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ADVERSARIAL RISK ANALYSIS FOR ENHANCING 
COMBAT SIMULATION MODELS 

Abstract 

Adversarial Risk Analysis (ARA) builds on statistical risk analysis and game theory 
to analyze decision situations involving two or more intelligent opponents who 
make decisions under uncertainty. During the past few years, the ARA approach–
which is based on the explicit modelling of the decision making processes of a 
rational opponent–has been applied extensively in areas such as counterterrorism 
and corporate competition. In the context of military combat modelling, however, 
ARA has not been used systematically, even if there have been attempts to predict 
the opponent’s decisions based on wargaming, application of game theoretic 
equilibria, and the use of expert judgements. Against this backdrop, we argue that 
combining ARA with military combat modelling holds promise for enhancing the 
capabilities of combat modelling tools. We identify ways of combining ARA with 
combat modelling and give an illustrative example of how ARA can provide 
insights into a problem where the defender needs to estimate the utility gained from 
hiding its troop movements from the attacker. Even if the ARA approach can be 
challenging to apply, it can be instructive in that relevant assumptions about the 
resources, expectations and goals that guide the adversary’s decisions must be 
explicated.  
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Introduction 

Adversarial risk analysis (ARA) combines statistical risk analysis and game theory 
to provide appropriate methods for analyzing decision making situations which 
involve two or more intelligent actors who make decisions with uncertain 
outcomes. Such situations are encountered, for example, in counter-terrorism and 
corporate competition (Rios Insua et al., 2009). 
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Traditional statistical risk analysis was developed to assess and mitigate risks in 
contexts where the loss is governed by chance (or Nature), for instance in the 
management of complex technological systems like nuclear power plants and the 
design of insurance policies against natural disasters. Apart from risks caused by 
such chance events, ARA seeks to capture risks caused by the self-interested and 
possibly malicious actions of intelligent actors: thus, modelling the decision-
making behavior of these actors is central to ARA. These kinds of decision models 
can be based, for example, on classical game theory (Myerson, 1991) or 
psychological considerations (Camerer, 2003).  

Yet game theory is not an ideal tool for describing and predicting human behavior. 
Minmax solutions–in which each actor seeks to minimize his expected losses 
across all the actions that are available to his opponents–can lead to unrealistic 
solutions, because real opponents do not usually follow the minmax rationality 
principle. Minmax solutions are also often difficult to compute in real situations, 
and they necessitate strong assumptions about what common knowledge the actors 
share (Kadane & Larkey, 1982 and Meng et al., 2014). Moreover, the solutions can 
be overly pessimistic, because the mitigation of the worst possible scenario (which 
may have an extremely low probability) will induce the actors to make choices that 
a human opponent would not realistically make.  

ARA has many obvious uses in military organizations. Much of the recent ARA 
literature has focused on counterterrorism, and many of the proposed ARA 
approaches can be applied to support military decision making. Zhuang and Bier 
(2007), for example, apply game theory to devise strategies for allocating resources 
between the protection from an intentional attack, on one hand, and from natural 
disasters, on the other hand. ARA methods can also be used to guide the allocation 
of resources between strategically important targets as well as the investment 
planning of military equipment and projects. Uses of ARA in finance and 
procurement are relevant, too, because military organizations acquire products and 
services from external contractors. 

In this paper, we do not survey the broad ARA literature in view of military 
applications. Rather, we discuss how ARA can be applied to enhance combat 
modeling or to complement it. Specifically, we examine how ARA can be used to 
model the effects of military deceit, and how it can be used to aggregate results 
from different simulations to model a longer chain of events.  
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The possibility of calculating the effects of military deception and its usefulness is 
one of the most promising ARA applications in combat modeling. Game theory has 
been applied to calculate the benefits of deceit before (Reese, 1980), but such 
applications are still rare. This is partly because the solutions of classical game 
theory presume that both sides have common knowledge about each other’s goals 
and resources, which is not realistic when modeling deceit. ARA does not have this 
limitation. It can even be applied to calculate the usefulness of decoys and dummy 
systems, which makes it possible to estimate if these are worth the cost. Such 
estimation is very difficult if not impossible in most combat simulation models.  

