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Abstract 
We have built a model where we use a wound as a probe of the 
dielectric properties of skin. In this way one is able to infer infor-

mation about skin dielectric properties in situ. We introduce the 
notion of a skin electrochemical capacitor. This gives good 

agreement with recent measurements for the electric potential 
landscape around a wound. Possible diagnostic consequences are 

briefly touched upon. 

Keywords: Wound, skin, electrochemical capacitor, electric field, 

electric potential, numerical modeling 

Introduction 

Our skin is the largest body organ and an important inter-

face between the body and the environment. Understanding 

its dielectric and electrical properties is of key importance 

both from a physiological as well as clinical perspective. 

Skin research spans everything from healing of involuntary 

breaches of the skin barrier to active management of drug 

delivery through the skin [1] in conjunction with electric 

stimuli. This has brought together different disciplines and 

has lead to both questions of how to measure important 

properties of the skin in the best possible way as well as to 

model them in an often approximate but most appropriate 

way. In this paper we concentrate on constructing a dielec-

tric model of skin for calculating electric field and potential 

profiles when a wound is present. 

In many respects our bodies can be described as “Body 

Electric” [2] and can be probed by external electrodes [3]. 

These can pick up relevant signals from different parts of 

the body, such as the heart, brain, eyes or muscles. Howev-

er not only functioning of many processes in the body are 

dependent on and giving rise to electrical characteristics 

one can also use exogenous electric fields to influence the 

working of e.g. wound healing. We witness a steady in-

crease in therapeutic devices and wound dressing utilizing 

the presence of static electric and magnetic fields as well as 

their dynamic counterparts [4-6]. Fundamental processes 

such as regeneration and embryo development are also 

discussed in electrical terms [7]. There is a large body of 

evidence, as reviewed in [8,9], that electrical fields override 

any other directional cue. This has important implications 

for the motion, direction and dividing plane of cells as well 

as possible ways of influencing this with external probes. It 

also touches upon the basic question if electric field pat-

terns are emerging from a particular biological structure or 

if they are the cause of it? 

Our aim is to gain a better understanding of the dielectric 

properties of skin by creating a model of wounded skin 

based on experimental dielectric permittivities. In particular 

we strengthen our conclusions by comparing them with 

recent potential measurements based upon a probe which is 

not in contact with the tissue examined. Such a probe 

makes it possible for the skin to be in a regular state with 

respect to environmental conditions while being monitored. 

From a physical point of view the skin is an extremely 

complex material. It is anisotropic, inhomogeneous, layered 

and it has many different types of structures embedded. 

Charge carriers of various types and an extensive sensitivity 

to local factors such as humidity, pH and salinity add to the 

complexity. Where on the body, the epidermis of the soles 

are 30-40 times thicker than the eye-lids, as well as more 

general factors such as health status are also important. A 

key to this complex situation is to gain a better understand-

ing of the static bioimpedance properties of skin in order to 

fully be able to extract useful, and hopefully clinically val-

uable, information when using electrical signals in order to 

probe or manage healing of skin related phenomena [10-

12].

A traditional approach in physics, especially with respect to 

dielectric and optical properties, is to perturb a system in a 

systematic way and in that manner gain an understanding of 

the basic response properties. In this aspect we can consider 

the presence of a wound as a perturbation and by studying 

this gain information about the electrical properties of the 

unwounded skin. Recently Nuccitelli et al. [13,14] meas-

ured the potential in the wound area of mice and humans 

using a non-invasive vibrating probe. These experimental 

results will be compared with our model of the skin. Main 

factors which determine the field strength in skin are dielec-

tric permittivities and geometrical factors. With a detailed 

knowledge of the electrical conductivities of various tissue 

components [15] one can, from our results, also predict and 

understand generated current patterns. 

