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Abstract 
The relation between a biological process and the changes in 
passive electrical properties of the tissue is often non-linear, in 
which developing prediction models based on bioimpedance 
spectra is not trivial. Relevant information on tissue status may also 
lie in characteristic developments in the bioimpedance spectra over 
time, often neglected by conventional methods. The aim of this 
study was to explore possibilities in machine learning methods for 
time series of bioimpedance spectra, where we used organ 
ischemia as an example. Based on published data on the 
development of the bioimpedance spectrum during liver ischemia, 
a simulation model was made and used to generate sets of 
synthetic data with different levels of organ-to-organ variation, 
measurement noise and drift. Three types of artificial neural 
networks were employed in learning to predict the ischemic 
duration, based on the simulated datasets. The simulated 
prediction performance was very dependent on the amount of 
training examples, the organ-to-organ variation and the selection 
of input variables from the bioimpedance spectrum. The 
performance was also affected by noise and drift in the 
measurement, but a recurrent neural network with long short-term 
memory units could obtain good predictions even on noisy and 
drifting measurements. This approach may be relevant for further 
exploration on several applications of bioimpedance having the 
purpose of predicting a biological state based on spectra measured 
over time. 
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Introduction 
Analysis of the passive electrical properties of tissue 
(bioimpedance) can be challenging as the data is complex, 
the data amount can be large, methods of interpretation are 

vast, and the electrical properties often have a non-linear 
relation to the biological property of interest. Raw 
immittance data from bioimpedance measurements are 
typically presented as admittance, impedance or dielectric 
parameters, represented by real and imaginary components.  

As the electrical properties of tissue always are 
frequency dependent (1), bioimpedance will typically be 
measured over more than one frequency, resulting in a set 
of a real and imaginary components for each frequency. 
Bioimpedance measurements are typically used to 
characterize the passive electrical properties of tissue and/or 
to investigate how the passive electrical properties of tissue 
change when influenced by biological processes. The overall 
aim can typically be to assess tissue state or level of 
pathological change related to situations where there is a 
clinical need for improvement (2-4). 

The origin of the passive electrical properties of the 
tissue is the combination of structures and liquids that form 
the tissue. Ionic conduction in the tissue liquids contribute to 
the resistivity, while membrane structures contribute to the 
reactive properties (capacitive) (1). The relationship 
between the biological processes and changes in the passive 
electrical properties are rarely completely stationary and 
linear, reaching either a saturation level or changing in 
direction as the process evolves (4-8). This non-linearity and 
“change-in-direction” lead to the possibility that the value of 
electrical parameters changes at different rates and overlap 
at different time durations of biological processes, making 
the ability to discern the state of the tissue dependent on 
memory and the historical development of the parameters.  

For example, during ischemia, there are a series of 
factors that individually contribute to either decreasing or 
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increasing impedance at a frequency range. The sum of these 
effects typically results in a time development of electrical 
parameters during ischemia where there is in an early 
increase in impedance, before the impedance starts to 
decrease well beyond the initial values (7, 9, 10). 

Reperfusion of tissue and the associated changes in 
electrical properties adds further complexity with respect to 
the time-development of bioimpedance and ischemia. The 
changes in bioimpedance related to reperfusion can be 
overlapping or larger than the changes caused by ischemia 
(11), dependent on the previous duration of ischemia and 
the ischemic tolerance of the organ. 

Over the years a variety of approaches have been used 
with respect to presentation, modelling, and analysis of time 
series of bioimpedance data (figure 1). Modeling approaches 
such as fitting the data to electrically equivalent circuits and 
interpreting the data in this context are preferred 
approaches in gaining understanding of the reflection of 
tissue processes through bioimpedance. Machine learning 
methods also generate models, but they are generally very 
complex having the so-called “black-box” disadvantage, 
where the interpretation of the relation between variables 
becomes difficult.  

