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ABSTRACT 

In landscape ecology, forest fragmentation studies with emphasis on effects of scale on 

fragmentation patch metrics, is an important research area. With increasing availability of 

satellite data at multiple scales and varied resolutions, it has become important to understand 

effects of comparing fragmentation metrics acquired from coarse resolution images and 

those from finer resolution imagery. This is crucial because coarse resolution images such as 

Landsat imagery, are relatively easier to find because of their cheaper costs, availability and 

broad coverage, whereas finer resolution imagery is more expensive and therefore, spans 

only small areas. This paper examines effects of varied spatial resolutions on common 

fragmentation metrics using Landsat, Sentinel, National Agricultural Imagery Program 

(NAIP) and Unmanned Aerial Vehicle (UAV) imagery obtained in November, 2017 of the 

Whitethorne area near Blacksburg, Virginia. The images are analyzed using FRAGSTATS 

and ArcGIS software programs. The results show significant differences in fragmentation 

metrics despite simultaneous acquisition of all images in the same area. Discussion of results 

obtained in this study centers on the reasons for this disparity, and examines uses of imagery 

of different resolutions for forest fragmentation analysis. 

Keywords: Forest Fragmentation, Landsat, UAV, forest patches, spatial resolution, Patch 

metrics 

 

INTRODUCTION 

Forest fragmentation, one of the major threats to biodiversity and forest conservation, is the 

process through which formerly large and continuous forest areas are converted to small, 

isolated patches (Haila, 1999; Loyn & McAlpine, 2001). Reduction in sizes (areas) of 

remaining forest patches, increased isolation and loss in connectivity; and increased edge 

effects are the three main consequences of forest fragmentation (Saunders et al., 1991; 

Forman, 1995). Thus, forest fragmentation indices have the capacity to serve as spatial 

indicators for assessing health of forest ecosystems and are commonly considered 

biodiversity indicators in national forest inventories (Soledad & Saura, 2005). Forest 

fragmentation indices are important for assessing whether critical components and functions 

of forests are being maintained over time (Soledad & Saura, 2005). 

The purpose of forest fragmentation analysis is to allow users to visualize and quantify the 

extent of forest fragmentation while tracking changes in fragmentation and connectivity over 

time (Riitters et al., 2000).  Research conducted by Riitters et al. (2000) which forms the 
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basis of most forest fragmentation work, was originally developed to assess forest 

fragmentation at the global level using 1-km land cover information premised on the use of 

image convolution where a fixed area, roving ‘analysis window’, is centered over a forest 

pixel identified by a raster land cover map. 

In remote sensing, one of the most widely used processes involves image classification. 

Image classification is the process of converting the information in an image based on the 

spectral response of the Earth’s surface, into a thematic map that shows several classes of 

interest (Foody, 2008). In order to measure the accuracy of resulting thematic maps from the 

image classification process, it is necessary for users of these maps to evaluate their quality. 

The process of measuring the quality of classified thematic maps is referred to as Image 

Classification Accuracy Assessment, shown to be a difficult variable to assess because of 

problems associated with class discrimination and the spatial resolution of the images used in 

the classification process (Foody, 2008; Pontius & Cheuk, 2006; Lu & Weng, 2007). 

Spatial resolution of the input land cover information is one of two most significant 

considerations in forest fragmentation analysis; the second being the desired width of the 

forest edge (Hurd & Civco, 2008). In forest fragmentation analysis, both of these two 

considerations are related and play significant roles in remote sensing, where images are 

analyzed and classified in order to map forest patches. Remote sensing analysis of forest 

fragmentation is very sensitive to scale of the maps used. With the availability of remote 

sensing data at varying spatial scales, a primary concern in fragmentation analysis is in 

defining an appropriate spatial resolution that ensures that results represent good ecosystem 

indicators (Lausch & Herzog, 2002).  