On a more general level we hope to gain an increased un-

derstanding of the possibility of using the potential varia-

tion in and around a wound, as it heals, for information 

about the status of the wound. Given that the epithelium of 

the skin represents a structure which is also present around 

the internal body organs our findings should also be of 

value here. It should be mentioned in this context that the 

electrical profiles in the corneal epithelium [16,17] pre-

dated the corresponding measurements on skin [18,19] by 
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decades. However the latter lead to important suggestions 

as to the basic workings of the epithelium and explained it 

in terms of a so called “skin battery”. 

In our electrostatic model of the skin we consider a level of 

description which incorporates many cells by only differen-

tiating between various strata in the skin. In the other spa-

tial end we stay well below a circuit representation with 

resistors and alike by doing actual calculations based on 

Poisson equation to generate electric potential and field 

patterns. In this respect our work has connections to the one 

of Karba et al. [20, 21]. However, in contrast to them we 

focus on a more detailed description of the structure of the 

epidermis and more importantly; we include the dielectric 

permittivity of the different layers as a major field deter-

mining factor. This has drastic consequences implying the 

total lack of field penetration into deeper tissue layers. 

Our paper is outlined in the following manner. In the next 

section we discuss an alternative way of viewing the skin 

battery in terms of a skin electrochemical capacitor. After 

that, we introduce our model of human skin and define the 

parameters going into our calculations. Then we present our 

numerical results for electric potential and field patterns 

and discuss their implications. We also compare our results 

with recent experimental measurements and discuss possi-

ble wound healing monitoring aspects. 

 

Theory 

Skin electrochemical capacitor 

Bioelectrical signals have been known since long through 

the ground-breaking work of Galvani and Volta. In the 19th 

century DuBois-Reymond conducted a more detailed inves-

tigation and noticed that a cut in a finger gave rise to a 

galvanic signal. Later on this and other observations have 

lead to the development of the skin battery [19,23-25]; an 

electrical working model of epithelia going back to the 

membrane model of Kofoed-Johnson and Ussing [26]. 

Through continuous transport of ions between the upper 

(apical) surface of the epithelium and its lower (basolateral) 

surface, a charge separation is achieved. This charge sepa-

ration gives rise to the so called trans-epithelial potential 

with the bottom part of the epidermis being more positive 

than the part just under the stratum corneum. The trans-

epithelial potential varies depending on type of epithelia 

and is in general measured to be in the range of 10-100 

millivolts. Depending on the thickness of the tissue at hand 

this corresponds to electric field strengths up to the order of 

100 V/m. However the dielectric screening in skin is sub-

stantial bringing down this field strength considerably in 

deeper layers of tissue as we will see in what follows.  

One of the main features of our calculations in this paper is 

to include the basic charge separation in the epidermis. 

However, we somewhat disagree with the notion of this 

being a (biological) battery from the point of view that the 

main purpose of a battery is to provide a current. In our 

view the epithelial construction is more like an electro-

chemical capacitor, where the purpose is to use stored 

charge to create a particular potential landscape. In this 

respect we could talk about electrostasis. With this we 

mean the way the skin maintains a constant internal elec-

trical environment, especially with respect to external per-

turbations. In this respect the trans-epithelial potential has a 

purpose both when the skin is intact as well as when a 

wound is inflicted, while the battery model tends to focus or 

assign a purpose only when a wound is present. In this 

context it is appropriate to extend a suggestion made by 

Levin [25] that there is a correspondence between the indi-

vidual cell trans-membrane potential, and the skin potential. 

Both are viewed as nature’s way of being able to heal dis-

turbances. For the cell, the membrane potential makes it 

possible to counteract the flow of ions which would start if 

the membrane is damaged. The trans-epithelial potential is 

thought to have the same basic functioning. However, in 

our capacitor description the trans-epithelial potential 

serves a purpose at all times; not only when the skin is 

damaged. Furthermore the capacitor model is more amena-

ble to build a skin model with a reasonable resolved inter-

nal structure, than a battery model.  

