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Abstract
The Cole-Cole model for a dielectric is a generalization
of the Debye relaxation model. The most familiar form
is in the frequency domain and this manifests itself in a
frequency dependent impedance. Dielectrics may also be
characterized in the time domain by means of the current
and charge responses to a voltage step, called response and
relaxation functions respectively. For the Debye model they
are both exponentials while in the Cole-Cole model they are
expressed by a generalization of the exponential, the Mittag-
Le�er function. Its asymptotes are just as interesting and
correspond to the Curie-von Schweidler current response which
is known from real-life capacitors and the Kohlrausch stretched
exponential charge response.
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Introduction

The Cole Cole model [1] is a generalization of the Debye

dielectric relaxation model which �ts measurements in

many applications including the bioimpedance �eld, [2,

Sec. 9.2.7]. One interpretation is that it represents a

distribution of relaxation processes, each described by the

Debye model. Since the Debye model has a simple time

domain interpretation and both the current and charge

responses to a voltage step are exponential, the Cole-

Cole responses can therefore be expressed as sums of

exponential functions. In practice, however, this result

is often too complex to lend itself to interpretation.

In recent years, there has been a development in

understanding of the responses of the Cole-Cole model

found in a direct way. These results depend on the Mittag-

Le�er function, a generalization of the exponential which

is named after Gösta Mittag-Le�er (1846-1927). This

function is rightly called the �queen function of fractional

calculus� [3] showing the close link between non-integer

derivatives and the Cole-Cole model. The asymptotes of

the Mittag-Le�er function are just as important as the

function itself and is what will be emphasized here.

There are two well-established results for non-ideal

dielectrics. The �rst is that for a long time it has been

known that the current response to a step voltage for a

practical non-ideal capacitor often follows the Curie-von

Schweidler power law:

I(t) / t��
0

; (1)

where �0 is an order which is de�ned after (19). In [4]

such responses are measured for many practical capacitors

and the law is attributed to Curie in 1889 and von

Schweidler in 1907. This is especially relevant for non-

ideal dielectrics.

The second is an even older result which is due to

Kohlrausch who found that the discharge of a capacitor

with glass as a dielectric medium in a Leiden jar follows a

stretched exponential. The charge is:

Q(t) / exp [�(t=��)�]; (2)

where �� is a time constant and � is given after (19).

In [5] this is traced back to 1854. The result was later

rediscovered by Williams and Watts [6] and it is often

called the Kohlrausch-Williams-Watt model.

The purpose of this paper is to increase awareness of

the time domain properties of the Cole-Cole model by

collecting and interpreting some results from in particular

[5, 7, 8]. The paper starts with the Debye model in

order to de�ne the relevant current and charge responses,

called the response function and the relaxation function

respectively. It will also be shown that both the Curie-

von Schweidler power law and the Kohlrausch-Williams-

Watt stretched exponential response are approximations

to those of the Cole-Cole model. Finally, it is also

shown that just as the Debye model corresponds to an

ordinary partial di�erential equation for the constitutive

law between the displacement �eld and the electric �eld,

the Cole-Cole model corresponds to a similar equation but

with non-integer, i.e. fractional derivatives.
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De�nitions

The constitutive relation between the displacement �eld,

D, and the electric �eld, E is:

D = "0"rE = "0E + �E = "0E + P; (3)

where P is the polarization charge density, "0 is free

space permittivity, "r is relative permittivity, and � is

susceptibility. In the time domain, D(t), represents a

charge density.

Frequency-dependency can be given either for the

susceptibility [5, 9] or for the permittivity [2]. The

relationship between the two is:

� = "0("r � 1): (4)

There are two reasons why we consider the permittivity

here. First, in the bioimpedance �eld "r � 1 so there

is little di�erence in practice and D � P . Second and

more important, it is "r which is directly re�ected in

the properties of the macroscopic capacitance of the

medium, and since impedance or capacitance is what

can be measured, it makes sense to specify properties in

terms of "r . This is also how models are justi�ed in the

bioimpedance �eld as [2, Sec. 3.1.3] says: �Polarization P

cannot itself be measured. Dielectric theory is therefore

invariably linked with the concept of a capacitor formed

by two plates with the dielectric in between.�

This capacitance of such a dielectric material is

C =
A

d
"0"r ; (5)

where A and d are the area and the plate distance of

the capacitor. The capacitance is complex for the models

considered here and its impedance is Z = (j!C)�1. The

frequency domain response to an input voltage is:

I(!) =
U(!)

Z(!)
= j!

"0A

d
"r (!)U(!): (6)

When the input voltage is a step, U(!) = (j!)�1, this is:

Istep(!) =
"0A

d
"r (!): (7)

In the time domain, the current step response is found as

the inverse Fourier transform of the relative permittivity.