In analyzing effects of spatial scale on landscape pattern indices, Saura (2004), found 

lower fragmentation at coarser spatial resolutions. Results from Saura (2004) contradicts that 

of Garcıa-Gigorro & Saura (2005) who concluded that images with finer spatial resolution 

underestimated forest fragmentation and reasoned that the utility of finer resolution images 

for forest fragmentation analysis is probably overestimated. Other studies have also shown 

that despite the usefulness of high-resolution imagery in capturing small habitat patches 

compared with lower-resolution imagery, high resolution imagery has the disadvantage of 

producing more canopy shadow and complicates processing and comparisons of multiple 

images (Masouka et al., 2003; Kennedy, 2009; Asner & Warner, 2003).   

Characteristics of sensors do not only affect levels of image detail (spatial resolution) but 

also the radiometric resolution (the sensitivity of the sensors to detect differences in reflected 

or emitted energy (Narayanan et al., 2002). This means that the brightness of remote sensing 

imagery is dependent on sensors used to record electromagnetic energy of the objects in the 

scene (Narayanan et al., 2002). For instance, while the Landsat MSS has a radiometric 

resolution of 6 bits, the Landsat ETM+ has a radiometric resolution of 9 bits which 

emphasizes differences between agricultural and forest covers despite the small differences 

in their reflected energy. 

In this study, we aim to determine effects of spatial resolution of remote sensing images on 

calculation of landscape metrics commonly used in forest fragmentation studies. Our study 

area in Virginia, where landscapes are heterogeneous in nature and rates of development, 

determined by human activities, have resulted in significant landscape changes, is ideal. This 

study differs from previous studies such as Wickham & Riitters (1995), Frohn (1998) and 

Wu et al. (2002) who concentrated solely on effects of spatial resolution on landscape indices 

devoid of the consideration of the dates of acquisition of the satellite images. In this study, we 

directly compare fragmentation indices on simultaneously acquired satellite images of 

different spatial resolutions for the same landscape. Hence, it offers a better understanding of 

the effect of spatial resolution on forest fragmentation and connectivity analyses.  
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Despite knowledge of significant differences in fragmentation metric values from images 

of different spatial resolution, effects of spatial resolution on fragmentation metrics is not 

fully understood. Forest fragmentation studies such as those of McGarigal & Marks (1995) 

have cautioned against comparison of fragmentation metrics obtained from images of 

varying spatial resolutions. This lack of comparability limits the importance of quantitative 

forest fragmentation analysis (Saura, 2004). This study therefore provides further insight into 

effects of spatial resolution of different satellite imagery on forest fragmentation metrics and 

identifying those metrics that can be compared across differing spatial resolutions. 

In remote sensing, spatial resolution is important for determining levels of detail obtained 

from an area. Satellite imagery with high spatial resolution has produced more accurate 

estimates, where the accuracy of their classifications, have been assessed (Geza & McCray, 

2008; Lin et al., 2010; Boyle et al., 2016). However, high resolution imagery although 

mostly beneficial because of the level of detail it affords, the issue of shadows, a nuisance 

that obscures important details, is more compounded in high resolution imagery. Because 

different services require different spatial resolutions, it is important for remote sensing 

research to identify the most appropriate resolution for specific objectives, given the classes 

of interest to be classified, in order to save both time and money. This research therefore, 

highlights advantages and disadvantages of satellite imagery of various resolutions for forest 

fragmentation analyses. Knowledge of what satellite imagery to use for what analysis is of 

particular value to scientific researchers and institutions that collect remote sensing data for 

forestry inventory collection and management. 

 

 

METHODS  

Study Area 

Virginia, surrounded by the states of Maryland, West Virginia, Tennessee, Kentucky and 

North Carolina, has a population of approximately 8.5 million and occupies an approximate 

area of 42,775 square miles. Virginia includes major cities such as Norfolk, Chesapeake, 

Newport, and Richmond, its capital. Oak hickory is the most common forest type in Virginia 

accounting for about 61 % of the forested land (Rose, 2015; Virginia Department of Forest 

(VDOF), 2016). While the most productive sites in Virginia have northern red (Quercus 

rubra) and white oak (Quercus alba), mockernut hickory (Carya tomentosa) and pignut 

hickory (Carya glabra), the less productive sites in southwest Virginia, have mostly chestnut 