Before building our full wound model based on the concept 

of an electrochemical skin capacitor we will look at a very 

simplified picture to identify the main physical factors 

acting. The basic idea of our model is to represent the po-

tential difference in the epidermis in terms of a capacitor 

and that a wound corresponds to a hole in that capacitor. 

The simplest realisation of this is then to take an infinite 

parallel plate capacitor where we take away half of it to 

make a semi-infinite one. The cut is then representing the 

damaged  epidermis of a wide wound. In electrostatic terms 

the cut in the capacitor creates a fringing electric field ex-

tending out into the part of space where the hole (“wound”) 

is. This simplified model thus means that we effectively 

look at a semi-infinite piece of epidermis in air. In Figure 1 

we show the fringe electric field pattern where the “epider-

mis” meet air. The lower capacitor plate potential V0 is 

positive in a skin situation. We notice that whereas the 

unperturbed capacitor has no electric field outside and a 

field inside being perpendicular to the plates a hole in the 

capacitor changes the situation in several ways. There is 

now an electric field pointing towards the hole (our wound) 

at the lower part of the capacitor (bottom part of epidermis). 

Furthermore there is an electric field pointing away from 

the wound at the upper part (just beneath stratum corneum). 

This field, which would also be there in a full model of the 

situation (further down) is fundamental for giving direc-
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tional cues for ions restoring the trans-epithelial potential as 

well as for the cell types involved in the inflammatory, 

proliferative and remodeling phases of wound healing 

[4,27,28].  

We will later compare with measurements when an external 

probe is passed across a wound at a certain probing depth. 

In Figure 1 (lower) we therefore show how the “wound” 

potential is expected to vary  as one moves away from the 

wound edge, given a certain probe depth under the skin 

surface (dashed line in upper part of Figure 1). It is seen 

that the potential decays in an almost exponential manner 

away from the wound edge, with the only length-scale in 

the problem being the capacitor plate separation (a), i.e. 

roughly the thickness of the epidermis. This follows direct-

ly from a conformal mapping wwiyxz ln1   
which 

maps complex position z (in units of /a ) and complex 

potential w (in units of V0) of the infinite capacitor to the 

semi-infinite one.  

 

Figure 1: Electric field pattern at the edge of a semi-infinite 

capacitor as a very rough model of a “wound” situation. The 

“wound” is to the left and the intact skin (the capacitor corres-

ponds to the epidermis) is to the right. Field lines go from the 

bottom plate of the capacitor (potential V0) to the upper (at zero 

potential; just below the stratum corneum). The dashed line (up-

per) indicates a path along which the potential is studied and is 

presented in the lower figure as we move into the “wound”. No-

tice how well the potential is approximated by an exponential 

form with a length-scale being the capacitor plate separation (a). 

 

As we will see in our following calculations, and their 

comparisons with experimental results, this semi-infinite 

capacitor captures many of the traits of the field situation in 

an actual wound.  

With a model of the epidermis as a capacitor we can calcu-

late the corresponding time-constant of importance for the 

replenishing of charge on the capacitor plates, which is a 

continuously ongoing process in live tissue. From the con-

ductivity σ and permittivity ε of the material between the 

capacitor plates we find the time-constant  /RC  [20] to 

be of the order of 0.1 ms using values given in Table 1 (ε) 

and [30] (σ). The main reason for the long time-scale is the 

very large dielectric permittivity of the living epidermis. 

This has a beneficial effect from the point of view that the 

energy needed to make the charge separation as well as to 

uphold it between the capacitor plates is drastically reduced 

and might be an indication why the epidermis has such a 

high dielectric permittivity compared to e.g. water.  Notice 

also that this long time-scale and the large charge reservoir 

at the capacitor plates is our basic motivation for first calcu-

lating electro-statically the field distribution which thereaf-

ter can be used for calculating what currents are flowing in 

the system using pertinent conductivities. Naturally an 

extension and refinement of the present model, which is 

under way, would need to include the charge redistribution 

in the epidermis near the wound site and in the wound fluid 

in a self-consistent manner.  

