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
We report an alternative technique to perform a direct and local 
measurement of electrical resistivities in a layered retinal tissue. 
Information on resistivity changes along the depth in a retina is 
important for modelling retinal stimulation by retinal prostheses. 
Existing techniques for resistivitydepth profiling have the 
drawbacks of a complicated experimental setup, a less localised 
resistivity probing and/or lower stability for measurements. We 
employed a flexible microprobe to measure local resistivity with 
bipolar impedance spectroscopy at various depths in isolated rat 
and chick embryo retinas for the first time. Small electrode 
spacing permitted high resolution measurements and the probe 
flexibility contributed to stable resistivity profiling. The resistivity 
was directly calculated based on the resistive part of the 
impedance measured with the Peak Resistance Frequency (PRF) 
methodology. The resistivitydepth profiles for both rat and chick 
embryo models are in accordance with previous mammalian and 
avian studies in literature. We demonstrate that the measured 
resistivity at each depth has its own PRF signature. Resistivity 
profiles obtained with our setup provide the basis for the 
construction of an electric model of the retina. This model can be 
used to predict variations in parameters related to retinal 
stimulation and especially in the design and optimisation of 
efficient retinal implants. 

 Bipolar microelectrodes, impedance spectroscopy, 
, resistivity profiling, retina 



Millions of individuals around the world suffer vision loss 
due to retinal degeneration diseases such as retinitis 
pigmentosa and agerelated macular degeneration. These 
diseases affect the photoreceptor cells rendering them 
dysfunctional and eventually causing their demise. Retinal 
prostheses can be used to restore some useful vision to the 
affected patients improving their quality of life 
considerably. These prostheses are based on stimulation of 
secondary neurons in the retina replacing the functionality 
of photoreceptors. Several methodologies are applied to 
convert visual images into a train of pulses that are 
transmitted to an array of electrodes positioned on the 
retinal surface. These pulses are then used to stimulate the 
viable secondary neurons. Many groups (refer to the review 

(1)) worldwide are working on different devices based on 
the placement of the implant with respect to the retina. 

Neural tissue inhomogeneity is an important parameter 
affecting neural stimulation (2; 3). The vertebrate retina is a 
dense neural tissue composed of multiple layers each 
characterised by different cell types and densities (4) 
rendering it electrically inhomogeneous. By constructing an 
electric model based on inhomogeneity, it is feasible to 
compute the electric field distribution in the retina and 
consequently predict parameters such as threshold and 
resolution of stimulation for a safe and efficient retinal 
prosthesis. In order to construct a realistic, passive electric 
model of a retina, it is necessary to measure layer resistivity 
locally and precisely. 

The resistivity of the retinal layers has been measured 
for various applications until now such as local 
electroretinograms (5) and current source density analysis 
(6). Researchers mainly used the fourterminal (tetrapolar) 
method to measure the resistivity profiles in the depth of 
the retina. Doublebarrelled (6) and concentric (5) glass 
micropipettes have been employed as the pickup electrodes 
previously. Tetrapolar measurements require a complicated 
setup due to additional electronics (such as frontend 
amplifier, current injection electrodes, etc.) and retina 
sealing issues (in  eyecup based experiments). These 
experimental setups operated in constant current injection 
mode creating an approximately constant current density in 
the measured retinal area (7; 8). During measurements, the 
rigid micropipettes cause a local damage to the retina 
allowing the perfusion solution to flow into the cleft. This 
could result in a local redistribution of current around the 
inserted micropipette that could lead to a change in 
measured voltage drop. This would result in an inaccurate 
resistivity measurement due to an increase in the current 
flow through the cleft leading to a higher voltage drop. In 
this situation, a constant current supposition results in an 
artificial increase in measured resistivity. Furthermore, the 
frequency used in previous experiments was not based on 
knowledge of the entire impedance spectrum. Neglecting 
the practical bandwidth might lead to interference of other 
parameters (for e.g., interface and parasitic components) on 
the measured signal (9). Lesser reproducibility of glass 
micropipettes may lead to variability in measurements (a 
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connected to a PC via a GPIB controller (National 
Instruments, USA). Signal frequency sweep was made from 
100Hz to 1MHz for each impedance/phase spectrum, 
sufficiently covering the bandwidth of electrophys
interest and ensuring the PRF is easily identified and 
consequently the tissue resistance. 
25mV without dc offset was used as it was a good 
compromise between generated noise in the recorded signal 
and preventing possible extr
Moreover, 
enough to avoid any significant activation 
neurons 
measurements.
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iris, and lens were removed from the eye ball f
transection of the eyecup to float pieces of retina into a dish 
of Ringer’s solution to obtain isolated retinal slices without 
the retinal pigment epithelium. The slices 
perfused in Ringer’s solution continuously bubbled in 95% 
O2/5% 
on the Agar gel 
nitrate (0.14mg/ml in methanol) and dried. This 
adhesion promoter for the retina to stay on the gel 
preventing it from being washed
the Ringer’s solution. A few moments before the 
experiment 
from the perfusion and 

connected to a PC via a GPIB controller (National 
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25mV without dc offset was used as it was a good 
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and preventing possible extr
Moreover, it was
enough to avoid any significant activation 
neurons and 
measurements. 