The advantage in machine learning methods is the 
possibility of learning generalizable predictive patterns in 
combining variables in a non-linear fashion, possibly 
increasing the predictive performance compared to simpler 
models. In addition, machine learning can be used to 
perform automatic feature extraction, useful when there is 
a lot of variables (e.g. different immittance parameters over 
many frequencies) and the important ones are not known. 
In some cases, such as clinical monitoring, the prediction 
performance is more important than drawing inference from 
the data or could be the next focus in technological 

development following statistical modeling and 
interpretation.  

We believe that for bioimpedance, the possibilities in 
methods of analyzing non-linear dependencies could be 
further explored. To quote Gheorgihu et al. “a breakthrough 
might be provided by (non)linear analysis of the evolution of 
dispersion amplitudes and related time constants of distinct 
experiments…” (12). 

A recent study from our group demonstrated promising 
results using a machine learning approach for classification 
of the grading of ischemic damage to the small intestine 
based on bioimpedance measurement (13). In particular, a 
recurrent neural network (RNN) with long short-term 
memory (LSTM) units obtained high classification accuracies 
using repeated measurements over several hours, 
suggesting that this type of machine learning approach may 
be useful in a wider sense for bioimpedance time series 
problems.  

In this study we investigate the use of methods in 
machine learning for analysis of bioimpedance 
measurements with characteristic time-dependencies, with 
the aim of assessing the potential in predicting a biological 
event under conditions where conventional methods would 
be inadequate. This approach may advance the possibilities 
in fully utilizing the information within the bioimpedance 
spectra recorded over time.  

 
Materials and methods 
In order to assess the aim in a controlled way, and to 
investigate how the performance of these machine learning 
methods depend on different conditions such as the amount 
of training data, noise in the measurement and 
hyperparameter settings for the neural network training, we 
used a simulation approach based on the time development 

 
Figure 1. An overview over typical ways to present bioimpedance data, showing the level of complexity within the realm of presenting and 
analyzing bioimpedance data. 
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of bioimpedance data from ischemic liver (12). The 
simulations were implemented in the following way 
(overview shown in Figure 2): 

• Simulate the bioimpedance profile during ischemia 
based on the literature (12) 

• Use the simulations to generate synthetic 
bioimpedance time-series datasets with different 
degrees of noise, drift and organ-to-organ variation 

• Use half of each dataset to train machine learning 
models to predict the duration of ischemia based on 
bioimpedance, using different learning options 

• Predict ischemic duration on the other half of each 
dataset and calculate the prediction error for all 
simulated cases and learning options 

• Assess the performance of machine learning for 
predicting ischemia duration based on different 
datasets of bioimpedance time-series and how this 
performance depends on selected learning options. 

Details on the simulations of 
bioimpedance profiles, generation of 
datasets and the neural network 
training and prediction are given in 
the following chapters. 
 
Simulation of bioimpedance spectra 
during liver ischemia 
Gheorgiou et al. described the 
evolution of bioimpedance spectra 
during the course of ischemia in heart 
and liver tissue (12). Based on this 
publication, we employed a two-
compartment Cole model and 
approximated the Cole parameters 
and their changes over time 
according to the published data, 
creating synthetic data resembling 
the reported measurements.  
 
This was used as a simulation model for the bioimpedance 
profile during liver ischemia in order to generate example 
data for this study. We selected to model the evolution of 
bioimpedance spectra during the course of ischemia in liver 
tissue (12), as the data follows a typical time development 
with both non-linear and “change-in-direction” effects (7). 
These typical changes present challenges for more 
traditional methods of data analysis.  

Figure 3 shows an example of changes in resistance and 
reactance during liver ischemia based on the approximated 
model. Using the simulation model, larger amounts of data 
could be generated for the evolution of bioimpedance during 
up to 7 hours of ischemia at a selected range of frequencies. 
In order to produce interindividual differences among livers, 
an adjustable degree of randomness was included in the Cole 
parameter baselines and their change over time (adding a 

selectable percentage of the parameter value times a 
random Gaussian value).  

