is less strict and allows different feature covariance matrices 

for different classes, which leads to a quadratic decision 

boundary.  

Both LDA and QDA works under the assumption that 

the data are normally distributed. Given an input 𝑥0 , the 

response as in a Bayes classifier is predicted: 

 

 𝑦
0

= 𝐚𝐫𝐠𝐦𝐚𝐱𝑦 𝑃̂ (𝑌 = 𝑦|𝑋 = 𝑥0) (4) 

For a binary group classification, a data set can be 

defined as (𝑥𝑖 , 𝑦𝑖)𝑖
𝑛  where 𝑥𝑖 ∈ ℝ𝑑  is the input, 𝑦𝑖  is the 

output, and 𝑛 is the number of the data points. In this case, 

the input 𝑥𝑖  is a vector of measurements of different 

excitation frequencies[𝑅1, 𝐶1, 𝑅2, 𝐶2, . . . , 𝑅𝑑/2, 𝐶𝑑/2],  of which 

𝑅 is the resistance and 𝐶 is the capacitance. The output 𝑦𝑖  

has 2 values, 0 and 1, representing normal tissue and 

pathological tissue respectively. 

Here, we use the Bayes rule to obtain the estimate: 

 

 𝑃̂ (𝑌 = 𝑘|𝑋 = 𝑥) =
𝑃̂ (𝑋 = 𝑥|𝑌 = 𝑘) 𝑃̂ (𝑌 = 𝑘)

𝑃̂ (𝑋 = 𝑥)
 (5) 

The distribution of the EBI values in either group is 

considered as a Multivariate Normal Distribution: 𝑃̂ (𝑋 =

𝑥|𝑌 = 𝑘) = 𝑓
𝑘

(𝑥) . In this case, the density function for 

class 𝑘 satisfies 

 

 𝑓𝑘(𝑥) =
1

(2𝜋)𝑝/2|𝛴𝑘|1/2
𝑒−

1
2

(𝑥−𝜇𝑘)𝑇𝛴𝑘
−1(𝑥−𝜇𝑘) (6) 

where 𝜇𝑘 and 𝛴𝑘  is the mean and the covariance matrix of 

the input for class 𝑘 . In addition, we assume the initial 

degree of beliefs in either classes are equal, and thus 𝑃̂ (𝑌 =

0) = 𝑃̂ (𝑌 = 1) = 𝛱𝑘 . Furthermore, Eq. (5) can be also 

written as:  

 

 𝑃(𝑌 = 𝑘|𝑋 = 𝑥) =
𝑓𝑘(𝑥)𝛱𝑘

𝑃(𝑋 = 𝑥)

= 𝐶𝛱𝑘|𝛴𝑘|−1/2𝑒−
1
2

(𝑥−𝜇𝑘)𝑇𝛴−1(𝑥−𝜇𝑘) 

(7) 
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where 𝐶 = ((2𝜋)𝑝/2𝑃(𝑋 = 𝑥))−1 is constant and keeps the 

same for both classes. Furthermore, we take the logarithm 

of both sides and we have: 

 

 𝑙𝑜𝑔𝑃(𝑌 = 𝑘|𝑋 = 𝑥) = 𝑙𝑜𝑔𝐶 + 𝑙𝑜𝑔𝛱𝑘 −
1

2
log|𝛴𝑘| −

1

2
𝜇𝑘

𝑇𝛴𝑘
−1𝜇𝑘 + 𝑥𝑇𝛴𝑘

−1𝜇𝑘 −
1

2
𝑥𝑇𝛴𝑘

−1𝑥  (8) 

In QDA, since the covariance matrix for both classes are 

different, the classifier ℱ𝑄𝐷𝐴 can be obtained as: 

 

 ℱ𝑄𝐷𝐴 = 𝑙𝑜𝑔𝛱𝑘 −
1

2
𝑙𝑜𝑔|𝛴𝑘| −

1

2
𝜇𝑘

𝑇𝛴𝑘
−1𝜇𝑘 +

𝑥𝑇𝛴𝑘
−1𝜇𝑘 −

1

2
𝑥𝑇𝛴𝑘

−1𝑥  
(9) 

While the covariance matrices of both classes are the 

same for LDA, namely 𝛴1 = 𝛴2, the classifier ℱ𝐿𝐷𝐴 can be 

simplified as: 

     ℱ𝐿𝐷𝐴 = 𝑙𝑜𝑔𝛱𝑘 −
1

2
𝜇𝑘

𝑇𝛴𝑘
−1𝜇𝑘 + 𝑥𝑇𝛴𝑘

−1𝜇𝑘 
(10) 

 

Experiment evaluation  

Experimental setup  

The experimental setup is shown in Fig. 5; the setup consists 

of the designed EBI probe, an LRC meter (Keysight E4980A, 

Keysight Technologies Inc., U.S.), material for test, and a 

laptop for data collection and processing.  