Fig. 5: Experimental apparatus 
5171 micromanipulator that displaces the 
(zaxis) in steps of 10m, (ii) an Agilent 4294A impedance 
analyser for recording impedance/phase spectra for each probed 
retinal depth. (
retinal slice placed on a block of Agar gel (1% in Ringer’s 
solution) submerged in Ringer’s solution.
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/5% CO2 until it 
on the Agar gel 
nitrate (0.14mg/ml in methanol) and dried. This 
adhesion promoter for the retina to stay on the gel 
preventing it from being washed
the Ringer’s solution. A few moments before the 
experiment was 
from the perfusion and 

connected to a PC via a GPIB controller (National 
Instruments, USA). Signal frequency sweep was made from 
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sufficiently covering the bandwidth of electrophys
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consequently the tissue resistance. 
25mV without dc offset was used as it was a good 
compromise between generated noise in the recorded signal 
and preventing possible extr

it was supposed that applied signal was small 
enough to avoid any significant activation 

and associated 

: Experimental apparatus 
5171 micromanipulator that displaces the 

axis) in steps of 10m, (ii) an Agilent 4294A impedance 
analyser for recording impedance/phase spectra for each probed 
retinal depth. (iii) a plastic petri
retinal slice placed on a block of Agar gel (1% in Ringer’s 
solution) submerged in Ringer’s solution.
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  – A common protocol for retinal slice 
extraction was followed for both wild

chicks. Eye balls were extracted from 
decapitated animals. Under low light conditions, the cornea, 
iris, and lens were removed from the eye ball f
transection of the eyecup to float pieces of retina into a dish 
of Ringer’s solution to obtain isolated retinal slices without 
the retinal pigment epithelium. The slices 
perfused in Ringer’s solution continuously bubbled in 95% 

until it was placed on the Agar gel. The surface 
on the Agar gel was pretreated with a solution of cellulose 
nitrate (0.14mg/ml in methanol) and dried. This 
adhesion promoter for the retina to stay on the gel 
preventing it from being washed
the Ringer’s solution. A few moments before the 

 conducted, the retinal slice 
from the perfusion and was placed on the treated area of the 

connected to a PC via a GPIB controller (National 
Instruments, USA). Signal frequency sweep was made from 
100Hz to 1MHz for each impedance/phase spectrum, 
sufficiently covering the bandwidth of electrophys
interest and ensuring the PRF is easily identified and 
consequently the tissue resistance. Signal
25mV without dc offset was used as it was a good 
compromise between generated noise in the recorded signal 
and preventing possible extreme electric field effects.

that applied signal was small 
enough to avoid any significant activation 

 resistivity changes

: Experimental apparatus consisted of (i) an Eppendorf 
5171 micromanipulator that displaces the microprobe 

axis) in steps of 10m, (ii) an Agilent 4294A impedance 
analyser for recording impedance/phase spectra for each probed 

iii) a plastic petridish containing the isolated 
retinal slice placed on a block of Agar gel (1% in Ringer’s 
solution) submerged in Ringer’s solution. 

    – Before every new 
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removing any organic contaminants. They 
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chicks. Eye balls were extracted from 
decapitated animals. Under low light conditions, the cornea, 
iris, and lens were removed from the eye ball f
transection of the eyecup to float pieces of retina into a dish 
of Ringer’s solution to obtain isolated retinal slices without 
the retinal pigment epithelium. The slices 
perfused in Ringer’s solution continuously bubbled in 95% 

placed on the Agar gel. The surface 
treated with a solution of cellulose 

nitrate (0.14mg/ml in methanol) and dried. This 
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connected to a PC via a GPIB controller (National 
Instruments, USA). Signal frequency sweep was made from 
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sufficiently covering the bandwidth of electrophysiological 
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Signal amplitude of 
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compromise between generated noise in the recorded signal 

eme electric field effects.
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enough to avoid any significant activation of retinal 
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treated with a solution of cellulose 
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away when in contact with 
the Ringer’s solution. A few moments before the 

conducted, the retinal slice was taken out 
placed on the treated area of the 

connected to a PC via a GPIB controller (National 
Instruments, USA). Signal frequency sweep was made from 
100Hz to 1MHz for each impedance/phase spectrum, 

iological 
interest and ensuring the PRF is easily identified and 

amplitude of 
25mV without dc offset was used as it was a good 
compromise between generated noise in the recorded signal 

eme electric field effects. 
that applied signal was small 

of retinal 
during 

 
of (i) an Eppendorf 

vertically 
axis) in steps of 10m, (ii) an Agilent 4294A impedance 

analyser for recording impedance/phase spectra for each probed 
dish containing the isolated 

retinal slice placed on a block of Agar gel (1% in Ringer’s 

Before every new 
h 2% 

mild soap solution (rat trials) or chemically treated with the 
 for 
were 

trogen gun to dry and blow 
away dust particles. The impedance spectrum of electrodes 

obtained in standard Ringer’s solution to validate their 

A common protocol for retinal slice 
type juvenile rats and 

chicks. Eye balls were extracted from 
decapitated animals. Under low light conditions, the cornea, 