Using ARA to facilitate the simulation of longer chains of events holds promise, 
because simulation models are built to model combat on specific scale. For 
instance, simulation models which seek to accurately describe the combat between 
two tanks are ill-suited for modeling an entire battalion, and models for simulating 
fighting at the platoon level do not lend themselves well to the modeling an entire 
theater of operations. Still, with ARA it is possible combine results from several 
such simulation runs or even different simulation models to create a more 
encompassing optimization model. This can be very useful in stretching the limits 
of what can be done with existing simulation tools. 

Modeling adversarial risks 

In this section, we briefly describe how a situation in which there are adversaries 
whose actions affect each other’s risks can be modeled. Our presentation builds 
largely on Rios Insua et al. (2009) who give a comprehensive presentation of ARA. 
For a good overview on how the ARA approach compares to classical game theory, 
we refer to Banks et al. (2011). 

Risk analysis 

The simplest form of a non-adversarial risk management problem is a situation in 
which the decision maker chooses one of the available decision alternatives whose 
costs are uncertain. This problem can be presented as an influence diagram as seen 
in Figure 1. 

4 
 

 

Figure 1: A simple influence diagram 

An influence diagram is a directed acyclic graph with three kinds of nodes: 
rectangle shaped decision nodes, oval shaped uncertainty nodes, and hexagonal 
value nodes. Arrows pointing to value or uncertainty nodes indicate functional or 
probabilistic dependence, respectively. This means that the utility function at the 
value node depends on its immediately preceding nodes, and the probabilities 
associated with an uncertainty node depend are conditioned on the values of the 
immediately preceding nodes. Arrows which point to decision nodes indicate that 
the values of these preceding nodes are known at the time of the decision. (cf. 
Howard & Matheson, 2005) 

Figure 1 shows a situation where the decision maker has to make a decision a from 
a set A of possible choices, represented by the rectangle. The cost c associated with 
this decision is uncertain and is modeled through the probability density function 
       , represented by the oval node. The result is modeled by Von Neumann-
Morgenstern utility function u(c). The decision maker seeks to maximize the 
expected utility 

     
   

                     .                                         (1) 

In practice, the costs of a particular action can be complex in that they can include 
both fixed and random terms. As a result, organizations seek to perform a risk 
assessment to better identify disruptive events, and to estimate their probabilities 
and associated costs. 

Adversarial risks 

We now consider a situation in which there are two adversaries (Attacker and 
Defender) whose decisions affect the risks that each faces. Figure 2 extends the 
influence diagram to include the adversary in a symmetrical situation in which the 
decisions of both parties affect the risks and costs that the other faces, and both 
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seek to maximize their own expected utility. In this example, the roles are 
symmetric; but it is possible to model asymmetric scenarios as well by building 
asymmetric influence diagrams. 

We denote the sets of possible actions of Attacker and Defender with A and D 
respectively. Their utility functions are       and        The sets containing their 
beliefs about different probabilities are    and   . As can be seen in the influence 
diagram in Figure 2, one of the nodes, Hazard, is common to both sides. It can 
represent uncertainties which affect parties, such as weather for example. The other 
cost nodes–which are not common–represent random costs for both parties which 
can be very different for the parties. 

The expected utilities for both the Attacker and the Defender depend upon the 
actions of both. Specifically, by extending on (1), we obtain the Attacker’s 
expected utility for choosing action     when the Defender chooses action     

                          ,                                    (2) 

where               represents the Attacker’s beliefs about his costs for the 
decision pair      . It is noteworthy that these beliefs do not necessarily have to 
match reality, because we are only modeling the Attacker’s decision. The expected 
utility for the Defender is analogous. 