The current charge relation is :

I = A � J = A
dQ

dt
; (8)

where J(t) is the charge density. Charge is therefore

found by an integration of the result for the current plus

a constant. Integration is equivalent to division by j! in

the frequency domain and therefore the charge response

to a step in voltage is related to

Qstep(!) =
Istep(!)

j!A
=

"0

d

"r (!)

j!
: (9)

Debye model

As a reference and in order to establish terminology, the

Debye model will �rst be analyzed for its current and

charge responses. Its permittivity is

"r (!) = "1 +
"s � "1

1 + j!�
; (10)

where "s is the static value and "1 < "s is the value at

in�nity frequency, � is a characteristic time constant for

the medium. The �rst term, represented by the constant

"1, represents an ideal capacitor which is in parallel with

a frequency-varying part.

Time-domain characterization

The current response, (7), is

Istep(t) =
"0A

d
F�1 f"r (!)g

=
"0A

d

(
"1�(t) +

"s � "1

�
e�t=�

)
:

(11)

The current has an initial impulse due to the charging of

an ideal capacitor followed by a current that dies out with

a time constant � .

Likewise the charge response is given by (9) or by

integration of the current:

Qstep(t) =
1

A

∫ t

0

Istep(u)du: (12)

This gives

Qstep(t) =
"0

d

(
"1 � ("s � "1)e�t=� +K

)
=

"0

d

(
"s � ("s � "1)e�t=�

)
; t � 0;

(13)

where K is a constant which is such that the initial value

for the charge is proportional to "1. The charge therefore

starts with this value and ends up to be proportional to

"s for large time. This is in agreement with the example

in [2, Sec. 3.4.2].

Characterization of general models

The models will be given in terms of a normalized

permittivity which for the Debye model is:

"D(!) =
"r (!)� "1

"s � "1
=

1

1 + j!�
: (14)

In order to characterize subsequent models, the two

descriptions of [5] will be used. The �rst is the response

function, �(t), which characterizes the current response.

It is given as the inverse Fourier transform of the

normalized relative permittivity, "(!). In the Debye

example this is

�(t) = F�1 f"(!)g = F�1

{
1

1 + j!�
;

}
=

1

�
e�t=� ;

(15)

which can be recognized to be the main time-varying part

of (11).
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The second function is the relaxation function, 	(t),

which characterizes the charge. It is given by

	(t) = F�1

{
1� "(!)

j!

}
= e�t=� ; t � 0; (16)

which is seen in (13) with a negative sign. It is only for

the simple Debye model that the two functions are the

same.

The de�nitions of �(t) and 	(t) are such that they

both are non-negative and non-increasing functions of

time, meaning that the zero order derivative is positive

and the �rst order derivative is negative. This pattern

of sign changes repeats in�nitely with the second order

derivative positive and so on. This is what characterizes

a completely monotone function and it ensures that it can

be expressed as a continuous distribution of exponential

functions and that the Laplace transform is non-negative

[5]. In this way the physical realizability of the considered

system is guaranteed [10].

Constitutive law

The Debye model can also be expressed as a di�erential

equation between D and E by combining (3) with a

rearranged (10):

(1 + j!�)D(!) = "0"sE(!) + j!�"0"1E(!): (17)

Inverse Fourier transformation then gives:

D(t) + �
dD(t)

dt
= "0"sE(t) + �"0"1

dE(t)

dt
: (18)

This is the electrical equivalent of the standard linear solid

or Zener model in linear viscoelasticity [7, 11].

Cole-Cole model

The permittivity of the Cole-Cole model follows a more

general power-law than the Debye model:

"r (!) = "1 +
"s � "1

1 + (j!�)1��
0
= "1 +

"s � "1

1 + (j!�)�
: (19)

In electromagnetics, the model is sometimes presented

with an exponent of 1 � �0, so that �0 = 0 corresponds

to the Debye model. It may also be expressed with an

exponent � = 1 � �0 where 0 < � � 1 and here that

convention will be followed in order to conform to [5].

The permittivity of the Cole-Cole model in normalized

form is:

"CC(!) =
"r (!)� "1

"s � "1
=

1

1 + (j!�)�
: (20)

Time domain characterization

Section 3.1 of [5] gives the functions for the Cole-Cole

model. The response function that characterizes the

current response is:

�CC(t) = F�1 f"CC(!)g =
1

�
(t=�)��1 E�;� (� (t=�)�) ;

(21)

and the relaxation function which describes the charge is:

	CC(t) = F�1

{
1

j!
�
"CC(!)

j!

}
= E� (� (t=�)�) :

(22)

The function E�;� is the Mittag-Le�er function which is

a generalization of the exponential function. The two-

parameter Mittag-Le�er function is de�ned by

E�;�(t) =

1∑
n=0

tn

�(�n + �)
; 0 < � � 1; (23)

where �(x) is the gamma function, a generalization of

the factorial for non-integer arguments and where �(n) =

(n � 1)! for integer arguments. Setting � = 1 gives the

standard Mittag-Le�er function E�(t) = E�;1(t) of (22).

Another special case is E1(t) which is the exponential

function. In this article, it is in particular the asymptotes

of the responses which are important.