As bioimpedance measurements often contain both 
noise and drift in the realistic environment, this was also 
added to the simulations at adjustable levels. Noise was 
simulated by adding white Gaussian noise at selected power 
levels to the measurement, while drift was simulated by 
adding a constant linear change over time, by a random 
magnitude with an adjustable maximum, simulating e.g. 
changes in a series resistance (such as electrode polarization 
impedance) over time.  

In order to make the dataset more realistic with respect 
to continuous monitoring, the simulations were done with a 
random onset of ischemia for each liver, also including pre-
ischemia measurements with baseline differences, noise and 
drift in the data. Control livers without ischemia were 
simulated with the same noise, drift and liver-to-liver 
variation, but without an onset of ischemia. Figure 4 shows  

 
an example simulation of the resistance and reactance from 
five ischemic livers and five control livers at one frequency, 
including noise in the measurement. 
 
Training of artificial neural networks 
Two different types of ANN were tested and compared in the 
study: Feedforward neural network (FNN) and a recurrent 
neural network (RNN) with short-term memory (LSTM) units. 
FNN is the first type of ANN invented and has no feedback 
connection and does not keep memory of previous time 
steps in a controlled way. The LSTM network on the other 
hand has a particular architecture that allows learning with 
memory over arbitrary time intervals.  

For the FNN, we used a simple architecture of an input 
layer, a fully connected layer and an output regression layer. 
The LSTM network was composed of a sequence input layer, 

 
Figure 2. Overview of the methodology used for investigating the performance of different neural networks 
for predicting duration of ischemia based on bioimpedance using simulated measurements.  
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one or two LSTM layers, a fully connected layer of equal layer 
size as the LSTM layer(s), and a regression output layer. The 
hyperbolic tangent (tanh) function was used as activation 
function for the nodes in the hidden layers. See e.g. (14) for 
a thorough introduction to neural networks and their 
architectures.  

Using the simulation model, different datasets were 
generated for different simulation parameters (i.e. noise, 
drift and liver-to-liver variation). In addition to the options in 
simulating the bioimpedance measurement, options for the 
input variable selection and machine learning 
hyperparameters were included. Different sizes of the 

dataset were generated (N=20 and N=100 training 
examples), having an equal amount of ischemic and control 
examples. Datasets were generated for different selections 
of frequencies from the impedance spectra, from 3 up to 70 
frequencies ranging from 10 Hz to 10 MHz.  

In training neural networks, the learning process can be 
very dependent on the selection of hyperparameters 
(adjustable meta-parameters not learned in the training 
process). As hyperparameters assessed in this study, we 
included the regularization (controlling shrinkage of model 
coefficients towards zero in order to prevent overfitting), the 
hidden layer size (number of nodes) of the neural network 

 
Figure 3. Simulated liver resistance and reactance profiles during ischemia.

 
Figure 4. Example of simulated resistance and reactance data at 100kHz for five livers (in colors) having random onsets of ischemia (marked 
with arrows). Five non-ischemic control livers are added in gray. The data are simulated with a 5% liver variation, no drift, and a noise level 
of 30 dBW.  



Tronstad et al.: Application of machine learning on bioimpedance time-series. J Electr Bioimp, 10, 24-33, 2019 

28 
 

(i.e. the complexity of the model) for both the FNN and LSTM 
networks. Being a more complex type of network, two 
additional hyperparameters were assessed for the LSTM 
networks: the minibatch size (controlling a split in the 
training dataset used in error calculation and updating of 
model coefficients during training of the LSTM network) and 
the number of epochs (i.e. iterations) used in the model 
training. The learning rate parameter (degree of network 
weight adjustment with respect to estimated error during 
training) was set constant to 0.01. For more on 
hyperparameters in machine learning, see e.g. (15). Table 1 
shows a complete list of all cases compared in the study. Ten 
replications of each case were run in order to better estimate 
the typical performance and its variability. A total of 1080 
datasets were generated, using 24 different hyperparameter 
setting in two/three different ANN architectures, totaling 
77760 ANN models that was trained using a supercomputer 
(Abel) at the University of Oslo (see acknowledgements).  