ollowed by 
transection of the eyecup to float pieces of retina into a dish 
of Ringer’s solution to obtain isolated retinal slices without 

then 
perfused in Ringer’s solution continuously bubbled in 95% 

placed on the Agar gel. The surface 
treated with a solution of cellulose 

as an 
adhesion promoter for the retina to stay on the gel 

away when in contact with 
the Ringer’s solution. A few moments before the 

taken out 
placed on the treated area of the 

gel with the retinal ganglion cell side facing upwards and 
the
solution 
level submerging the retina

 
impedance 
in the bath (Ringer’s solution) before entering the 
were
impedance magnitude at PRF indicate
retina. Visual control using a pair of binoculars 
this first electrode
measurements at every 10m depth 
impedance value similar to the one observed in the bath 
was
wait time of 30 seconds 
micromanipulator made the 10m vertical movement into 
the retina. This time was 
of time taken for the impedance value to stabilise at a 
random depth in the retina (see supplementary 
information)
made to ensure the electrodes contact with the Agar gel 
before terminating the experiment and retracting the 
electrodes to the initial position. The system was under 
ambient laboratory conditions of 21°C durin
impedance measurements.
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
 
To
tissue resistance at PRF, the cell constant needs to be 
experimentally determined. 
electrodes used in this study was calculated using 
impedance/phase spectrum 
predetermined conductivity
Fig. 
different batches of electrodes, an average experimental cell 
constant was found to be 
value is within 3.5% of the theoretical and simulated 
of cell constant for the electrode configuration used in this 
study. The close agreement of the cell constant with 
previously calculated values validates the proper working 
of the electrodes for an experiment.

can be employed for impedance measurements at different 
depths in the retina of the chosen animal model. During 
these experiments, a shift in the PRF was observed at each 
depth in the retina as present
retinal ganglion cell
towards the 
freque
to a high value between 80
during the experiment.
retinal depth corresponded to an approximate microprobe 
displacement of 14

gel with the retinal ganglion cell side facing upwards and 
the photoreceptor cells in contact with the gel. The Ringer’s 
solution was then added to fill the petri
level submerging the retina

 
impedance measurements at different dep
in the bath (Ringer’s solution) before entering the 
were performed. The first considerable change in 
impedance magnitude at PRF indicate
retina. Visual control using a pair of binoculars 
this first electrode
measurements at every 10m depth 
impedance value similar to the one observed in the bath 
was encountered. 
wait time of 30 seconds 
micromanipulator made the 10m vertical movement into 
the retina. This time was 
of time taken for the impedance value to stabilise at a 
random depth in the retina (see supplementary 
information). Three more recordings at 10m 
made to ensure the electrodes contact with the Agar gel 
before terminating the experiment and retracting the 
electrodes to the initial position. The system was under 
ambient laboratory conditions of 21°C durin
impedance measurements.

 


 


o be able to compute the resistivity from the measured 
tissue resistance at PRF, the cell constant needs to be 
experimentally determined. 
electrodes used in this study was calculated using 
impedance/phase spectrum 
predetermined conductivity
Fig. 6. Based on an average of such measurements 
different batches of electrodes, an average experimental cell 
constant was found to be 
value is within 3.5% of the theoretical and simulated 
of cell constant for the electrode configuration used in this 
study. The close agreement of the cell constant with 
previously calculated values validates the proper working 
of the electrodes for an experiment.

Following the functional validation of electrodes, they 
can be employed for impedance measurements at different 
depths in the retina of the chosen animal model. During 
these experiments, a shift in the PRF was observed at each 
depth in the retina as present
retinal ganglion cell
towards the photoreceptor
frequencies and the 
to a high value between 80
during the experiment.
retinal depth corresponded to an approximate microprobe 
displacement of 14

gel with the retinal ganglion cell side facing upwards and 
photoreceptor cells in contact with the gel. The Ringer’s 

then added to fill the petri
level submerging the retinagel structure.

  – 
measurements at different dep

in the bath (Ringer’s solution) before entering the 
performed. The first considerable change in 

impedance magnitude at PRF indicate
retina. Visual control using a pair of binoculars 
this first electroderetina contact. Subsequent impedance 
measurements at every 10m depth 
impedance value similar to the one observed in the bath 

encountered. Each measurement was recorded with a 
wait time of 30 seconds for the 
micromanipulator made the 10m vertical movement into 
the retina. This time was determined
of time taken for the impedance value to stabilise at a 
random depth in the retina (see supplementary 

Three more recordings at 10m 
made to ensure the electrodes contact with the Agar gel 
before terminating the experiment and retracting the 
electrodes to the initial position. The system was under 
ambient laboratory conditions of 21°C durin
impedance measurements. 



compute the resistivity from the measured 
tissue resistance at PRF, the cell constant needs to be 
experimentally determined. The 
electrodes used in this study was calculated using 
impedance/phase spectrum 
predetermined conductivity. The spectrum is 

. Based on an average of such measurements 
different batches of electrodes, an average experimental cell 
constant was found to be 225c
value is within 3.5% of the theoretical and simulated 
of cell constant for the electrode configuration used in this 
study. The close agreement of the cell constant with 
previously calculated values validates the proper working 
of the electrodes for an experiment.