 

Human skin model 

To be able to model a wound and the surrounding skin in a 

realistic yet calculable manner it is necessary to simplify 

the physical structure of skin as well as extend the simple 

semi-infinite capacitor model presented above. We there-

fore model the wound as rotationally symmetric around an 

axis perpendicular to the skin. The skin in turn is divided 

into four layers. In order they describe the stratum corneum 

(SC), the living epidermis (E), dermis (D) and hypodermis 

(H). The reason for this separation is that these layers have 

distinctly different dielectric properties as given in Table 1 

[30]. The interfaces between the skin layers are taken as 

flat. This is an oversimplification. For example the interface 

between dermis and epidermis is corrugated as can be seen 

in a finger-print. However, we find that this simplification 

does not to any significant degree influence the electric 

field in and near to the wound. Furthermore, the field pene-

tration in dermis and hypodermis is almost non-existing due 

to the high dielectric permittivities of these areas. Our mod-

el is implemented in the mathematical, finite element-using 

software Comsol Multiphysics 

The wound and surrounding tissue can now be defined in 

terms of a two-dimensional sheet with four layers as shown 

in Figure 2.  
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Figure 2: Model cross section of skin with a wound (W) as 

used in our computational scheme. The relevant length-scales 

and dielectric permittivities are given in Table 1 for the wound 

(W), stratum corneum (SC), living epidermis (E), dermis (D), 

and hypodermis (H). The depth (z) and radius (r) of the wound is 

set to 2 mm in order to comply with the wound size in the mea-

surements we compare with [14]. The model is rotationally 

symmetric around the vertical r=0 axis. The actual calculations 

extend further to the right than shown in the figure (r=50 mm) to 

assure convergence. 

 

Boundary conditions and parameters 

To proceed with the model we need to specify the dif-

ferent areas in terms of their size and dielectric proper-

ties and the boundary conditions used. Table 1 contains 

values of the relative permittivities εr for the different 

areas as well as their thickness. The relative permittivity 

of the wound has been set to that of a standard saline 

solution [31]. Notice that due to a large spread in expe-

rimentally established permittivities we use an order of 

magnitude values relevant to wet skin and we want to 

stress that our approach is in itself a way of testing the 

actual dielectric properties at hand providing another 

way of obtaining these parameters. Furthermore we 

want to point out that in certain parts of the body the 

stratum corneum is substantially thicker, especially for 

soles and palms, while we use a value which is typical 

for most of the body.  
 

When it comes to boundary conditions we have used: 

1. Axial symmetry: The model is rotationally symmetric 

around an axis that goes through the middle of the wound. 

2. Interfaces:  In order to make the displacement field con-

tinuous over the interfaces we set 0)( 21  DDn
  where n


 

is a normal vector to the interface and 
iD


 is the displace-

ment field for neighboring regions 1 and 2. 

3. Outer boundaries: The electric field normal to all the 

outer boundaries of the model is set to zero; included as 

0 iDn
  in an obvious notation. 

 4. Skin capacitor: The interface between stratum corneum 

(SC) and living epidermis (E) is assigned a potential V0 = -

20 mV and zero potential is set to the interface between 

epidermis (E) and dermis (D). Since Poisson equation is 

linear in the potential the actual value has no significance as 

to the form of our results. When it comes to absolute values 

one would however have to know the value of tissue under 

study. We use  -20 mV as a typical value for human tissue 

[4]. 

 
Table1: Summary of modeling parameters used in the different 

areas. εr  is the static relative dielectric permittivity for wet tissue. 

 

Model limitations 
 

In our model, the different skin layers are seen as complete-

ly homogeneous and isotropic, i.e. the electrical properties 
are constant in each layer of the skin and do not depend on 

direction. We have used the values from [30] as applicable 

for a perturbation applied perpendicular to the interfaces. 