Each dataset was split half-half into a training set and test 
set. No preprocessing was done on the data except for mean 
centering and standardization of the bioimpedance 
predictors using the total means and standard deviations of 
the training data partition (means and standard deviations 
of the training data was also used to center and standardize 
the test data). Applying the trained model on the test data, 
predictions of ischemic duration were made for each test 
data sequence. Performance for each case was assessed by 
calculating the root mean square error of prediction (RMSEP) 
for each liver and taking the mean RMSEP over all livers in 
the test dataset. 

 
Ethical approval 
The conducted research is not related to either human or 
animals use.  
 
Results 
The simulation results show that accurate predictions of 
ischemic duration was possible to obtain using the recurrent 
neural networks with one and two LSTM layers, 
outperforming the FNN network. As shown in Figure 5, the 
prediction performance was strongly dependent on the 
conditions for the simulated datasets, such as the number of 

training examples and the liver-to-liver variance, and to a 
lesser degree the drift and noise in the measurement. 

As expected, the lowest prediction error for FNN, LSTM 
and 2LSTM was obtained for simulated datasets with a large 
number of training examples, a small liver-to-liver variance 
and no noise or drift in the measurement. Table 2 gives an 
overview of the best prediction performance that was 
obtained for the three ANN architectures, according to 
selected combinations of simulation variables representing 
three levels of difficulty in the dataset.  

Scatterplots of these cases are shown in Figure 6. For 
data with low liver-to-liver variation and without noise and 
drift, predictions of useful performance could be obtained 
for FNN, and very accurate predictions were obtained for the 
LSTM networks. Adding noise and drift to the simulated data, 
the FNN was struggling to follow the ischemic duration after 
2-3 hours, while the LSTM networks were able to provide a 
linear increase very close to the identity line. Increasing the 

liver-to-liver variance to 20%, the noise to 30 dBW and 
allowing drift in both directions, the prediction error was 
substantially larger for all ANN types, but both the LSTM 
predictions were still well within a useful accuracy level up 
to 6 hours of ischemia.  

With respect to the selection of input variables, the 
results in table 2 show that including all available frequencies 
as variables might not always provide the best learning of the 
prediction model. The FNN provided best prediction 
performance with all 70 frequencies as input, while the LSTM 
provided superior prediction using only three or seven 
frequencies. The number of input variables should be 
considered in context with the hyperparameters of model 
training, as they all relate to model complexity. The best 
performing FNN models use 70 input frequencies, but the 
complexity is reduced by either a low hidden layer size or 
increased l2 regularization. The LSTM network seems to 
favor a much-reduced selection of frequencies for optimal 
model training, but with a more complex hidden layer model 
configuration (i.e. 25 nodes in the hard case). Models with 
higher complexity by using all frequencies as inputs, using 25 
nodes in the hidden layer(s) and without increasing l2 would 
increase overfitting (0.027, 0.088 and 0.076 mean RMSEP 
minus mean RMSEC for the hard case of FNN, LSTM and 

Table 1. List of all variables used for comparing different varieties of the bioimpedance input data and hyperparameters in the machine learning for 
prediction of ischemic duration. 

Variable Description Tested levels Values 
Measurement noise Setting for simulated input data 3 0, 10, 30 

Liver variance Setting for simulated input data 2 5, 20 
Drift Setting for simulated input data 3 0 ±50 +100 

Frequencies Selection of input variables 3 {102 104 106}, 101:7, 101:0.1:7 

Sample size Training and testing data size 2 20, 100 
Regularization Neural network hyperparameter 3 10-1, 10-2, 10-3 

Hidden layer size Neural network hyperparameter 3 2, 5, 25 
Minibatch size Neural network hyperparameter 2 16, 32 

Epochs Neural network hyperparameter 2 250, 500 
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2LSTM respectively). With fewer training examples (N=20 
instead of 100), these overfitting values would increase to 
0.195, 0.262 and 0.259.  