(Castanea) and scarlet oak (Quercus coccinea) trees (Gagnon, 2016). Pine trees account for 

approximately 20 percent of Virginia’s forest cover with native pine species like the longleaf 

(Pinus palustris) and shortleaf (Pinus echinata), dominating in these forests. The remaining 

20 % of forest areas in Virginia comprises oak-pine forest types. Throughout Virginia, 

especially in low-lying wet areas, Bottomland hardwoods, stable since 2001, make up 

approximately 5 % of forests (Gagnon, 2016). Bottomland hardwood forests have a lot of 

tree diversity including swamp chestnut (Quercus michauxiik), cherrybark oak (Quercus 

pagoda) and American sycamore (Platanus occidentalis). State forests in Virginia are only 

about 0.5 % of the total forest in Virginia while over 80 % of the forests are privately owned 

and managed (VDOF, 2014). 

Many factors such as population growth rate, influence the quantity, quality and 

sustainability of forest resources in Virginia. In 1992 when the Virginia Department of 

Forestry (VDOF) performed a Forest Resource Assessment using GIS analysis, the result 

showed increasing fragmentation of its forest areas as a result of commercial and residential 

development. The trend of forest fragmentation in Virginia continues as confirmed by 
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a recent study assessing the extent of forest fragmentation between 2001 and 2011 (Fynn 

et al., 2018).  

Stemming from concern for forest resources in Virginia, VDOF, using previously collected 

data in their Forest Inventory Analysis (FIA) pool, in conjunction with 2000 Landsat TM 

satellite imagery, classified the Virginia landscape into forest, non-forest, and water. The 

output of this analysis has been used in forest resource assessments, forest fire risk modeling, 

water quality management, fragmentation analyses, forest economics, and conservation 

efforts (VDOF). 

With the widespread use of Landsat data at 30 meter resolution for forest analyses in 

Virginia, the concern for many ecologists lies in whether conservation efforts will be more 

useful if finer resolution satellite imagery is used. For instance, missed detection of forest 

edges will lead to false conclusions about the real status of forests, with some forests 

identified as intact and therefore, not receiving the needed attention even though they may 

have experienced disturbances. Overall, Virginia will benefit from improved information 

derived from satellite imagery, given that it has forest areas with varying states of 

disturbances (Figure 1).  

Within Virginia, it was important to identify an area that has undergone a lot of 

anthropogenic changes and therefore, has lost a great percentage of its original habitat, in 

order to accurately capture effects of satellite imagery resolution on forest fragmentation 

studies. Myers et al. (2000) explain that in order for conservation efforts to be effective, 

a promising approach is to identify ‘hotspots’, or areas featuring exceptional concentrations 

of endemic species and experiencing exceptional loss of original habitat. 

 

Fig. 1: A map of Virginia showing three types of forests: Core, Connected and 

Fragmented.  
Most of the Core forest areas are in the Appalachian Plateau, Valley and Ridge and Blue Ridge 

physiographic regions.  

 

 
 

Whitethorne, located near Blacksburg, within Montgomery County, Virginia, includes 

parts of the New River and Toms Creek (Figure 2). It includes forested and agricultural areas, 

interspersed with residential constructions. Previously, with a mainly forest outlook, 

urbanization of the Montgomery County due to the expansion of Virginia Tech, has resulted 
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in the establishment of residential facilities and agricultural lands. The Whitethorne area was 

selected for this study because of the increasing human population in the area and resulting 

increases in forest fragmentation. Changes in the land use patterns of the Whitethorne region 

over the years, make the area conducive for forest fragmentation studies.  

 

Fig. 2: A map of Virginia showing the Whitethorne region.  
The map of Virginia above shows Montgomery County where Whitethorne is located. 