ollowing the functional validation of electrodes, they 
can be employed for impedance measurements at different 
depths in the retina of the chosen animal model. During 
these experiments, a shift in the PRF was observed at each 
depth in the retina as presented in 
retinal ganglion cell layer as we go deeper into retina 

photoreceptor layer, the PRF moved to lower 
and the impedance magnitude rose from a low 

to a high value between 8085% of retinal depth spanned 
during the experiment. With reference to 
retinal depth corresponded to an approximate microprobe 
displacement of 14m in the rat retina.

gel with the retinal ganglion cell side facing upwards and 
photoreceptor cells in contact with the gel. The Ringer’s 

then added to fill the petridish to a certain 
gel structure. 

 In every trial
measurements at different depths (every 10m) 

in the bath (Ringer’s solution) before entering the 
performed. The first considerable change in 

impedance magnitude at PRF indicated the entry into the 
retina. Visual control using a pair of binoculars 

retina contact. Subsequent impedance 
measurements at every 10m depth were recorded until an 
impedance value similar to the one observed in the bath 

ach measurement was recorded with a 
for the signal to stabilise 

micromanipulator made the 10m vertical movement into 
determined based on measurement 

of time taken for the impedance value to stabilise at a 
random depth in the retina (see supplementary 

Three more recordings at 10m 
made to ensure the electrodes contact with the Agar gel 
before terminating the experiment and retracting the 
electrodes to the initial position. The system was under 
ambient laboratory conditions of 21°C durin



compute the resistivity from the measured 
tissue resistance at PRF, the cell constant needs to be 

The cell constant
electrodes used in this study was calculated using 
impedance/phase spectrum of Ringer’s solution

. The spectrum is 
. Based on an average of such measurements 

different batches of electrodes, an average experimental cell 
cm1 (less than

value is within 3.5% of the theoretical and simulated 
of cell constant for the electrode configuration used in this 
study. The close agreement of the cell constant with 
previously calculated values validates the proper working 
of the electrodes for an experiment. 

ollowing the functional validation of electrodes, they 
can be employed for impedance measurements at different 
depths in the retina of the chosen animal model. During 
these experiments, a shift in the PRF was observed at each 

ed in Fig. 7. Starting from the 
layer as we go deeper into retina 

layer, the PRF moved to lower 
impedance magnitude rose from a low 

85% of retinal depth spanned 
With reference to 

retinal depth corresponded to an approximate microprobe 
in the rat retina. 

gel with the retinal ganglion cell side facing upwards and 
photoreceptor cells in contact with the gel. The Ringer’s 

dish to a certain 

trial, at least three 
ths (every 10m) 

in the bath (Ringer’s solution) before entering the retina
performed. The first considerable change in 

the entry into the 
retina. Visual control using a pair of binoculars confirm

retina contact. Subsequent impedance 
recorded until an 

impedance value similar to the one observed in the bath 
ach measurement was recorded with a 

signal to stabilise after the 
micromanipulator made the 10m vertical movement into 

based on measurement 
of time taken for the impedance value to stabilise at a 
random depth in the retina (see supplementary 

Three more recordings at 10m intervals were
made to ensure the electrodes contact with the Agar gel 
before terminating the experiment and retracting the 
electrodes to the initial position. The system was under 
ambient laboratory conditions of 21°C during the 

compute the resistivity from the measured 
tissue resistance at PRF, the cell constant needs to be 

cell constant of the bipolar 
electrodes used in this study was calculated using 

Ringer’s solution 
. The spectrum is as shown in 

. Based on an average of such measurements with
different batches of electrodes, an average experimental cell 

less than 5% error). This 
value is within 3.5% of the theoretical and simulated values 
of cell constant for the electrode configuration used in this 
study. The close agreement of the cell constant with 
previously calculated values validates the proper working 

ollowing the functional validation of electrodes, they 
can be employed for impedance measurements at different 
depths in the retina of the chosen animal model. During 
these experiments, a shift in the PRF was observed at each 

. Starting from the 
layer as we go deeper into retina 

layer, the PRF moved to lower 
impedance magnitude rose from a low 

85% of retinal depth spanned 
With reference to Fig. 7, a 10% 

retinal depth corresponded to an approximate microprobe 

gel with the retinal ganglion cell side facing upwards and 
photoreceptor cells in contact with the gel. The Ringer’s 

dish to a certain 

, at least three 
ths (every 10m) 

retina 
performed. The first considerable change in 

the entry into the 
confirmed 

retina contact. Subsequent impedance 
recorded until an 

impedance value similar to the one observed in the bath 
ach measurement was recorded with a 

after the 
micromanipulator made the 10m vertical movement into 

based on measurement 
of time taken for the impedance value to stabilise at a 
random depth in the retina (see supplementary 

were 
made to ensure the electrodes contact with the Agar gel 
before terminating the experiment and retracting the 
electrodes to the initial position. The system was under 

g the 

compute the resistivity from the measured 
tissue resistance at PRF, the cell constant needs to be 

of the bipolar 
electrodes used in this study was calculated using the 

 of 
as shown in 

with 
different batches of electrodes, an average experimental cell 

. This 
values 

of cell constant for the electrode configuration used in this 
study. The close agreement of the cell constant with 
previously calculated values validates the proper working 

ollowing the functional validation of electrodes, they 
can be employed for impedance measurements at different 
depths in the retina of the chosen animal model. During 
these experiments, a shift in the PRF was observed at each 