For the case of fewer training examples (N=20, 10 
ischemic + 10 controls), good predictions (RMSEP<0.1) were 
not attainable for the hard case by any model. For the 
medium case, the single- and double layer LSTM models 
could obtain predictions with an RMSEP of 0.076 and 0.067 
respectively, of comparable performance to the hard case 
predictions of these models. Good prediction was not 
obtainable for the FNN even in the easy case (best 
RMSEP=0.162) with N=20. The best performing model on the 
medium case data with N=20 (the double layer LSTM), used 
three input frequencies, 25 nodes in the hidden layers and 
was trained with l2=0.001, a minibatch size of 32 and over 
250 epochs.  
 
Discussion 
The results indicate that LSTM-RNN is a relevant tool for 
analysis of bioimpedance time series. LSTM-RNN 

outperformed the FNN with the “easy” data category and 
excels even more when comparing performance with 
reduced data quality. The performance of FNN was inferior 
to the LSTM-RNN for these time-series data, and the 
difference in performance between the single and double-
layer LSTM-RNN was small. Even for cases with high degrees 
of noise, drift and liver-to-liver variation, LSTM-RNN models 
could predict the duration of ischemia accurately, given that 
enough training examples were used.  

The LSTM networks outperformed the FNN even in the 
cases free from noise and drift. The likely explanation for this 
difference lies in the memory property of the LSTM network, 
allowing information from previous observations to be 
included in predicting the current state. 

 The simple FNN deals well with nonlinearities in the 
relation between predictors (i.e. the bioimpedance 
spectrum) and target (i.e. a tissue status marker) but has no 
means to deal with nonlinear dependencies over time, such 
as overlapping predictor values at different targets of 
ischemic duration. 
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Figure 5. The distribution of prediction accuracies according to the different levels of cases included in the simulated data. The distributions are 
shown as violin plots with medium smoothing, where the dashed and dotted lines show the median and quartiles respectively. 



Tronstad et al.: Application of machine learning on bioimpedance time-series. J Electr Bioimp, 10, 24-33, 2019 

30 
 

It can be seen from figures 3c and 3d that both the 
resistance and reactance had overlapping values at different 
times, e.g. resistance at around 150 and 350 minutes, and 
low-frequency reactance at around 50 and 120 minutes. 
Unless the bioimpedance at other frequencies offers 
information that can be used to differentiate between these 
time targets, the FNN will struggle to discriminate between 
them.  

This is in agreement with the FNN predictions flattening 
out after around 2.5 hours in the scatter-plots shown in 
Figure , and also explains why the most predictive FNN 
models include a large selection of input frequencies. 
Inspecting Figure  further, the prediction at around the 2h 
point seems to be most accurate, in particular for the FNN. 
Comparing with the bioimpedance profile in Figure 3, this is 
not surprising, as this is the point when most changes are 
occurring for all frequencies. The FNN would perform well in 
classifying livers before versus past this point in ischemic 
development.  

It is important to note that this study is not a technical 
comparison between the FNN and LSTM network 
architectures, but rather an investigation on the possibilities 
in machine learning methods on time series of bioimpedance 
spectra. What our results mean is that learning of time-
dependencies (by the LSTM recurrent neural network) 
provides good predictions of a biological event in our 
example, where machine learning without taking into 
account the changes over time (the FNN) were inadequate.  

In this study, the ischemic liver was used as an example 
for investigating possibilities in applying new methods in 
machine learning on bioimpedance time-series. 
Nevertheless, this example might have some relevance for 
clinical application. Liver transplantation is a very successful 
treatment for a series of liver diseases, but the demand is 
higher than the supply (16). As per the “British 
Transplantation Society UK Guidelines for donors after 
circulatory death”, livers from donors are classified 
according to a set of criteria, among them “functional warm 
ischemic time” (FWIT) and “cold ischemic time” (CIT).  