 
 

Spatial data 

To examine the Whitethorne landscape, we obtained cloud-free geometrically corrected 

satellite scenes for the region. These included a four band (red, blue, green and infrared) 

Landsat Thematic Mapper (TM) scenes (30 meter resolution) acquired on 15
th

 November 

2017 from the United States Geological Survey (USGS) archive, Sentinel imagery acquired 

on 18
th

 November 2017 (Sentinel 2; only 10 and 20m resolution bands were used) from the 

Scientific Hub, National Agriculture Imagery Program (NAIP) imagery dated 30
th

 

November, 2017 (0.25 meter resolution) from the United States Department of Agriculture 

(USDA) Farm Service Agency databases, and Unmanned Aerial Vehicle (UAV) imagery 

obtained on 8
th

 November, 2017 (0.03 meter resolution) (Table 1).  

Landsat, Sentinel and NAIP imagery were used because they are readily and freely 

available and represent commonly available satellite imagery used for forest fragmentation 

analyses. NAIP imagery, administered through the United States Department of 

Agriculture’s Farm Service Agency, comprising of red, blue, green and near infrared bands, 

is made up of individual image tiles with each tile based on a 3.75-minute longitude by 

3.75-minute latitude quarter quadrangle plus a 300-meter buffer on all four sides. Dates of 

acquisition for all data used were close in time to ensure consistency in phenology and in 

vegetation states. UAV imagery used for the analysis was however not readily available and 

was scheduled and collected personally using a Sequoia_4.9_4608 x 3456 camera model 

with RGB features. The Average Ground Sampling Distance (GSD) for the UAV imagery 

was 3.37 cm /1.32 in and an approximate processing time of 5 hours was used on 1221 

geolocated images. 
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Table 1: Satellite imagery used for analysis.  
All the images were acquired in November to ensure more effective comparisons devoid of vegetation 

phenological differences due to time of year. 
 

 

Methodology 

Across the study area, 60 points were randomly selected to serve as training samples for 

classification. These 60 random points were field-verified on-site to confirm that their 

classification as either forest or non-forest, is accurate. Using ArcGIS, we assigned each 

point to a land cover class; forest or non-forest. These 60 locations were used for 

classification of Landsat, Sentinel, NAIP and UAV images, by selecting training data 

polygons around the points, with the same reflectance characteristics, as the point location. 

Classification accuracy was assessed for all images based on 500 stratified random points. 

ArcGIS was used to conduct a supervised classification of the images. The 60 training data 

locations used to generate signature files were used to classify each of the images into either 

forested or non-forested areas. Pixels in each image were compared numerically and 

algorithmically with the training data by the ArcGIS software via the ‘Maximum Likelihood’ 

tool, to allocate the two classes.  

Raster outputs from the classification of the 4 images (Figure 3) were used as inputs in 

FRAGSTATS to calculate patch metrics. In ArcGIS, all the non-forest areas were 

reclassified to have NODATA values before the raster images were analyzed in 

FRAGSTATS. This change was done so that, patch metrics calculated in FRAGSTATS, 

reflected only the forest regions in the raster images. 
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Fig. 3: Classified raster images of the satellite imagery analyzed in FRAGSTATS. 
Between the NAIP and UAV imagery, there is only little difference visually but the number of pixels in 

the two classes are significantly different. 

 
 

 
 

 

Patch metrics such as patch density, total edge distance, perimeter-area ratio and shape 

indices were calculated for each of the images (Table 2). The Patch Density metric has the 

same basic utility as number of patches as an index, except that it is more effective for 

comparison because it expresses the number of patches on a per unit area basis. Patch 

Density is calculated by dividing the number of patches by the total landscape area and is 

useful in determining the number of subpopulations in a spatially-dispersed population for 

species exclusively associated with that habitat type e.g. forests. Patch density in 

FRAGSTATS is greater than 0 and has no maximum limit. 

 

 

 

 

 

 

 



Fynn E. M I.., Campbell J.: Forest Fragmentation Analysis from Multiple Imaging FormatsAAAAAAAAAAAAAAAAA 
 

8 

Table 2: Patch metrics calculated in FRAGSTATS (McGarigal and Marks, 1995).  
These patch metrics are important indicators of fragmentation and connectivity 

 

 
 

The Largest Patch Index (LPI) metric quantifies the percentage of the total landscape 

comprised by the largest patch. It is therefore a measure of dominance showing the degree of 

variability within the landscape (Vizzari & Sigura, 2013). This metric identifies the largest 

forest patch within a specific landscape and therefore, determines the health of species with 

respect to competition and interactions between species since the size of patches have a direct 

impact on species population dynamics. LPI is different from the Landscape Shape Index 

(LSI) which is a measure of aggregation, measuring perimeter-area ratio for the landscape, 

calculated by dividing the total length of patch edges by the minimum measured edge length. 