For the safety consideration, the electric level of the LCR 

meter is set to be 10 mV. In the following study, the 

maximum current at this voltage in all the frequencies is 

found not to be more than 0.1 mA, which does not cause any 

tissue damage according to international standards IEC6060-

1. In addition, 200 different frequencies from 1 kHz to 2 MHz 

were applied for each measurement. The frequencies within 

this range are corresponding to the β-dispersion of biological 

tissues [40], which can provide rich information about the 

tissues’ dielectric properties. 

 

 
 

Fig.5: The experimental setup including an LCR meter, tissue 

samples and the designed sensor probe which is grasped by a 

surgical forceps. 

 

Experimental design  

Two experiments were performed in this study, to 

characterize and evaluate the designed sensor probe. 

The first experiment was designed to characterize the 

electrode sensing capability with saline solutions of different 

concentrations. Five saline solutions in different concen-

trations, namely 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% were 

made and used for the first experiment. During the 

experiment, the electrode was immersed into the solutions. 

After waiting for about 5 s, we measured the impedance 

values 10 times for each saline solution. Then, the collected 

data were analyzed and compared with the theoretical 

electrical properties of the saline solutions.  

In order to evaluate the overall performance of the 

designed probe for distinguishing the normal and abnormal 

states of the same tissue type, the second experiment was 

designed and conducted with real phantoms based on fresh 

porcine liver, given that the porcine liver has similar 

electrical properties as human [12]. Liver tissue is coated 

with a 40 to 70 μm thick serosal layer [41] which is within the 

20% sensitivity range according to Fig. 3. Also, blood or body 

fluid may contaminate the tissue surface in practice. This 

effect can be minimized by slightly pressing the probe on the 

tissue. These factors can be the source of measurement 

variation and methods to minimize their impact will be a 

focus in our future study. 

To avoid that the EBI data collected on individual liver 

samples, be affected during each experiment, stabs of cold 

stored porcine liver was cut into 18 pieces of block with the 

dimension of 30×30×20 mm. 9 pieces of liver samples 

remained fresh and the other 9 pieces were soaked in pure 

water for 5 min to modify the cell architecture of the liver 

tissue. Normally, the healthy status of tissue can be reflected 

by its extracellular component and intracellular component. 

By soaking the liver sample into water, water could be 

injected into the tissue due to passive transport phenomena 

[33] and thus change these parameters.  

During the second experiment, we first cleaned the liver 

surface to ensure its dryness. Then the probe was placed on 

the surface of a liver sample and we slight pressed the probe. 

According to study [39], the applied force between the probe 

and the tissue can cause change of electrical property of the 

tissue. Thus, the experimenter controlled the pressing force 

based on visual inspection to ensure that the electrodes was 

contacting the tissue sample well but not causing too much 

deformation of the tissue. Then the EBI values were 

measured by the LCR meter. For each sample, the measure-

ments were repeated 10 times, and the data were collected 

to the laptop for processing. As mentioned in Section 

Algorithms for tissue classification, this study tested and 

compared the two constructed classifiers, ℱ𝐿𝐷𝐴  and ℱ𝑄𝐷𝐴 

modelling the probability of a class 𝑦 given sample 𝑥𝑖 . The 

collected input-output pairs {𝑥𝑡 , 𝑦𝑡} were accumulated as 

one training dataset 𝒫𝑡
𝐴  for establishing the classifiers and 

the other one as testing dataset 𝒫𝑡
𝐵  for evaluating the 

performance of the classifiers. Here, 25% cross validation 
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was used for verification. The experimental results were 

compared and presented in Section Ex vivo tissue results. 

 

Ethical approval 

The conducted research is not related to either human or 

animal use. 

 

Experimental results  

Experimental results of saline solutions  

Fig. 6 shows the measurement results of different saline 

solutions using the designed probe. Each curve represents 

the mean values measured in one saline solution. The 𝑥 axis 

is the excitation frequency in logarithmic scale and the 𝑦 axis 

represent the corresponding capacitance values and 

resistance values, respectively. 

The experimental results show that the capacitance 

values for different saline solutions have little variance 

(relative standard deviation <4.4%), and this value decreases 

from 638 nF to 4.4 nF when the excitation frequency 

increased from 1 kHz to 2 MHz. In contrast, the resistance 

values were less dependent to the applied frequency. In the 

low frequency range from 1 kHz to 10 kHz, the resistance 

values showed a relatively bigger change due to the 

electrode polarization effect. When higher excitation 

frequencies (10 kHz to 2 MHz) were applied, the polarization 

impedance 𝑍𝑒𝑝𝑖  became small and contributed less to the 

resistance value.  

 

 
 

Fig.6: Experimental results of 5 saline solutions in different 

excitation frequencies with the sensor probe. 

 

Ex vivo tissue results  

The capacitance and resistance values of ex vivo tissues 

measured by the designed probe at different excitation 

frequencies are shown in Fig. 7. Here, we use ‘Normal tissue’ 

to denote fresh liver samples, and ‘Abnormal tissue’ to 

denote water soaked tissues. The results of normal tissue 

samples are plotted in blue lines with a semi-transparent 

shading representing the standard deviation, while the 

results of abnormal tissue samples are shown in red. 