 
Figure 6. Predictions on 50 examples of liver ischemia and 50 controls from the test data for the different cases presented in table 2. Colors indicate 
different livers. 
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The classification of marginal donors includes the 
criterion of FWIT 20-30 min and CIT 8-12 hours (17). While 
the time-development of the passive electrical properties in 
tissue during CIT are different than during FWIT, when 
employing bioimpedance measurement with online 
implementation of such a method, there is a possibility of 
predicting ischemic duration with high accuracy, reducing 
the uncertainty with respect to donor liver quality.  

Based on the conditions included in the simulations, the 
sets of frequency selections and the range of 
hyperparameters assessed, the LSTM-RNN stands out as the 
most suitable network for this problem in general. The 
difference between one and two LSTM layers is small, and 
the most important consideration seems to be the reduction 
in input frequencies. As bioimpedance spectra are highly 
correlated between close frequencies, a large degree of 

variable redundancy is indicated for the set of 70 
frequencies. Inspecting figure 5b, the one-layer LSTM 
network performance is more affected by this variable 
redundancy than the two-layer LSTM network. The 
prediction performance of the LSTM network is worse when 
using all 70 frequencies as input variables (see Table 2), but 
interestingly, the performance of the two-layered LSTM 
network is not changed nearly as much when all 70 
frequencies are used as input. This could be due to a filtering 
effect of the first LSTM layer in the stacked LSTM 
configuration working as an automatic feature extractor, 
which could be a favorable property in this application, in 
particular if the most informative frequencies are not 
known. The two-layer LSTM network therefore seems to be 
best suited for this problem in general, ideally using 
bioimpedance at a few selected frequencies as predictors. In 

addition, good performance was obtained from this network 
when trained on fewer examples. With respect to the 
hyperparameters, they should be tuned through validation 
strategies as part of the model development (see e.g. (18) 
for recommendations on hyperparameter tuning). Only a 
few selected simulation cases, ANN architectures and 
hyperparameters were assessed in this study in order to get 
an idea of their influence, but the options for further 
refinement under different conditions are limitless.  

To our knowledge, this is the first study to investigate the 
general application of recurrent neural networks on 
bioimpedance time-series. While we do not aim to 
exhaustively assess the myriad of possibilities and methods 
within the realm of machine learning, we do intend to cast 
light on possibilities with neural network architectures for 
time-series data of bioimpedance. A recent study in our 

group compared the accuracy of using FNN, versus the 
accuracy when using LSTM-RNN with classification of 
intestinal viability following ischemia/reperfusion and found 
that accuracies in the range of what has been reported 
clinically can be achieved using FNN’s on a single 
bioimpedance measurement, and higher accuracies can be 
achieved when employing LSTM-RNN on a sequence of data 
history (13). 

With respect to the input parameters used to model the 
bioimpedance data, there are a total of 3888 cases when 
including all combinations of parameters. In order to 
represent how the quality of the datasets affect prediction 
and what models and parameters can improve the accuracy, 
we chose to present 3 scenarios (easy, medium, hard), where 
easy represents a dataset with very clean measurements (no 
noise, drift and small variation between livers).  

Table 2. Comparison of prediction performance for the different ANN architectures in three different cases of difficulty based on the liver-to-liver 
variance, noise and drift in the measurement. The selection of input frequencies and hyperparameters for the best prediction performance of the 
different ANN architectures is provided in the rows below the prediction performances. The last row presents the best prediction performance 
when all 70 frequencies are used as input to the ANN. RMSEP=root mean square error of prediction, RMSEC=root mean square error of calibration, 
both having units of ischemia duration in hours. 