The Edge Density (ED) metric reports total patch edge length within a landscape on a per 

unit area basis. It equals the sum of the lengths, in meters, of all edge segments in the 

landscape, divided by the total landscape area. In this study, edge areas is defined as the area 

300ft away from a patch boundary. Radius of gyration (a patch metric affected by both patch 

size and patch aggregation or connectivity), was also measured in meters for each image by 

calculating the mean distance between each cell in a patch and the patch centroid. Radius of 

Gyration is a measure of how far across the landscape a patch extends its reach.  

The patch Cohesion metric measures physical connectedness of the patch type in the 

landscape under study. Cohesion increases as patches in the landscape become more 

aggregated and has a range between 0 and 100 in FRAGSTATS. Total Core Area (TCA) 

(a measure of the aggregation of the core areas in each patch), was also measured for each 

image. Metric results for each of the four images were subsequently compared, to note any 

differences.  
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RESULTS AND DISCUSSION 

Considerable differences were found between the metric values of Landsat, Sentinel, NAIP 

and UAV images from FRAGSTATS. Contrary to our initial hypothesis that differences 

between the four images, might be subtle, if any, the case is not so for fragmentation metrics. 

Fragmentation metrics such as number of patches or patch density, Largest Patch Index, 

Landscape Shape Index, Edge Density and Radius of Gyration, showed similarities between 

Landsat and Sentinel Imagery compared with NAIP and UAV images (Table 3). The 

similarity of results of Landsat and Sentinel and then, NAIP and UAV, were to be expected 

because Landsat and Sentinel sensors have similar spatial resolutions compared with NAIP 

and UAV imagery. 

 

Table 3: Patch Metric Values from FRAGSTATS.  
There is a lot of similarity between metric values of Landsat and Sentinel and another cluster of similar 

values for NAIP and UAV metric values. This trend is because of comparable spatial resolutions 

 

 
 

Patch Density affects the stability of species interactions and opportunities for coexistence 

among different species. Patch Density, is however, constrained by the spatial resolution of 

the image used, since it is measured when every cell is a separate patch. This constraint is 

evident in the results reported in Table 3, as Patch Density differed considerably depending 

on the spatial resolution of the images used. Careful consideration of spatial resolution is 

important because if Patch Density is used as the only metric of comparison between images 

of varying spatial resolution, investigators will reach erroneous conclusions, given the 

differences in results reported in Table 3. This means that in a given area, depending on the 

spatial resolution of the satellite imagery used for the analysis, patch density value can either 

be lower or higher than the actual ground information. Hence, it is important for 

conservationists to consider the spatial resolution of images used in a fragmentation analysis 

before making decisions based only on Patch Density. 

The significant differences between LPI metric values for the four images was not 

expected since this metric is thought to be independent of spatial resolution (Aithal et al., 

2012). Our results, however, show that, images with lower spatial resolution (such as Landsat 

and Sentinel) have the tendency of skipping small patches within larger patches and therefore 
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aggregating smaller patches as individual larger patches. With increasingly finer spatial 

resolution, the distinction between smaller patches is more easily recognizable, as is seen in 

Table 1 and therefore, LPI declines (Figure 4). This result serves as an important factor for 

conservationists and policy makers as it shows the value of using higher resolution imagery. 

 

Fig. 4: Largest Patch Index (LPI) reduces with increasing spatial resolution.  
Although the same area at the same time is analyzed, the spatial resolution of the satellite imagery used, 

results in differences in the calculations of the LPI. There is a significant reduction in LPI values 

obtained from fine resolution imagery (NAIP and UAV) compared with coarse resolution imagery 

(Landsat and Sentinel). 
 