This representation of ARA matches normal form games in which both players 
take simultaneous decisions. One could also build an influence diagram that 
represents sequential games, such as Stackelberg games, in which the players make 
their moves alternately. The ARA methodology can be applied to solve such 
games, too (cf. Banks et al., 2011 and Rios & Rios Insua, 2012).  
Bayesian framework for ARA 

A problem like the one presented in Figure 2 can be solved using classical game 
theory if the costs and utility functions of both players are common knowledge. 
However, if the players do not have correct and accurate information about the 
costs, resources, and goals of the adversary (which is often the case in reality), the 
Nash equilibrium solution does not exist. 

  

6 
 

  

Figure 2: Influence diagram with an adversary 

ARA solves this problem by using a Bayesian strategy to express uncertainty about 
the adversary’s decision. From the Attacker’s point of view, this means that the 
Defender’s decision is a random variable as presented in Figure 3. To solve this 
problem, the Attacker needs more than just               and      . Specifically, 
he also needs      , which is the probability that the Defender chooses defense d 
as estimated by the Attacker. To find that, the Attacker is assumed to use mirroring 
to form an estimate of the Defender’s utility function       and the Defender’s 
costs           . In other words, the Attacker assumes that the Defender acts 
rationally and that the Defender uses a similar approach to predict the actions of the 
Attacker. 
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If the Attacker tried to estimate the Defender’s utility function and cost function by 
assuming that the Defender is doing exactly the same thing as what he is doing, the 
Attacker would need to think what the Defender thinks he thinks. To avoid infinite 
regress, the chain is usually cut here and the Attacker just forms an educated guess 
about the Defender’s beliefs about the Attacker’s estimated utilities and costs. In 
principle, this analysis could be taken even further, but usually this is not realistic.   

 

Figure 3: Influence diagram from the Attacker's point of view. 

 

Alternative approaches for modeling adversary’s decision making 

The ARA methodology has analogues with Bayesian level-k thinking: specifically, 
our approach to modeling of the opponent’s beliefs resembles level-2 thinking. 
Rothschild et al. (2012) have taken the approach further and applied level-k 
thinking to the ARA approach. Their methodology has drawbacks, though, because 
the level-k approach requires additional assumptions and the problems become 
quickly intractable due to their growing complexity. The greatest advantage of 
level-k thinking is that it shows how the level of adversary’s thinking affects the 
optimal decision. 

Caswell et al. (2011) present a model in which the decision process is evaluated 
using a Bayesian network with an embedded semi-Markov decision process. 
Compared to the ARA approach, their model can be used to present the adversary’s 
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decision process with greater accuracy. However, as in any decision analysis 
model, the results are only as good as inputs, and a detailed description of the 
adversary’s thought process would require detailed information about the 
adversary’s resources, values and goals. 

Zuckerman et al. (2012) represent adversarial activity with a Beliefs-Desires-
Intentions (BDI) based model; such models are commonly used to describe 
teamwork and cooperation. In this approach, the adversary can be modelled as a 
more nuanced rational agent instead of an omniscient utility maximizer. Yet, the 
model is not very elaborate, and it can be applied only in zero-sum games in which 
the goals are easily decomposable.   

Applying ARA to military combat modeling 

A significant proportion of ARA literature is focused on preventing terrorist threats 
and, more specifically, on how limited resources should be allocated to combat 
such threats (cf. Pat-Cornell & Guikema 2002, Kardes & Hall 2005, Zhuang & Bier 
2007, Golany et al. 2009, and Kroshl et al. 2015). Nevertheless, in this section we 
focus more on how ARA can be applied to to military combat modeling and 
modeling processes, because resource allocation is well covered in earlier research.  

We have chosen to examine what possibilities ARA offers for simulating longer 
chains of events and military deceit, because these are some of the more difficult 
problems to be handled with existing simulation and analysis tools. To some 
extent, these topics are interconnected, because deception and misinformation can 
have major impacts on what happens in the battlefield. Many of the  following 
ideas are still untested, and they are presented as suggestions for worthy topics for 
future research.  