Case Easy Medium Hard 
Liver variance 5 % 5 % 20 % 

Noise 0 10 30 
Drift 0 100 100 

Drift direction None Increasing Both 
Training examples 100 100 100 
Best performance FNN LSTM 2LSTM FNN LSTM 2LSTM FNN LSTM 2LSTM

Mean RMSEP 0.124 0.016 0.017 0.173 0.029 0.026 0.256 0.079 0.066 
Std RMSEP 0.025 0.003 0.009 0.044 0.003 0.012 0.044 0.013 0.015 

Mean RMSEC 0.112 0.014 0.015 0.175 0.026 0.021 0.256 0.037 0.038 
Std RMSEC 0.029 0.005 0.007 0.029 0.006 0.009 0.029 0.006 0.018 
Frequencies 70 3 7 70 7 3 70 3 3 

Hidden layer size 25 25 5 5 5 25 2 25 25 
l2 regularization 0.1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
Training epochs NA 500 500 NA 500 500 NA 500 500 
Minibatch size NA 32 32 NA 32 32 NA 32 16 

Mean RMSEP (freq=70) 0.124 0.056 0.022 0.173 0.073 0.035 0.256 0.142 0.106 
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There are a series of causes that can reduce the quality 
of bioimpedance measurements causing drift and/or noise. 
Among these are stray properties of the instrumentation and 
electrode setup (1), electrode polarization impedance (19), 
geometric effects including compression/movement of 
tissue (20). While efforts typically are made to reduce or 
compensate for error sources, they can be hard to avoid 
completely. The levels of drift and noise that were included 
in the model are not meant to be exhaustive but are meant 
to represent what can be experienced in real-life 
measurements, with the main purpose of studying how 
measurement drift and noise influences the performance in 
ANN learning of patterns in bioimpedance time series.  

The simulated data are obviously not accurately 
representing true measurements, including simplifications 
and assumptions on modeling, measurement and 
stochasticity. However, this approach allowed us to generate 
synthetic datasets with control of specific settings, which we 
could use to study the performance of machine learning 
approaches under different conditions in order to gain an 
idea of limits and possibilities of the method applied to 
bioimpedance time-series, and an indication of the most 
suitable machine-learning algorithm.  

The obtained prediction performance values are also 
very dependent on the simulation conditions, which could 
differ from real measurements during ischemia on the true 
population of livers. The simulation is based on published 
data representing only one liver, and the variation between 
livers could be different from the simple assumptions made 
in this study. The level of prediction performance (i.e. the 
RMSEP values) should therefore not be regarded as an 
indication of e.g. clinical performance level, but rather offer 
a suggestion of methods having potential for use in studies 
on real data.  

The “black-box” problem is a drawback of most machine-
learning approaches, often making such approaches 
unattractive when we want to understand all variable 
associations. In such cases, using modeling approaches such 
as Cole parameterization and statistically studying the time-
course of their development is more appropriate. However, 
if the goal is to try to develop the best possible prediction 
model, then this machine-learning approach may offer 
advantages. In addition to the possibility of a better 
prediction performance, this approach requires no pre-
processing of the raw measurement data except for 
centering and scaling for optimal model training.  

This approach may be relevant to several types of 
bioimpedance measurement with the purpose of predicting 
a biological state. In many cases, the temporal information 
from continuous measurements over time might not be fully 
utilized by conventional methods. In addition to organ 
ischemia, examples of a few other bioimpedance 
applications where this method could be relevant is cell 
culture monitoring (21), wound healing (22), meat quality 
assessment (23), needle guidance (24) and analysis of 

periodical bioimpedance signals related to respiration (25) or 
pulsation (26) or their morphology.  

While the example in this study has been on a regression 
problem, this method is easy to convert into a classification 
problem. In the case of the LSTM-RNN, the final layer 
(regression layer) is replaced by a softmax layer followed by 
a classification layer.  

In conclusion, this study has demonstrated new 
possibilities in predicting biological states or events based on 
bioimpedance time series, by employing a recurrent neural 
network with LSTM units. On simulated data of 
bioimpedance during liver ischemia, the duration of 
ischemia could be accurately predicted by this method, even 
in cases of large liver-to-liver variation, measurement noise 
and drift. The performance of the method is very dependent 
on the number of examples used in training of the prediction 
model, and the proper selection of input variables from the 
bioimpedance frequency spectrum. This approach is 
particularly relevant for non-linear time dependencies in the 
relation between bioimpedance and the biological process 
of interest. 
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