Needless to say the real anisotropy should be included in a 
more refined calculation. In this context one should also 

include a self-consistent description of the charge redistri-

bution at the capacitor plates near the wound.  
 

Furthermore we have used dielectric permittivities for un-

wounded skin. The slight changes in ε seen experimentally, 
induced by a wound, are not taken into account [34]. Of far 

larger importance is the water content of the skin which has 

enormous influence on the dielectric permittivity [35] and if 

not stated otherwise we use values for wet skin. 
 

The skin is not homogeneous. It contains hair follicles, 

nerves, sweat glands/ducts, blood vessels etc. Their elec-
trical properties are very different from those of the sur-

rounding tissue. Hair follicles can be regarded as insulators 

and sweat ducts as good conductors [36]. It is reasonable to 
believe that these components of the skin if present at or 

near a wound site may influence the wound field and should 

therefore be included in a more extended model than the 

one presented here. 
 

 

 
 

 

 

 

Area Block 
Thickness 
(mm) [1] εr 

Wound W 2.0          80 [31] 

Stratum 

Corneum 
SC   0.05         104  [32,33] 

Epidermis E 1.0     106  [32] 

Dermis D 2.0    108  [30] 

Hypodermis H 3.0    107  [30] 
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Electric field and potential around a wound 

 
Electric field pattern  

 
One of the main results from our modeling is the visualiza-

tion of the electric field around and inside a wound; see 

Figure 3. At the bottom of the wound, field lines point 
towards the wound but at the top the field lines point in the 

opposite direction. There is a vanishingly small field pene-

tration beneath the wound due to the high permittivity of 
dermis (and hypodermis). This leads to, depending on the 

depth of the wound, that dermis and/or hypodermis could be 

excluded from the calculations to simplify matters. Notice 

the close resemblance with the field lines around our simple 
model system introduced in the previous section; the semi-

infinite capacitor (Figure 1). Still, an important difference is 

the fact that the stratum corneum of high dielectric permit-
tivity forces the field to stay away from the capacitor top. 

 

 
 
Figure 3: Calculated electrical field around a wound (W). The 

electric field is directed towards the wound in its lower part. At the 

top of the wound it points in the other direction. The colors represent 

the electric potential according to the scale to the right (mV). There is 

a vanishingly small penetration of the field into dermis and hypoder-

mis owing to their large dielectric permittivities. 

 

Potential variation at the wound site 

 

Having established a skin and wound model we now com-

pare it with experimental data from Nuccitelli et al. [14]. 

They measured the surface potential around and in a wound 

of mm size following the healing process day by day. [14] 

contains information about the accuracy of the method with 

respect to length and voltage scales. We are mainly con-

cerned about the electrical potential map of the wound 

rather than the wound healing process itself and we there-

fore compare with the result for the initial wound as repro-

duced in Figure 4 below. Experimentally a wound is cha-

racterized by drop in the surface potential as compared to 

surrounding tissue. 

 

 
 

Figure 4: Experimental surface potential scanning across a 

human wound [14]. 0.0 mm corresponds to the middle part of 

the wound, where the potential has its minimum value. The 

curve that has a maximum at 0.0 mm (red) is the topographical 

profile of the wound (swelling makes it peak at wound center). 

The curve that has a minimum at 0.0 mm (blue) represents the 

measured potential. Probe size is 0.5 mm. 

 

 

Figure 5: Calculated wound potential at different probing 

depths for a wound 2 mm deep with 2 mm radius. The different 

curves represent different probing depths (see curve legend), 

starting from the skin surface (bottom curve) going deeper into 

the wound. Notice the change in curvature, from convex to con-

cave as we go from a region dominated by the upper epidermis 

charges to the region dominated by the lower epidermis charges. 

For an intermediate range of depths we have a more intricate 

signature related to the high dielectric screening in the dermis. 