Approximation of the response function

According to [5], the response function may be approxi-

mated:

�CC(t) �

{
1

��(�)(t=�)
��1; t � �

1
��(��)(t=�)

���1; t � �:
(24)

The small time approximation corresponds to the Curie-

von Schweidler law of (1) as mentioned in [12]. An

example may also be found in [4] where the current in

capacitors followed the Curie-von Schweidler law over

days. On �rst sight, this seems inconsistent with

the small time approximation above, but in fact it �ts

well. The argument is that the capacitors were modeled

by a constant phase element. The Cole-Cole model

approaches such an element for (!�)� � 1 and "1 = 0

and then the capacitance is:

C �
A

d

"0"s

(j!�)�
: (25)

An example in [4] is a polypropylene dielectric with �0 of

(19) between 0.999 and 1, i.e. � between 0 and 0.001,

where � = 0 is an ideal capacitor. The factor (!�)�

requires a very large argument to be much larger than

one for such a small �, e.g. !� needs to be 10100 for

� = 0:01 in order for the factor to reach a value of say

ten. Therefore, even for large frequencies, � has to be

very much larger than some days. The point is that even

when capacitors followed the Curie-von Schweidler law

for as long as several days, this indicates that the small

argument approximation of (24) was valid.

The exact expression and the approximations are

plotted in Fig. 1 for � = 0:7 using numerical code from

[13, 14]. The two approximations �t very well for small

time and large time respectively.
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Figure 1: The Cole-Cole response function or current

response to a step voltage and its approximations for

� = 0:7.
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Figure 2: The Cole-Cole relaxation function which is

related to the charge response to a step voltage, and its

approximations for � = 0:7.

Approximation of the relaxation function

The Mittag-Le�er function with a negative argument

raised to a power can also be approximated [8, 5]:

	CC(t) �

{
exp [�(t=�)

�

�(�+1) ]; t � �
(t=�)��

�(1��) ; t � �:
(26)

The small time approximation is the stretched exponential

or Kohlrausch-Williams-Watt function of (2). For large

values of t the Mittag-Le�er function approaches a

power law [8].The relaxation function along with both its

approximations are plotted in Fig. 2. Both approximations

�t very well.

Constitutive law

The Cole-Cole model can also be expressed as a di�er-

ential equation between D and E. The frequency domain

relation building on (19) is:

(1 + (j!�)�)D(!) = "0"sE(!) + (j!�)�"0"1E(!):

(27)

The property of the Fourier transform which was used in

transforming from (17) to (18) is that (j!)n transforms

to the nth order derivative for integer n. This property is

generalized in fractional calculus to non-integer orders �.

This demonstrates the close relationship between power-

laws and fractional calculus [11]. This results in this

constitutive equation for the Cole-Cole model:

D(t) + ��
d�D(t)

dt�
= "0"sE(t) + ��"0"1

d�E(t)

dt�
: (28)

This is the electrical equivalent of the fractional Zener

model in linear viscoelasticity [7]. Fractional calculus has

become an important research area in recent decades both

in mathematics and in physics, despite its roots long ago

[15]. One feature is that non-integer derivatives have

memory. The details are beyond the scope of this paper,

but hopefully its role in describing the Cole-Cole model

may be a motivation for delving into it in e.g. the two

books just cited.

Beyond the Cole-Cole model

There are several alternatives to the Cole-Cole model such

as the Cole-Davidson and Havriliak-Negami models. The

latter is the more general one:

~"(!) = "1 +
"s � "1

(1 + (j!�)�)�
; 0 < � � 1; 0 < � < 1;

(29)

where � = 1 gives the Cole-Cole model and � = 1 gives

the Cole-Davidson model. All three models yield an ideal

capacitor in parallel with the constant phase element of

(25) in the limit of a large � . These models are also

analyzed in [5] and the main thing to note is that the

Curie-von Schweidler law and the Kohlrausch-Williams-

Watt function �t the asymptotes of these models just

as well as they �t the Cole-Cole model [12]. The link

between the constant phase element, these early empirical

results, and the Cole Cole model is therefore not unique.

Conclusion

The familiar frequency domain expression for the Cole-

Cole model of order � can also be expressed in the

time domain. The response function, which is related

to the current response to a voltage step excitation, is

expressed with a two-parameters Mittag-Le�er function.

Its asymptote for small time is a power-law function

which corresponds to the Curie-von Schweidler law. The

relaxation function, which describes the charge response,

is given by a one-parameter Mittag-Le�er function where

the asymptote for small time is the stretched exponential

or Kohlrausch-Williams-Watt function. For the Debye

model, both these responses are given by exponential

functions in time. The Debye model is also equivalent

104



S. Holm: Cole-Cole model. J Electr Bioimp, 11, 101�105, 2020

to a �rst-order di�erential equation between electric

�eld, E, and the displacement �eld, D. This generalizes

to a fractional di�erential equation with non-integer

derivatives of order � for the Cole-Cole model.
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