 
 

Edge Density, like Patch Density, is very sensitive to the spatial resolution of images used 

(McGarigal & Marks, 1995). In higher resolution imagery where the smallest patches can be 

identified and distinguished, it is reasonable that Edge Density will be higher as more edges 

are identified and quantified. For many landscape ecological studies, the presumed 

importance of spatial pattern is related to edge effects. For instance, one of the most 

significant consequences of forest fragmentation is an increase in edge effects and adverse 

effects of this phenomenon on core sensitive species. With so much importance placed on 

edge effects in forest fragmentation studies because of the significance of edges on the 

species present in the area, it is important to note that, measurements of edge density are 

highly variable within a single landscape. Variation in edge density measurements depends 

on the spatial resolution of the imagery used for the analysis (Figure 5). Figure 5 shows that 

Edge Density values for Landsat and Sentinel are very different from those of NAIP and 

UAV images because of differences in spatial resolution. The increased capture of small 

forest patches by high resolution imagery, and therefore the increased ED values captured by 

NAIP and UVA images, demonstrates the value of high resolution imagery. However, given 

that differences between resolutions of NAIP and UAV imagery are not vast, the relatively 

large difference in their corresponding ED values, raises questions about effects of canopy 

shadow (Asner & Warner, 2003).  
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Fig. 5: Increasing Edge Density values with increasing spatial resolution. This means 

that there is a correlation between spatial resolution and edge density metric values 
 

 
 

Table 4: Classification Accuracy Assessment. Created using randomly selected points 

in the forest (250 points) and non-forest (250 points) areas of the classified NAIP, UAV, 

Sentinel and Landsat images. 
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Canopy shadows, higher in forested regions, refer to reflectance of vegetation. With fine 

resolution imagery, canopy shadows become increasingly easily detected and can be 

erroneously categorized as part of the forest structure by computer algorithms such as the 

‘Maximum Likelihood’ classification tool in ArcGIS, that was used for this analysis. This is 

why a closer look at the NAIP and UAV images show a decrease in classification accuracy of 

the UAV imagery (Table 4). Thus, it is important for ecologists and policy makers to be 

prudent in the use of high resolution imagery, especially with regard to edge density values 

from fragmentation analyses. 

LSI measures the overall shape of the landscape with values close to 0 indicating that the 

landscape has a simple shape with higher aggregation. Values that are far from 0, like those 

of the NAIP and UVA (Table 1), show that the landscape has a complex shape with dispersed 

patches, and not as aggregated as indicated by the values of the Landsat and Sentinel images. 

This result is contrary to the findings of Aithal et al. (2012) suggesting that fragmentation 

metrics based on shape like the LSI, are not sensitive and behave similarly across all spatial 

resolutions. From our results, LSI varies significantly across resolutions and should therefore 

be interpreted cautiously. LSI is dependent on spatial resolution because more patches, 

within the same landscape, are identified with higher resolution imagery, exposing the 

dispersion within the landscape (Boyle et al., 2014). 

The radius of gyration is a measure of the average distance an organism can move within a 

patch before encountering the patch boundary from a random starting point. It is therefore a 

measure of landscape connectivity important in conservation studies for assessing health of 

species populations. Results from Table 1 show that, the radius of gyration is very sensitive 

to spatial resolution. Between the two high-resolution images used (NAIP and UAV), the 

difference in this metric is not significant but can pose a problem if conclusions are drawn 

from images of very different spatial resolutions such as between a Landsat image and an 

UAV image. Given the subtle difference in values for the NAIP and UAV imagery but the 

stark difference between coarser resolution Landsat and Sentinel images, conservationists 

can use the relatively cheaper NAIP imagery in connectivity studies involving inference from 

this metric, compared to the more expensive UAV imagery. This is important for 

connectivity studies that determine the abundance of species within an area as the more 

readily available and cheaper NAIP imagery, gives similar results as the more expensive 

UAV imagery. 