 

To see whether our model can account for the measured 

data we have generated numerical potential data for a 

wound with a radius and depth of 2 mm, at different prob-

ing depths. The size of the wound is chosen to comply with 

the experimental measurements in [14]. Our results are 

presented in Figure 5. There is clearly a correspondence 

between our results and the experimental measurements 

with respect to the signature of the potential provided we 

are at probing depths of around 1 mm.  

Notice that the interplay between the charges of opposite 

sign, at the two capacitor plates, gives rise to a rich variety 

of potential curves. These are sensitively depending on the 

probing depth which determines the final weighting of 

these charges. The slight maximum appearing at interme-
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diate depths is due to the high dielectric permittivity of the 

dermis as we will see below where we study a wider wound 

where the measured potential shows a local maximum in 

the middle of the wound. At present we have no 

explanation for the large discrepancy in absolute values of 

measured and calculated potentials. We have used a 

conservative estimate correponding to -20 mV of the skin 

electrochemical capacitor. Even using values five times this 

as reported in the litterature [9], depending of type of tissue 

and animal, it is not enough to fully bridge the gap. One 

possible reason for the larger potential measured is that 

there is a substantial change in the skin capacitor properties 

next to the wound, which would need a more detailed 

description since we use unperturbed dielectric values as 

input. An aspect of this is a possible charge build-up being 

responsible for a larger potential. A model for this is under 

development and it would also neccesitate more substantial 

measurements to corroborate the theoretical modelling as 

well as trying to understand the large spread in 

experimental values seen when comparing Figures 4 and 6. 

Apart from calculating the potential at different probing 

depths for a given wound important information can be 
extracted from the calculations for a constant probing depth 

but varying wound size. In Figure 6 we therefore show 

experimental results [14] for the potential corresponding to 

a wider wound than the one considered above. These results 
are compared with our prediction in Figure 7, where the 

wound potential has been studied at a constant depth of 

1.25 mm in wounds with different radii, going from a very 
narrow to a much wider wound. They all have the same 

depth of 2 mm. The potential starts out with a simple mini-

mum for narrow wounds where the upper capacitor plate 

charges dominate the picture. This is the picture we see in 
the upper part of Figure 5. When widening the wound a 

cross-over follows when the wound radius is about the 

same as the wound depth giving a different signature to the 
potential. The earlier minimum is still present in the outer 

parts but in the middle a local potential maximum now 

grows. This maximum is related to the high dielectric per-
mittivity of the dermis making it more favorable for posi-

tive charges to stay close to the middle of the wound. Final-

ly it should be mentioned that the variation in Figure 7 can 

in a restricted sense be viewed as a wound healing process. 
In these terms one would have to make a more detailed 

study to see if the clear signature of the wound potential can 

be of use in a clinical monitoring of a healing wound with-
out physical contact with the patient. 

 

 
 

Figure 6: Experimental potential variation in a wide wound 

[14]. (radius much greater than depth). The over-all potential 

shape resembles that of a narrow wound (Figure 4). However it 

has in addition a local maximum in the middle of the wound. 

 

 

 
 

Figure 7: Calculated potential for wounds of different sizes at 

a constant probing depth of 1.25 mm. The wound depth is in all 

cases 2 mm (Figure 2). We go from a 0.5 mm radius (narrow 

wound) to a 3.5 mm radius (wide) wound. Notice that we can re-

produce the experimentally found local potential maximum in 

the center for wider wounds appearing approximately when the 

radius exceeds the depth. 