Simulating larger chains of events 

The ARA methodology can also be applied to model military operations that are 
too large to simulate as a single scenario. The scale can become an issue if the 
number of units involved is too large, or the operation takes place over such a long 
timeframe that the number of possible paths based on the events becomes 
excessive. Kangas and Lappi (2006) present how methods of probabilistic risk 
analysis can be used in conjunction with stochastic combat modeling to analyze 
longer chains of events. The ARA approach can be used to build on such results to 
take the analysis one step further. In addition to predicting the success chances of 
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larger operations, it would be possible to predict which ones out of adversary’s 
alternative actions can affect the chain of events most.  

Furthermore, ARA can be used to expand a small scale simulation model to a 
larger scale optimization model. In practice this could mean, for example, using a 
platform level simulator that can model an aerial battle between fighter aircraft in 
conjunction with ARA to forecast which decisions would most likely lead to air 
superiority in the conflict. This approach is not even restricted to using a single 
simulation model. It would not be significantly more difficult to combine the 
simulation results from several different models. 

Practically any combat model can be used with ARA methodology on condition 
that the probabilities for each side winning the battle as well as the expected losses 
on both sides can be calculated. This includes essentially all stochastic combat 
models and even some deterministic ones. The selection of the combat model must 
fit the problem at hand. Sometimes the best choice is a platform level Monte Carlo 
simulation, and sometimes it can be a high level attrition model like the FATHM 
(Fast Theater Model) (Brown & Washburn, 2000). 

In some cases, it is possible to use ARA to model longer chains of events without 
having to rely on an actual stochastic combat modeling software like Sandis (cf. 
Kangas and Lappi, 2006). There are also alternative, lighter stochastic 
computational models that can be used to predict the outcome of a duel between 
two platoon sized forces (Lappi et al., 2012; Åkesson, 2012; Roponen, 2013). 
These models can be used to significantly cut down the time for calculating all the 
success probabilities and the expected losses in different stages of the chain. There 
are also additional time savings from not having to create a complete model 
scenario, which, as noted earlier, is a time consuming process. The use of the 
lighter duel simulation methods could be automatized to a certain degree, because 
they require far fewer input parameters. 

To offer a rough outline for how ARA can be applied to a longer chain of events, 
we present an example case in which modeling the events as a single combat 
simulation would likely be very time consuming and would not offer any real 
benefits over the ARA approach. That is, we examine a situation in which there are 
two bridges that can be used to cross a river. One party wants to cross the river and 
the other wants to prevent that from happening by using military force. The 
Defender has three platoons of soldiers available for defending the bridges. The 
Attacker has six platoons which try to get across. 
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In order to examine a problem such as this, one first needs to a narrative of what 
chains of events are possible as a result of the decisions that the actors can take. To 
keep the problem tractable, the number of possible decision options as well as the 
end results of random events needs to be kept to a minimum, because the number 
of calculations required grows exponentially with each step. The problem has been 
presented as an influence diagram in Figure 4. 

 

 

Figure 4: Influence diagram depicting a longer chain of events. The darker nodes 
are associated with the Attacker, as perceived by the Defender, as uncertainty 
nodes and vice versa. The striped nodes are uncertain events common to both sides. 
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reserves, but depending on the level of sophistication of the combat model used for 
the calculations other variables like the use of terrain, fortifications and mines 
could be included as well. The Attacker also needs to decide how he is going to use 
his troops for the initial attack. This includes the number of troops used and the 
target (or many targets) of the attack. Depending on the modeled situation the 
Attacker might be operating with very limited information. The initial attack might 
be used to just scout the Defender’s strength. 

The influence diagram in Figure 4 shows the two decisions as independent, but it 
does not really need to be so. Depending on which situation we wish to model, 
either the Attacker or the Defender could act after finding out what the other is 
planning to do. It is even possible to account for asymmetric information on both 
sides, arising for instance from greater familiarity with the terrain, military 
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larger operations, it would be possible to predict which ones out of adversary’s 
alternative actions can affect the chain of events most.  