An important part of our results lies in the values of the Cohesion metric. A Cohesion value 

of 100 is an indication of clumpiness or connectivity of the landscape patches. Values close 

to 0 indicate highly unconnected fragmented landscapes. Our results show that the Cohesion 

values in the landscape were 78.11, 78.39, 79.05 and 78.64 for Landsat, Sentinel, NAIP and 

UAV images respectively. A trend cannot be identified in the measurement of these values 

with respect to spatial resolution. Given that there is no significant difference in the metric 

values, it can be concluded that Cohesion is not sensitive to spatial resolution. This result is 

consistent with the findings of Aithal et al. (2012) who found that Cohesion results were 

similar irrespective of spatial resolution and therefore concluded that Cohesion is 

independent of spatial resolution. Given this result, the use of Cohesion as a metric of 

aggregation is useful since the result is independent of the spatial resolution of the satellite 

imagery used. It should be noted, however, that other metrics indicated higher fragmentation 

in the landscape, especially the high-resolution metric values from NAIP and UAV images. 

Thus, an average Cohesion value of 78, an indication of aggregation, is not a good 

representation of the level of fragmentation in the area. 
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CONCLUSION 

Our results highlight the fact that differences in satellite image resolution used in 

fragmentation analyses are not trivial, and can reliably assess significant differences in patch 

metrics. Consequently, these differences are likely to influence interpretations of 

fragmentation metrics, which can directly impact populations of species within an 

ecosystem. Our results have shown that it is critical for every researcher to tailor spatial 

imagery needs according to objectives of the research and that higher resolution images do 

not always guarantee higher accuracy and better interpretations. It is important that future 

research identify specific threshold resolutions, above which high image resolution ceases to 

be useful for those specific objectives.  

Assessment of the classification accuracy of remote sensing images remains very 

important. It is important that remote sensing researchers not assume that high resolution 

images automatically imply high classification accuracies. Different studies have found 

different effects of spatial resolution on image classification. Perhaps, it is important for 

future studies to accurately identify effects of spatial resolution on classification accuracy, on 

the premise of the field of interest such as for either marine, coastal, or terrestrial studies. 

Differences in effects of spatial resolution on classification accuracy might be more apparent 

if specific study areas are characterized. 

In our study, NAIP imagery proved to have a higher classification accuracy compared to 

the higher resolution UAV imagery. The classification of the area based on the NAIP 

imagery was a better representation of the state of the area, given that ground data had been 

verified. Whereas the UAV imagery misclassified certain non-forest areas, NAIP imagery 

more accurately classified forests and non-forest areas. This effect shows the tendency of 

very high resolution imagery to produce canopy shadows that lead to false classifications. It 

is important for conservationists to do ground studies in order to produce better training data 

for forest classifications of high resolution imagery.  

Despite high costs of high-resolution imagery, our results show its significance in detection 

of smaller patches. For measurements of connectivity within landscapes where small patches 

serve as stepping stones for most species within the larger ecosystem, it is important for 

conservationists to consider the spatial resolution of images used in the analysis. Also, in 

studies where forest loss detection is a primary aim, it is important to consider the resolution 

of images used in fragmentation analysis as they influence results. Preferably, high resolution 

images should be used in such studies. 

Our study, based on 30 m, 20 m, 10 m, 0.25 m and 0.03 m spatial resolution images, 

missed some important intermediary information. Considering the poor performance of the 

coarse resolution images (30 m and 20 m) and improvement of the accuracy of 0.25 m over 

0.03 m resolution images in identifying forest patches, it will be expedient to know if an 

image of between 5 m and 10 m spatial resolution, can perform even better. The inclusion of 

an image with spatial resolution between 5 and 10 m, will be helpful in illuminating this 

research interest. 

The study area for this research consists of agricultural, forest and low density residential 

areas. With agricultural and forest areas having similar reflectance spectra, but vastly 

different from the reflectance spectra of non-vegetation, our study area might be missing 

some important spectral information. Higher resolution imagery might be more convenient in 

areas with relatively denser residential constructions, compared to our study area. Moving 

forward, it is important for this research to be replicated in other areas with differing 

vegetation and non-vegetation combinations, to assess the accuracies of high and coarse 

resolution imagery. 
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