. Starting from the 
layer as we go deeper into retina 

layer, the PRF moved to lower 
impedance magnitude rose from a low 

85% of retinal depth spanned 
, a 10% 

retinal depth corresponded to an approximate microprobe 



Kasi et al.: Direct localised measurement of electrical resistivity prof ile. J Electr Bioimp, 1, 84-92, 2010

88

 

 


Impedance spectroscopic measurements at different depths 
of isolated retinal slices f
postnatal) and five chick (three E1
samples were performed. Resistivity values were calculated 
from the extracted impedance value at the PRF using the 
direct relation between both for each depth in the retina
sample. 
measurement in the retina before an identical value of 
resistivity obtained in Ringer’s solution is reached 
(electrodes in Agar gel). 
measurement in the Ringer’s s
significant change in the resistivity, i.e., an appreciable shift 
in the PRF is observed
profiles for both rats and 
Fig. 

Fig. 6: Bode plot in Ringer’s solution and the corresponding fit 
using the electrical equivalent replacing the tissue 
a simple resistor representing the solution resistance. The 
solution resistance
Knowing the resistivity of the medium, 
constant of 225
of ZCPE_E was found to be 

Fig. 7: PRF shift observed at various depths in a rat retina. As 
the PRF shifts from the right to left, the impedance increases 
with increasing depth into the retina (from 
cell towards photoreceptor 
retinal depth. 
approximate microprobe displacement of 14m in the retina


 

Impedance spectroscopic measurements at different depths 
of isolated retinal slices f
postnatal) and five chick (three E1
samples were performed. Resistivity values were calculated 
from the extracted impedance value at the PRF using the 
direct relation between both for each depth in the retina
sample. A resistivity depth of 100% was
measurement in the retina before an identical value of 
resistivity obtained in Ringer’s solution is reached 
(electrodes in Agar gel). 
measurement in the Ringer’s s
significant change in the resistivity, i.e., an appreciable shift 
in the PRF is observed
profiles for both rats and 
Fig. 8 and Fig. 10

: Bode plot in Ringer’s solution and the corresponding fit 
using the electrical equivalent replacing the tissue 
a simple resistor representing the solution resistance. The 
solution resistance is extracted from the modified model fit. 
Knowing the resistivity of the medium, 

of 225cm1 was calculated.
was found to be 3.154×

: PRF shift observed at various depths in a rat retina. As 
the PRF shifts from the right to left, the impedance increases 
with increasing depth into the retina (from 

photoreceptor layer). Depth is normalised to 100% 
 A 10% retinal depth corresponded to an 

approximate microprobe displacement of 14m in the retina



Impedance spectroscopic measurements at different depths 
of isolated retinal slices f
postnatal) and five chick (three E1
samples were performed. Resistivity values were calculated 
from the extracted impedance value at the PRF using the 
direct relation between both for each depth in the retina

A resistivity depth of 100% was
measurement in the retina before an identical value of 
resistivity obtained in Ringer’s solution is reached 
(electrodes in Agar gel). Point zero represent
measurement in the Ringer’s s
significant change in the resistivity, i.e., an appreciable shift 
in the PRF is observed. Resistivity versus retinal depth 
profiles for both rats and emb

10 respectively.

: Bode plot in Ringer’s solution and the corresponding fit 
using the electrical equivalent replacing the tissue 
a simple resistor representing the solution resistance. The 

is extracted from the modified model fit. 
Knowing the resistivity of the medium, an experimental cell 

calculated. From fitting, the m
×1010 α1⋅Fα, where 

: PRF shift observed at various depths in a rat retina. As 
the PRF shifts from the right to left, the impedance increases 
with increasing depth into the retina (from the retinal ganglion 

layer). Depth is normalised to 100% 
10% retinal depth corresponded to an 

approximate microprobe displacement of 14m in the retina



Impedance spectroscopic measurements at different depths 
of isolated retinal slices from three rat (14
postnatal) and five chick (three E18 and two E12 embryos) 
samples were performed. Resistivity values were calculated 
from the extracted impedance value at the PRF using the 
direct relation between both for each depth in the retina

A resistivity depth of 100% was denoted as the last 
measurement in the retina before an identical value of 
resistivity obtained in Ringer’s solution is reached 

Point zero represent
measurement in the Ringer’s solution before there is a 
significant change in the resistivity, i.e., an appreciable shift 

Resistivity versus retinal depth 
embryonic chicks are presented in 

respectively. 

: Bode plot in Ringer’s solution and the corresponding fit 
using the electrical equivalent replacing the tissue component by 
a simple resistor representing the solution resistance. The 

is extracted from the modified model fit. 
experimental cell 

From fitting, the magnitude 
, where α=0.85. 