Furthermore, ARA can be used to expand a small scale simulation model to a 
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In order to examine a problem such as this, one first needs to a narrative of what 
chains of events are possible as a result of the decisions that the actors can take. To 
keep the problem tractable, the number of possible decision options as well as the 
end results of random events needs to be kept to a minimum, because the number 
of calculations required grows exponentially with each step. The problem has been 
presented as an influence diagram in Figure 4. 
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possible choices should be kept as low as possible. This means, for example, that 
the troops should be deployed as whole platoons instead of single soldiers. 

Once the possible initial decisions have been determined, the probabilities of all the 
possible results of the first battle for all the possible initial conditions need to be 
computed. The number of possible battle results can become computationally 
overwhelming, because all possible combinations of casualties on both sides are 
technically different outcomes. It is not feasible to calculate the next step if the 
number of possibilities is in the hundreds. The amount can be reduced to a more 
manageable number by assuming that the losses suffered by each side are 
conditional only on the result of the battle and not on each other. In this way, the 
possible results can be limited to wins and losses or some other smaller set. One 
way to choose the set of possible results is to take a look at the next step and 
identify which results would lead to different decisions and use those. Depending 
on the modeled chain of events, this can be easy, nearly impossible, or anything in 
between these extremes. 

When the possible results of the first battle have been determined, we proceed to 
the decisions that follow it, then to the next battle, and so forth. In some these 
outcomes, either the Attacker or the Defender will not be able to continue 
effectively, which shortens the chain of events. For the sake of tractability, one also 
has to decide where these chains of events will have terminated so that there is no 
more fighting. It is possible that in more complex cases, the influence diagram is 
not ideal for visualizing the problem. Alternatively, the problem can be shown as a 
decision tree, because the ARA methodology is not tied to influence diagrams. 

After all the possible chains of events have been elaborated and the corresponding 
possible end results have been determined, we proceed by calculating backwards 
from the end to estimate the probabilities of these results. Towards this end, we 
first solve the ARA problem formed by the last decisions in the chain and the 
ensuing battle. To find out the probability that the initial conditions for those ARA 
problems are met, we then solve the ARA problems formed by the battle and 
decisions preceding them and so forth until the first decisions have been analyzed. 
The utility function for each problem in the chain is formed from the maximized 
expected utility gained from each outcome as given by solving the ARA problems 
following it. 
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Modeling the effectiveness of military deceit 

“All warfare is based on deception.” (Sun Tzu) Using deceit to gain an upper hand 
against an adversary is an absolutely integral part of military tactics and strategy. 
Still, the effects of deceit are very difficult to predict and simulate with existing 
operational analysis and combat modeling software. Because the effects cannot be 
readily reduced to mathematical formulas, modeling the effects of deceit relies 
usually on expert judgements. In the context of combat modeling, this usually 
means that the required expert opinions are provided by the operator of the 
simulation tool.  

A common alternative is to use wargames to model the uncertainties in human 
decision making; but even this approach also has problems as wargames ignore 
many aspects of reality.  Questions of solvability do not arise in wargames, because 
the aim is not to determine optimal tactics. Rather, realizing that wars are fought by 
humans, wargames study the decision process of humans. One problem in this 
approach is that in a game, the player can make decisions that he would not really 
make as long as these decisions produce good results in the simulation. For 
example, in a simulated environment casualties may not have the weight that they 
would have in actual combat. The second problem is that wargames often capture 
typical decision making behavior (rather than optimal decisions) because the 
players play a small number of games only. Thus, for instance, the resulting lack of 
repetition may overstate the effectiveness of new weapon systems, because the 
opponent does not have time to learn and adapt his tactics to counter these systems. 
To some extent, the lack of repetition may be deliberate due to the fear that the 
players would learn to use the artificialities of the wargame to their advantage 
instead of developing better military strategies. Another reason for the lack of 
repetitions is that wargaming is time consuming and expensive. (Washburn & 
Kress, 2009, 111-130)  

The ARA approach could be used to assess the effects of deceit tactics on the 
decision making of the adversary. Specifically, the ability to model the effects of 
the adversary’s altered perceptions would be a useful complement to the elicitation 
of expert judgements. Mathematical equations are, after all, immune to effects of 
optimistic thinking. 