 

 

Discussion and conclusions 

Our model of a skin wound is generated from a very simpli-

fied picture of what the skin and wound system looks like 

in reality. This is a necessary starting point to build upon 
for further refinements. However, already this simple skin 

model has good predictive powers when compared to recent 

experimental results. The model and the consequent inter-

pretation of the experimental findings have led us to intro-
duce the notion of a skin electrochemical capacitor acting in 

the living epidermis being the prime driving force for the 

potential patterns set up. We should point out that in a ca-
pacitor frame-work description already the simple semi-

infinite capacitor captures the main potential patterns. This 

owes partly to the very high dielectric screening in lower 
layers. We can therefore conclude that a very simple model, 
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depending on wound depth, to understand field and poten-

tial patterns around wounds would be to include stratum 

corneum whose interface with the living epidermis is at a 

certain potential, the wound with pertinent wound fluid and 
an equipotential surface following wound bottom, interface 

with dermis and epidermis/dermis boundary. 

 

Knowing potential maps and for that matter the correspond-

ing electric fields we can calculate relevant current patterns 

given good values for the tissue components contributing 

are available. It also gives a map of forces acting on rele-

vant cell types involved in both the cleaning up and healing 

of a wound. There are keratinocytes in the upper area of the 

epidermis that move in the direction of an electric field 

[27]. There are also fibroblast cells below the epidermis 

that move in the opposite direction of the field. Both cell 

types are present when healing a wound and within our 

study of a fresh wound they are held back from the wound 

area. This is important since mechanical cues, like wound 

edge relaxation, would tend to cover the wound before it 

has been cleaned out by e.g. lymphocytes, which are found 

to be attracted by a negative potential [37]. In this context 

we notice that all our wound potentials are negative sending 

a clear directional cue. The electric fields (potentials) in-

volved also clearly drive ions participating in setting up the 

trans-epithelial potential in the right direction; to uphold it. 

We should also point out that the trans-epithelial potential 

sets up a preferred direction for the movement of keratino-

cytes upward in the epidermis already in intact skin. This 

led us to introduce the notion of electrostasis; in other 

words that the body has a natural built-in system to main-

tain a potential equilibrium; the skin electrochemical ca-

pacitor. 

From the model we have also found that there is a transition 

in an electrical sense from a narrow to a wide wound when 

the wound radius is about the depth of the wound. The wide 

wound is characterized by two potential wells close to the 

wound edges but as these gets closer and start to overlap the 

whole potential changes into only one potential well. This 

dependence on wound size can be understood simply in 

terms of the distribution of dipoles at the wound edge, 

formed by charges on the upper and lower capacitor plates. 

It is gratifying to notice that this is a general electromag-

netic and solid state phenomena showing up in other fields 

of physics such as surface trapping of atoms and molecules 

with dipole rings [38]. 

The similarities between our theoretical study and the real 
measurements are promising for both further developments 

of this first simple model in itself as well as modeling situa-

tions where wound dressing with electric properties are 
present. This is a fast developing area. We are currently 

undertaking measurements and calculations on the wound 

dressing ProcelleraTM to be reported elsewhere with the 
purpose of understanding if the findings in this paper can 

have clinical implications beyond that of our basic interest 

in the dielectric and bioimpedance properties of skin. 

 

Acknowledgments 
P Apell gratefully acknowledges C McCaig for sharing his 

deep knowledge in wound healing and a grant from Swe-

dish Foundation for Strategic Research making this project 
possible. We appreciate enlightening discussions with O 

Johansson, I Makin and R Nuccitelli. The B. Sc. thesis by 

M Elmeskog, M Klintefjord, S Panas, C Spånslätt, D 
Stockman and O Wahlsten has been both decisive and very 

important for inspiring us to undertake an investigation of 

the wound potential in this paper. The comments from the 

reviewers have been especially helpful in placing our paper 
in a broader perspective. 

 

References 
 
1. Payne P A, Clin Phys Physiol Meas 12, 105 (1991). 

2. Becker R, Becker R E and Selden G, The Body Electric, 
Harper, New York (1998). 

3. Pliquett U et al., J Electr Bioimp 1, 41 (2010) . 

4. Kloth L C, Lower Extremity Wounds 4, 23 (2005).  

5. Moore K, J of Community Nursing 21, 18 (2007). 

6. Ojingwa J C and Isseroff R R,  J Invest Dermatol 121, 1 

(2003). 