: PRF shift observed at various depths in a rat retina. As 
the PRF shifts from the right to left, the impedance increases 

the retinal ganglion 
layer). Depth is normalised to 100% 

10% retinal depth corresponded to an 
approximate microprobe displacement of 14m in the retina 



Impedance spectroscopic measurements at different depths 
rom three rat (1416 days 

and two E12 embryos) 
samples were performed. Resistivity values were calculated 
from the extracted impedance value at the PRF using the 
direct relation between both for each depth in the retina

denoted as the last 
measurement in the retina before an identical value of 
resistivity obtained in Ringer’s solution is reached 

Point zero represented the last 
olution before there is a 

significant change in the resistivity, i.e., an appreciable shift 
Resistivity versus retinal depth 

chicks are presented in 

 
: Bode plot in Ringer’s solution and the corresponding fit 

component by 
a simple resistor representing the solution resistance. The 

is extracted from the modified model fit. 
experimental cell 

de 

 
: PRF shift observed at various depths in a rat retina. As 

the PRF shifts from the right to left, the impedance increases 
the retinal ganglion 

layer). Depth is normalised to 100% 
10% retinal depth corresponded to an 

Impedance spectroscopic measurements at different depths 
16 days 

and two E12 embryos) 
samples were performed. Resistivity values were calculated 
from the extracted impedance value at the PRF using the 
direct relation between both for each depth in the retina 

denoted as the last 
measurement in the retina before an identical value of 
resistivity obtained in Ringer’s solution is reached 

the last 
olution before there is a 

significant change in the resistivity, i.e., an appreciable shift 
Resistivity versus retinal depth 

chicks are presented in 

measurements, an increasing resistivity
observed rising gradually from the 
layer towards the 
depth of 
then gradually decreases to attain a value obtained in Agar 
gel. There is a 
resistivity profile shapes.

samples is 4.2 
occurring between 
hand, the maximum
samples is 7.9 
value measured in rats and E12 chicks at the same retinal 
depth. In rat and 
measurements, at around 80% depth into the retina, th
a definite dip in the resistivity profile gradually decreasing 
into a low value similar to 
solution.

mean resistivity value at each depth
embryonic chick 
the SD is low 
contrast, the rat data demonstrates large SD in the
regions

change in different retinal layers. A representation of the 
relationship between PRF and resistivity based on the 
experiments on rat and embryonic chick retinal slices is 
depicted in 
resistivity is line
species. For embryonic chicks, owing to similarity in the 
data across various trials, it can be observed that there is a 
unique PRF for each resistivity. On the contrary, the three 
rat 


 
To the best of our knowledge, planar, bipolar 
microelectrodes on a flexible substrate were used for the 
first time in this study to measure resistivity
in rat and embryonic chick 
the functionality of the microfabricated device. The 
electrode cell constant extracted from the measured solution 
resistance in Ringer’s solution compares well with the value 
obtained by 
at different 
method are within 10% of the fitted values. This is a 
confirmation of the electrode interface impedance not 
interfering with the measurements. There was a close 
agreement
theoreti
experimental value of 225
combined average of both theoretical and simulated value 
of 232
experimental variations. Hence, the rounde

In both rat (
measurements, an increasing resistivity
observed rising gradually from the 
layer towards the 
depth of 65%, the resistivity reaches a maximum value and 
then gradually decreases to attain a value obtained in Agar 
gel. There is a close interspecies resemblance in the studied 
resistivity profile shapes.

The maximum mean resistivity reached in rat retina 
samples is 4.2 ± 
occurring between 
hand, the maximum
samples is 7.9 ± 
value measured in rats and E12 chicks at the same retinal 
depth. In rat and 
measurements, at around 80% depth into the retina, th
a definite dip in the resistivity profile gradually decreasing 
into a low value similar to 
solution. 

The standard deviation (SD) of 
mean resistivity value at each depth
embryonic chick 
the SD is low in the Ringer’s solution
contrast, the rat data demonstrates large SD in the
regions of the resistivity 

 
It is known that there is a PRF shift with a resistivity 

change in different retinal layers. A representation of the 
relationship between PRF and resistivity based on the 
experiments on rat and embryonic chick retinal slices is 
depicted in Fig. 
resistivity is line
species. For embryonic chicks, owing to similarity in the 
data across various trials, it can be observed that there is a 
unique PRF for each resistivity. On the contrary, the three 
rat trials suggest multiple

 
 

To the best of our knowledge, planar, bipolar 
microelectrodes on a flexible substrate were used for the 
first time in this study to measure resistivity
in rat and embryonic chick 
the functionality of the microfabricated device. The 
electrode cell constant extracted from the measured solution 
resistance in Ringer’s solution compares well with the value 
obtained by equivalent circuit 
at different depths in the retina established by the PRF 
method are within 10% of the fitted values. This is a 
confirmation of the electrode interface impedance not 
interfering with the measurements. There was a close 
agreement between the experimental and the 
theoretical/simulated bipolar cell constant values. The 
experimental value of 225
combined average of both theoretical and simulated value 
of 232.5cm1. This low difference of 3
experimental variations. Hence, the rounde

In both rat (Fig. 8) and 
measurements, an increasing resistivity
observed rising gradually from the 
layer towards the photoreceptor

%, the resistivity reaches a maximum value and 
then gradually decreases to attain a value obtained in Agar 

close interspecies resemblance in the studied 
resistivity profile shapes. 