ARA can be used relatively easily to model situations in which the adversary is 
deliberately misinformed about the strength or capabilities of the opponent, for 
instance as a result of hiding troop movements and employing dummy units or 
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decoys. Then, ARA helps estimate the effect the misinformation on the adversary’s 
decision making and whether this effect is beneficial so that the benefits outweigh 
the costs.  In the next section, we give an example of such an estimation process.  

The ARA approach is not limited to deceit that happens on the battlefield; indeed, 
military deceit is pervasive in military planning and decision making. In theory, 
ARA can be used to study the effects of almost any misinformation, but usually 
these effects can not be modeled with combat simulation models (except in the case 
of misinformation that relates to the number or capabilities of weapon systems, 
sensor systems or military units). While the ARA methodology does not give tools 
for predicting the probability with which deception will succeeds, it helps assess 
the possible effects of successful deception may be, which helps decide what 
information is worth hiding or altering. 

Example of applying ARA to a military deceit problem 

To demonstrate how ARA can be applied, we use it here to analyze a relatively 
simple tactical problem which illustrates some of the key aspects of the approach.  

The problem 

Consider the following situation in which there are two adversaries: the Defender 
and the Attacker. The Defender has two valuable targets he needs to protect, Target 
1 and Target 2. The Defender has a total of 60 troops, 40 of whom are situated at 
Target 1 and 20 at Target 2. The Defender can try to secretly move troops from one 
target to another, but there is a possibility that the Attacker will notice the troop 
movement. After the Defender has moved the troops he wants to move, the 
Attacker will decide which target he will attack. If the Defender succeeds in 
moving the troops without the Attacker noticing, the Attacker will have to decide 
his target using incomplete information. We solve this problem from the point of 
view of the Defender. Figure 5 shows the influence diagram from the Defender’s 
point of view.  
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Figure 6: Influence diagram of the example case from the point of view of the 
Attacker.  
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a single combat ready soldier to be 1. He has the option moving troops between the 
targets without the Attacker’s knowledge. There is, however, a probability    that 
the attacker finds out about the troop movement. The Defender also estimates that 
the Attacker has at least 20 men but no more than 35, and he thinks that the most 
likely number is 30, so he fits a triangular distribution.  

Using the strength estimates of both forces, the Defender can use, for example, a 
stochastic combat model to calculate    and   . Specifically, the Defender 
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The Defender estimates that the Attacker thinks the Defender has 36 to 44 men at 
Target 1 and 18 to 22 men at Target 2 (with all values equally probable), and the 
Attacker has probability             of finding out about the Defender’s 
troop movement. If the Attacker detects the Defender moving troops, he will be 
able to accurately count the number of troops moved. Using those strengths for his 
estimates he can use the same stochastic combat model used to solve    and    to 
calculate    and   . 

The Defender estimates that the Attacker’s utility function is similar to his own. 
However, the Defender does not know for sure how valuable each target is to the 
Attacker. He models this uncertainty by adjusting the weights of successful capture 
of each target  . Thus, he estimates that the Attacker’s utility function is 
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where the distributions    and    are uniformly distributed over the interval 
      . 

 

Figure 7: The Attacker’s win probability with strength of 30 as a function of the 
Defender’s strength. The minor perturbations in the curve are caused by the 
assumption that the battle is lost when the unit has lost half of its troops, which 
means that even strengths are slightly less advantageous for the Defender. 

We solve the problem step by step. First, the Defender will:  
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1. Calculate the success probabilities and expected losses for both sides for all 
the possible combinations of strengths of both sides (Figure 7). 

2. Calculate the Attacker’s expected utilities    for attacking each target for 
all possible strengths of the Attacker’s force taking into account the 
uncertainties with    the fact that the Attacker has knowledge of the 
Defender’s troop movement on probability        . 