7. Levin M, Trends Cell Biol 17, 262 (2007).  

8. McCaig C D, Song B and Rajnicek A,  J Cell Sci 122, 4267 

(2009). 

9. Zhao M, Semin Cell Dev Biol 20, 674 (2009). 

10. Pethig R, Clin Phys Physiol Meas 8, Suppl A, 5 (1987).  

11. Grimnes S and Martinsen Ø G, Bioimpedance, Wiley 

Encyclopedia of Biomedical Engineering, Wiley (2006). 

12. Gabriel C, Dielectric Properties of Biological Materials, Ch 

3, Bioengineering and Biophysical Aspects of Electromag-

netic Fields, CRC Press (2007). 

13. Reid B, Nuccitelli R and Zhao M, Nat Protoc 2, 661 (2007).  

14. Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R and Smith 

P J S, Wound Repair Regen 16, 432 (2008). 

15. Roth B J, The electrical conductivity of tissues, Ch 10, The 

Biomedical Engineering Handbook (2nd ed), CRC Press 

(2000). 

16. Candia O A, Zadunaisky J A and Bajandas F, Invest 

Ophthalmol Vis Sci 7, 405 (1968). 

17. Klyce S D, J Physiol 226, 407 (1972). 



Wahlsten et al.: Wounds as probes of electrical properties of skin. J Electr Bioimp, 1, 63-70, 2010

70

18. Barker T, Jaffe L F and Vanable Jr J W, Am J Physiol 242, 

R358 (1982).  

19. Foulds I S and Barker A T, Br J Dermatol 109, 515 (1983). 

20. Karba R, Šemrov D, Vodovnik L, Benko H and Šavrin R, 

Bioelectrochem Bioenerg 43, 265 (1997).  

21. Šemrov D, Karba R and Valenčič V, Bioelectrochem Bio-

energ 43, 271 (1997).  

22. DuBois-Reymond E, Ann Phy U Chem 58, 1 (1843). 

23. McCaig C D, Rajnicek A M, Song B and Zhao M, Physiol 

Rev 85, 943 (2005). 

24. Stewart S, Rojas-Muñjos A and Izpisúa Belmonte J C, Bio-

Essays 29, 1133 (2007). 

25. Levin M, Semin Cell Dev Biol 20, 543 (2009). 

26. Kofoed-Johnsen V and Ussing H H, Acta Physiol Scand 42, 

298 (1958). 

27. Nishimura K Y, Isseroff R R and Nuccitelli R, J Cell Sci 109, 

199 (1996). 

28. Guo A, Song  B, Reid B,  Gu Y, Forrester J V, Jahoda C 

B and Zhao M, J Invest Dermatol 130, 2320 (2010) 

29. Smythe W R, Static and Dynamic Electricity (3rd ed,) New 

York, Hemisphere, 1989. 

30. Tavernier A, Dierickx M and Hinsencamp M, Bioelectro-

chem Bioenerg 30, 65 (1993). 

31. Beam J W, J Athl Train 41, 196 (2006). 

32. Miklavčič D, Pavšelj N and Hart F X, Electrical properties of 

tissues in Wiley Encyclopedia of Biomedical Engineering, 

Wiley (2006).  

33. Yamamoto T and Yamamoto Y, Med Biol Eng 14, 151 

(1976); Ibid 494 (1976). 

34. Gabriel C, Bentall R H and Grant E H, Bioelectromagn 8, 23 

(1987). 

35. Schroeder M J, Sadasiva A and Nelson R M, J Biomech 

Biomed Biophys Eng, 2 (2008). 

36. Feldman Y, Puzenko A, Ishai P B, Caduff A and Agranat A 

J, Phys Rev Lett 100, 128102 (2008).  

37. Lin F et al., J Immunology 181, 2465 (2008).  

38. See e.g. Dil H et al., Science 319, 1824 (2008). 

 