The maximum mean resistivity reached in rat retina 
 0.9 ⋅m and for E12 chick is 4.5 

occurring between 6570% retinal depths. On the other 
hand, the maximum mean resistivity in 

 0.6 ⋅m which is approximately double the 
value measured in rats and E12 chicks at the same retinal 
depth. In rat and E18 
measurements, at around 80% depth into the retina, th
a definite dip in the resistivity profile gradually decreasing 
into a low value similar to 

he standard deviation (SD) of 
mean resistivity value at each depth
embryonic chick resistivity profiles

in the Ringer’s solution
contrast, the rat data demonstrates large SD in the

of the resistivity profile

It is known that there is a PRF shift with a resistivity 
change in different retinal layers. A representation of the 
relationship between PRF and resistivity based on the 
experiments on rat and embryonic chick retinal slices is 

Fig. 9 and Fig. 
resistivity is linearly dependent on the log PRF for both the 
species. For embryonic chicks, owing to similarity in the 
data across various trials, it can be observed that there is a 
unique PRF for each resistivity. On the contrary, the three 

suggest multiple PRFs

To the best of our knowledge, planar, bipolar 
microelectrodes on a flexible substrate were used for the 
first time in this study to measure resistivity
in rat and embryonic chick retinas
the functionality of the microfabricated device. The 
electrode cell constant extracted from the measured solution 
resistance in Ringer’s solution compares well with the value 

equivalent circuit 
depths in the retina established by the PRF 

method are within 10% of the fitted values. This is a 
confirmation of the electrode interface impedance not 
interfering with the measurements. There was a close 

between the experimental and the 
cal/simulated bipolar cell constant values. The 

experimental value of 225c
combined average of both theoretical and simulated value 

. This low difference of 3
experimental variations. Hence, the rounde

) and embryonic 
measurements, an increasing resistivity
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electrodes instead of sharp perpendicular shapes may have 
contributed to reduction in fringing effects of electric field 
originating from the electrode edges. The resistivitydepth 
profiles, in both rat and embryonic chick experiments, 
indicate the inhomogeneous nature of the retina and the 

trend they follow are in accordance with the results obtained 
for various species in previous studies (5; 6). This confirms 
that our method is valid for retina resistivity profiling 
studies.

 

 
Fig. 8: Mean resistivity (±SD) vs. percentage depth profile of 
three rat retina samples which are extracted from 1416 day old 
postnatal wildtype juvenile rats. 
 
 

 
Fig. 9: PRF vs. resistivity plots for the three rat experiment trials. 
A large deviation for resistivity at a particular PRF between the 
trials was observed. 

 
Fig. 10: Mean resistivity (±SD) vs. percentage depth profile of 
five chick embryo retina samples of which three are extracted 
from E18 and two from E12. E18 have a higher peak mean 
resistivity than the E12 chick trials. 
 

 
Fig. 11: PRF vs. resistivity plots for the five embryonic chick 
trials. In general, a good reproducibility of resistivities at a 
particular PRF in the trials was observed. 

 
We found the maximum local resistivity occurred in all 

experiments between 6570% retinal depths. This can be 
explained by greater retinal resistivity in regions like the 
inner nuclear layer (INL) where neurons are packed more 
tightly than the inner plexiform layer (IPL) (7). Our 
observations are in close agreement with the local maxima 
occurring at retinal depths of ~80% in monkey (5), ~75
80% in rat (21) and ~70% in chicken (7). The shape of the 
resistivity profile of the chick embryo was similar to that of 
the chicken (7) and the rat resembled mammalian species 
(5) to a large extent. This was particularly true in the region 
between the proximal retina and down to the junction of 
inner and outer photoreceptor segments. We observed an 
appreciable dip in the resistivity values from a retinal depth 
of 80% onwards until electrodes come in contact with the 
Agar gel. This decrease in resistivity in the photoreceptor 
layer was also found in previous studies using isolated slice 
models of avian (7) and rat (21) retinas. The local decrease 

in resistivity might be caused by the relatively large 
interstitial spaces among the outer and inner receptor 
segments (21). Resistivity profiles are affected by the type 
of retinal preparation used (isolated retinal slices and 
eyecup preparations). For comparing profiles, the 
anatomical difference between an isolated slice and an 
eyecup preparation of retina needs to be considered owing 
to the absence of the retinal pigment epithelium. In an 
isolated slice preparation, considering that photoreceptors 
offer low resistance, the effective resistivity profiling is 
made between the inner and outer limiting membrane (22). 

We observed higher resistivity values in E18 compared 
to E12 chicks. This can be attributed to the ongoing 
retinogenesis which terminates only at E18 (23). Cell 
differentiation between E12 and E18 is accompanied by 
cell polarization, laminar stratification and changes in cell 
numbers (23; 24) potentially accounting for resistivity 

       



















 

⋅




 









⋅









       























 

⋅


 




 





⋅











Kasi et al.: Direct localised measurement of electrical resistivity prof ile. J Electr Bioimp, 1, 84-92, 2010

90

changes within the retina. Further exploration of this 
subject can be interesting for future studies. 