3. Compare the expected utilities to get an estimate for the probability of an 
attack on each target for each possible strength of the Attacker. 

4. Consider the probability of an attack with a specific strength of the attacker 
and the probability for each of those strengths to calculate           . 

5. Calculate        . 
6. Use            and         to determine the decision d which maximizes 

his expected utility. 

We used the approximative method in Roponen (2013) to simulate a duel between 
two forces in order to calculate the probabilities in (  ,   ,    and   ) in step 1, 
because the details for this method are publicly available and it produces the results 
of battles between two infantry units very efficiently. This program code was used 
to examine the win probabilities for all possible strengths of both sides. Situations 
in which a tie was predicted were counted as the Defender’s victory, because the 
Attacker would be unable to capture the target. Moreover, a unit was assumed to 
lose the battle if it lost half of its fighting strength, which is the cause behind the 
roughness of curves depicted in Figures 7 and 8, because the unit strengths are non-
negative integers and odd numbers are not divisible by two. 

We then wrote a program code to search the remaining steps exhaustively, to 
calculate the expected utilities, and to determine the attack probabilities         . 
Because the Attacker perceived that target 2 was significantly weaker, he always 
chose to attack this target unless he found out about the troop movement, in which 
case he chose the target with actually higher expected utility. The attack probability 
on target 1 thus varied between 0 and 0.1. Then the expected utilities of the 
Defender were calculated from    and    as seen in Figure 8. 
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Figure 8: The expected utility gained by the Defender as a function of troops 
transferred from target 1 to target 2. 

The highest expected utility gained by the Defender,         , was achieved by 
transferring three squads or 15 soldiers from target 1 to target 2. This gave the 
Defender 0.933 probability of winning the battle if the Attacker chose to attack 
target 2 (which would happen if he does not notice the troop movement) and 0.281 
probability of winning if the Attacker chose to attack target 1. 

Future research 

Adversarial risk analysis (ARA) is a relatively new research area which is 
becoming more prominent in the context of counter-terrorism and corporate 
competition. In this paper, we have discussed and illustrated the application of 
ARA to the modelling of longer chains of events and the effects of military deceit. 
There are also many other possible ways of applying the ARA methodology to 
combat modeling. 

Arguably the most important reason for military combat modeling is that it 
provides support for strategic, tactical or technical decision making (Tolk, 2012, 
55-78). However, it is not straightforward to translate the results of combat models 
into decision recommendations (Davis & Blumenthal, 1991). One accessible way 
of using ARA in the context of simulation is to perform an exhaustive portfolio 
analysis of all relevant strategies. Such methods have been used to assess the cost-
efficiency of different combinations of weapons systems, for example 
(Kangaspunta et al., 2012).  
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We then wrote a program code to search the remaining steps exhaustively, to 
calculate the expected utilities, and to determine the attack probabilities         . 
Because the Attacker perceived that target 2 was significantly weaker, he always 
chose to attack this target unless he found out about the troop movement, in which 
case he chose the target with actually higher expected utility. The attack probability 
on target 1 thus varied between 0 and 0.1. Then the expected utilities of the 
Defender were calculated from    and    as seen in Figure 8. 
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Figure 8: The expected utility gained by the Defender as a function of troops 
transferred from target 1 to target 2. 

The highest expected utility gained by the Defender,         , was achieved by 
transferring three squads or 15 soldiers from target 1 to target 2. This gave the 
Defender 0.933 probability of winning the battle if the Attacker chose to attack 
target 2 (which would happen if he does not notice the troop movement) and 0.281 
probability of winning if the Attacker chose to attack target 1. 

Future research 

Adversarial risk analysis (ARA) is a relatively new research area which is 
becoming more prominent in the context of counter-terrorism and corporate 
competition. In this paper, we have discussed and illustrated the application of 
ARA to the modelling of longer chains of events and the effects of military deceit. 
There are also many other possible ways of applying the ARA methodology to 
combat modeling. 