 

 
 

Fig.7: Experimental results of ex vivo porcine liver tissues including 

the capacitance and resistance: the blue line indicates the results 

of normal tissue and the red line indicates the results of the 

abnormal tissue. 

 

Then the data analysis was proceeded. First, the 

Kolmogorov-Smirnov method [34] was used to test whether 

the collected results are normally distributed. The test 

results indicate that the p-values of both classes were >0.05. 

Therefore, the null hypothesis can be rejected for both 

classes, and the discriminant analysis method is legit for the 

data classification. In total, 160 data were collected, and 1 

data was rejected due to unexpected big noise. Among the 

collected data samples, 119 data were randomly selected as 

a training dataset, and 40 data were used as a testing 

dataset. After the training procedure, the LDA classifier was 

found to achieve around 100% accuracy and the QDA 

classifier achieved a 79% accuracy with the training dataset.  

Subsequently, the testing dataset were used for 

evaluating both classifiers. The classification accuracy was 

100% for the LDA classifier, and 80% for the QDA classifier. 

Therefore, a further investigation of the QDA method was 

carried out and the confusion matrix of the QDA classification 

results is shown in Tab. 1. According to the classification 

results, 8 false positive cases were found in the test dataset.  

 
Tab.1. Confusion Matrix showing the classification 

results using the QDA classifier. 
 

 Abnormal Normal 

Abnormal 12 8 

Normal 0 20 

 

Discussion 

According to the experimental results of the saline solutions 

study, the designed sensor probe is found to be able to 

reflect the electrical property of the testing material 

effectively. Also, when a higher excitation frequency was 

applied, the measured capacitance of the saline solutions 
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showed a drastic decline, but relatively less influences were 

found to the resistance values. This finding was coherent to 

the International Standard IEC60746-3 which indicates that 

saline solutions in high frequency measurements can be 

considered as pure conductive material.  

In addition, the ex vivo tissue experiments provide a 

more in-depth evaluation of the sensor probe and the 

classification methods. The experimental results in Fig.7 

reveal the exponential decline tendency for both capacitance 

and resistance against frequency. This phenomenon is 

described as the Cole model as mentioned in Section 

Modeling of tissue electrical bioimpedance. Compared to the 

impedance values of fresh liver tissue, the capacitance of the 

water-soaked liver samples was slightly higher and their 

resistance value was found to be lower. This is because the 

intra-cellular water and extra-cellular water of the liver tissue 

increased by the overall effect of passive transport and water 

diffusion. Specifically, the volume of extracellular fluid may 

increase significantly since a relatively low resistivity in the 

low frequency range was observed. Since the electrical 

property of tissue is sensitive to the tissue status change, it 

implies a great potential of this sensory probe to detect 

different statuses even for the same tissues. 

Also, the experimental results show that both classifier 

can successfully distinguish normal and abnormal tissue with 

quite high accuracy (100% for LDA, and 80% for QDA). The 

LDA classifier has a higher accuracy than that of the QDA 

classifier, which can be explained due to the variance-

covariance are quite different from the two classes. Since the 

covariance matrix of each class are used in the QDA method, 

its forming boundary may be affected and result in an overfit. 

In addition, the collected data set was used to train and test 

a support vector machine (SVM) based classifier. An accuracy 

of 98% was found which is higher than the QDA classifier but 

slightly lower than the LDA classifier. In the future work, 

more experiments will be performed, and a larger training 

dataset will be used for training the classifier.  

The pressing force on the tissue can be one source of the 

measurement variations. However, the probe should still be 

able to classify normal and cancerous liver tissues since their 

differences in terms of electrical properties are reported to 

be more significantly [19]. The current version of the probe 

will require the user to manipulate it based on visual 

information. Specifically, the user should control the probe 

to slightly press on the tissue without causing too much 

deformation of the tissue. This can be difficult in practice. To 

increase the measurement accuracy, involving a force sensor 

or a force regulation mechanism into the probe will be 

investigated in our future work. 
 

Conclusions  

In this study, we propose and develop an EBI technology 

based sensor probe that can be used for assisting the 

surgeons in detecting abnormal tissue during a laparoscopic 

surgery. The probe is designed with an optimized electrode 

plate to improve the signal-noise ratio and a compact size to 

be grasped by a forceps for scanning the tissue conveniently. 

Two tissue classifiers are developed based on supervised 

learning algorithms. To verify the performance of the 

designed sensor probe, ex vivo experiments are performed. 

The experimental results show that the sensor probe can 

provide effective tissue measurements with quite high 

accuracy. 

The future work will focus on the further experimental 

studies for the sensor characterization and evaluation, and 

ex vivo human healthy and pathological tissues will be 

considered. Furthermore, advanced classification algorithms 

will be utilized/developed in order to construct a more 

effective abnormal tissue detector. 
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