The absolute resistivities found in this study are lower 
compared to previous findings in rats (21) and chicken (7). 
The values may be difficult to compare with former 
investigations as the measurements are influenced by 
various factors like the interracial difference, age 
difference, measurement technique, electrodes used, etc. A 
majority of previous studies used the tetrapolar method 
with a constant current injection. The local damage caused 
by the pickup micropipettes in the retina may cause a local 
current increase due to inflow of the perfusion solution. 
This could lead to an increased voltage drop resulting in a 
false increase of measured resistivity. In addition, most of 
the studies were conducted in the low frequency region 
(ranging between 1Hz and 100Hz) with very small 
electrodes (~220m) (5; 6; 25). Regardless of the method 
used,  bipolar or tetrapolar, it is critical to observe the 
whole impedance spectrum to identify the practical 
measurement bandwidth (9). 

The maximum SDs from the mean resistivity at certain 
retinal depths in our study was found to be high. A large 
variability between trials was also observed in previous 
studies of rat and chicken (7; 21) that were used for 
comparison to our findings. All measurement techniques 
until now including ours have the following inherent 
drawbacks that affect the resistivitydepth profiling of the 
retina – (i) the movement of the electrode relative to the 
tissue not being accurate due to chiptissue slippages, (ii) 
pressure causing damage to the tissue (iii) damage to the 
tissue by electrodes causing a highcurrent shunting 
between them resulting in an erroneous measurement of 
resistivity in the retinal layers and (iv) unpredictability of 
resistivity values at the retinal layer boundaries. Apart from 
these factors, the location on the retinal slice where the 
electrodes penetrate is a significant reason for the 
variability in resistivity measurements. A solution, even 
though it contributes to the experimental complexity, may 
be to locally stain the retina as a visual aid for electrodes 
insertion to produce reproducible resistivity profiles of the 
retina. 

The small electrode spacing of the bipolar electrodes 
permitted high resolution measurements in rat and 
embryonic chick retinas. The high resolution profiling 
consisted of 25 depths in embryonic chicks and 15 depths 
in rats. Assuming a 10m microprobe displacement into the 
retina, the 10m spacing between the electrodes used in our 
study is more sensitive to capture the subtle changes in 
resistivity between the layers. Previous investigations 
employed larger electrode spacing of ~25m (5) and ~12
16m (6). Our electrodes design is an improvement in 
terms of measurement resolution compared to literature. 

An important result of our study is that the resistivity at 
a certain depth within the retina is identified by a unique 
PRF in embryonic chick experiments. Conversely, distinct 
profiles (refer Fig. 9) were obtained in the PRF versus 
resistivity plots for rats. These profiles can be understood 

based on the large SDs observed in the Ringer’s solution 
before entering the retina and in the Agar gel (refer Fig. 8). 
Although the PRF is the frequency at which the measured 
impedance is most resistive, representing the tissue 
resistance, it is influenced by interface and parasitic 
capacitances. The large differences in resistivities observed 
for calibrated mediums could be attributed to changes in 
electrode capacitance. This may be perceived as the 
electrodes not being sufficiently clean before the 
experiment. There could be a thin layer of adsorbed 
proteins from the retinal tissue cells or damaged limiting 
membrane residues that may add to the overall measured 
impedance. Electrodes were cleaned with mild soap 
solution for rat experiments whereas with RCA1 cleaning 
procedure for the embryonic chick experiments. Thus, we 
conclude that quality of an electrode surface is crucial for 
good resistivity profiling in a retina and RCA1 cleaning 
process is more effective compared to soap for electrodes 
used in this study. 
 

 
An alternative method for high resolution resistivity 
profiling along the depth in a retina based on bipolar 
impedance spectroscopy was established. We validated our 
device by profiling rat and embryonic chick retinas. The 
resistivity at each retinal depth was calculated based on 
tissue resistance extracted by peak resistance frequency 
methodology. Qualitatively, we found the resistivitydepth 
profiles to be in accordance with earlier studies and that 
resistivity at any arbitrary retinal depth is characterised by a 
unique peak resistance frequency. We have shown the 
potential of planar bipolar microelectrodes as a new 
technique to probe absolute local resistivity within a retina 
and multilayered tissues, in general. 

Determining absolute values of resistivities in retina 
contributes to improved understanding of retinal 
stimulation by means of modelling studies. The generated 
resistivity profiles can form the basis for construction of a 
realistic electric model of a retina. Finite element modelling 
may be used for estimating and optimising critical 
parameters such as stimulation thresholds, heat dissipation, 
resolution, etc. for a given electrode geometry, that are 
instrumental for the safety and efficacy of a retinal 
prosthesis. A future improvement of our twoelectrode 
system would be a linear array of electrodes on a single 
strip. An array of electrodes is capable of probing different 
layer resistivities with a single insertion into the retina 
which is expected to cause less damage and provide more 
reliable measurements. 
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