Arguably the most important reason for military combat modeling is that it 
provides support for strategic, tactical or technical decision making (Tolk, 2012, 
55-78). However, it is not straightforward to translate the results of combat models 
into decision recommendations (Davis & Blumenthal, 1991). One accessible way 
of using ARA in the context of simulation is to perform an exhaustive portfolio 
analysis of all relevant strategies. Such methods have been used to assess the cost-
efficiency of different combinations of weapons systems, for example 
(Kangaspunta et al., 2012).  
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In the same vein, ARA could be used to predict the most likely responses of the 
adversary and to calculate the expected utilities of each strategy under different 
conditions. The applicability of this approach depends how well the process can be 
streamlined and automated so that informative results about strategies can be 
provided more quickly than through manual analyses of combat simulations.  

To enrich the possibilities of using combat simulation models, ARA could also be 
used to reduce the need for user interaction within existing combat modeling tools. 
Simple adversarial intent models have been used in professional wargaming to 
simulate intelligent forces (Santos & Zhao 2006). This notwithstanding, most 
combat models do not yet include algorithms that would represent the human 
thought processes involved in tactical or strategic decisions (Washburn & Kress, 
2009, 111-130). Depending on the model, practically all higher level decisions 
concerning the position and strength of forces are made by the operator. As a result, 
the time required to create a scenario is usually significantly longer than the time 
required to calculate the results (Lappi, 2012).  

The development of simulation models in which the units are able to make simple 
tactically sensible decisions would widen the range of problems that can be 
analyzed by using approaches such as data farming. The ARA methodology could 
then be used as a basis for these kinds of algorithm. Here, ARA has advantages 
over using game theory, because it accounts for uncertainties and even 
misinformation.  

However, ARA cannot be readily applied to very low level or continuous decision 
making, because the required calculations would become just too overwhelming. 
ARA can be used most effectively in situations where the attention can be 
restricted to choices among relatively few possible strategies. If need be, it may be 
possible to simplify the problem by restricting attention to some plausible chains of 
events instead of calculating all possible chains of events. Analogues approaches 
towards simplification have been employed in constructing artificial intelligence 
systems for games such as Go and Chess, and they have been applied even in video 
game AI development (Churchill et al. 2012). 

Conclusions 

The ARA methodology has already found many uses in analyzing counter 
terrorism and corporate competition (Rios Insua et al., 2009). In this paper, we 
have discussed the relevance of this methodology to military combat modeling and 
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presented concrete examples of how it can be applied. Specifically, we have 
outlined possible uses for the ARA approach in the context of modeling deceit and 
using ARA to stretch the limits of existing combat models to model longer chains 
of events. Many of these ideas are tentative and call for more research before they 
can be implemented into existing simulation. Another challenge is that real battles 
are extremely complex, they involve thousands of decisions, and the goals and 
resources are highly uncertain. Still, by focusing on the most important decision 
situations and decision alternatives can provide valuable insights.  

We also presented an illustrative example in which ARA was combined with 
stochastic combat modeling to calculate the effects of military deceit. In this 
example, most calculations for solving the ARA part of the model were relatively 
straightforward and could be implemented into software code (there are numerous 
tools for calculating the results of battles; see, Kangas, 2005). We therefore believe 
that it possible to develop software tools for considerably more complex problems 
in which the dependencies between the adversaries’ utilities and their decision 
behaviour are explicitly modelled. More generally, there is much potential in using 
the ARA approach to tackle realistic problems through stochastic combat 
modelling. This would serve to push the boundaries of ARA modelling in an 
important application area. 

Fundamentally, ARA has much to offer for military combat modeling, because it is 
able to combine the conventional statistical approach of risk analysis–which is 
already widely employed in combat modeling–with fresh game-theoretical 
perspectives that help predict what one’s opponents are likely to do. ARA can also 
be used to build optimization models on top of existing simulation models, which 
gives possibilities for new uses for these simulation models as well as new ways of 
visualizing the results of such models. 
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