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Erasure decoding of five times extended Reed-Solomon codes
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Recently a new family of error control codes was proposed which are equivalent to five times extended Reed-Solomon
codes. In this paper an erasure decoding algorithm for these codes is proposed.
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1 Introduction

Reed Solomon (RS) codes [1] are at present the most
frequently used error control codes in practice [2]. They
are used for example in such standards as DVB-T or in
CD applications [3]. From a theoretical point of view RS
codes belong to linear block codes and could be described
the same way as cyclic codes are [4]. A linear block code is
defined as a k -dimensional subspace of an n-dimensional
vector space constructed over a finite field GF (q). It is
often described using a triple [n, k, dm] in which n is the
codeword length, k is the number of information symbols
in each codeword and dm is the code distance, which is a
minimal Hamming distance between any two codewords
from the code. The Hamming distance is defined as the
number of coordinates (symbols) by which two codewords
(or in general two vectors) differ. The code distance and
the number of correctable errors (denoted as t) in a linear
block code is linked by the following inequality

dm ≥ 2t+ 1 . (1)

A convenient way to specify a linear block code is
to use matrix notation. One such matrix is the control
matrix H .

Recently in [5] a new family of error control codes
constructed over GF (q) was proposed, where q = 2m

and m is an odd integer, using control matrix

H=











α0 α0 . . . α0 α0 α0 1 0 0 0 0
α(q−2) α(q−3) . . . α2 α1 α0 0 1 0 0 0
α2(q−2) α2(q−3) . . . α4 α2 α0 0 0 1 0 0
α3(q−2) α3(q−3) . . . α6 α3 α0 0 0 0 1 0
α4(q−2) α4(q−3) . . . α8 α4 α0 0 0 0 0 1











. (2)

This infinite family of codes can be characterized by
the following triple [n = q + 4, q − 1, 5]. In [5] the con-
struction of these codes together with the proof that each

code from this family has dm = 5 was presented. In [5] no
decoding method was described. However, to make these
codes useful in practice, knowing an implementable de-
coding method is necessary. Therefore, in this short com-
munication a new decoding algorithm for erasure correc-
tions for these codes is proposed.

2 Some notes on RS code decoding

As was already mentioned, RS codes have a broad
range of applications [2]. Consequently, they have long
been in the focus of coding theorists as well as coding
practitioners [3]. There is vigorous research concerning
these codes and their decoding algorithms even 60 years
after their discovery, which could be documented by the
following selected references [6–12]. Therefore, there are
numerous known algorithms for their encoding as well as
for decoding.

In this paper we will concentrate only on a subset of
such algorithms, namely the syndrome methods which
are relevant to the proposed algorithm for the five times
extended RS codes.

The main practical motivation for using error control
codes is to decrease the influence of impairments which
can occur during information transmission or storage.
Usually the impairments which could be handled effi-
ciently by RS codes are categorized as errors or erasures.
The errors in an RS code codeword are symbol errors
and each such symbol error could be described by two
unknowns X and Y . For example, the i -th error is de-
termined by its error value Yi and by its position, which
is given by the corresponding error locator Xi .

N o t e . We will restrict our attention to finite fields
with characteristics two; therefore we will suppose that
both Xi and Yi are elements from GF (2m), where m > 1
is an odd integer.
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Fig. 1. Additive error channel model
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Fig. 2. Erasure channel model

To correct one error, the decoder needs to calculate
both values for this error. The occurrence of errors in
a codeword caused by transmission or writing/reading
from a storage system could be modeled using an additive
channel as is depicted in Fig. 1.

In Fig. 1 and Fig. 2 ⊕ denotes an addition of two
vectors over GF (2m), c(x) is the transmitted codeword,
Y (x) is an error polynomial, Z(x) is an erasure poly-
nomial and v(x) is the received polynomial, which can
contain errors or erasures.

On the other hand, erasure can be described by a
single unknown, namely by its value denoted for the i -th
erasure as Zi . The position of the erasure is known to
the decoder before the decoding starts. In practice this
happens for example when the symbol in the codeword
at the known position is missing. To correct one erasure
the decoder must calculate only the value of the unknown
erasure Zi and then add it to the known position of the
corresponding erasure as is shown in Fig. 2.

The most common algorithms for RS code decoding
could be from a high-level point of view described as a
solution of system of equations constructed over finite
fields.

Before these equations could be formed it is necessary
to calculate the syndrome values. In order to calculate
these syndrome values 2t roots are inserted into the re-
ceived polynomial.

v(x) = vn−1x
n−1 + vn−2x

n−2 + · · ·+ v1x
1 + v0x

0. (3)

For example, if the set of 2t consecutive roots starts
with α0 we will get the following syndrome values

S0 = v(α0) ,

S1 = v(α1) ,

S2 = v(α2) ,
...

S2t−1 = v(α2t−1).

(4)

For erasure decoding, a system of linear equations
could be used, which contains erasures as unknown and
syndromes as constants

Sk =

ζ
∑

i=1

ZiX
k
i ; i = 1, 2, . . . , ζ , (5)

where it is assumed that the number of actually occurring
erasures denoted as ζ is smaller or equal to the number of
correctable erasures denoted as z . The maximal number
of correctable erasures z in each codeword is connected
with the code distance by the following relationship

z + 1 ≤ dm . (6)

It is obvious that the number of linearly independent
equations in (5) needs to be at least ζ or expressed with
other words – for one erasure correction one linearly in-
dependent equation is necessary in (5).

3 One algorithm for erasure correction

of five times extended RS codes

In some situations, the possibility of correcting era-
sures in the received information can be advantageous.
As was already mentioned, the erasures can have differ-
ent causes. For example, the corresponding symbols can
be lost during the transmission or the detector can delete
the least reliable symbols and give the decoder the addi-
tional information of which symbols were deleted. Since
the code distance of the analyzed codes dm = 5, the
new codes from [5] can correct up to 4 erasures in one
codeword or, mathematically expressed, z = 4. In this
section we will describe one method of correcting 4 sym-
bol erasures. Their values will be denoted as Za , Zb , Zc

and Zd .

The new codes are equivalent to five times extended
RS codes, therefore similar methods could be used for
their decoding. In contrast to ordinary RS codes, five
times extended RS codes contain five additional symbols.
Therefore, to clearly highlight the differences in decoding
we will use the following vector notation for a codeword

c = (cq−2, cq−3, . . . , c0, p4, p3, p2, p1, p0) . (7)

The receiver receives a vector

v = (vq+3, vq+2, . . . , v4, v3, v2, v1, v0) , (8)

with potentially corrupted received versions of symbols
ci and pi which we denote as ĉi and p̂i , where ci , pi ,
ĉi and p̂i are elements of GF (2m). Using this notation,
the received vector could also be expressed as follows

v = (ĉq−2, ĉq−3, . . . , ĉ0, p̂4, p̂3, p̂2, p̂1, p̂0) . (9)

In (9), the erasure positions are known. Erasures: Za ,
Zb , Zc and Zd are in the corresponding positions which
are denoted as a , b , c , d . The values of received symbols
at erasure (known) positions of codewords are denoted
as: va , vb , vc and vd . The original values ca , cb , cc and
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cd of the sent symbols are not known to the decoder in
the receiver and they must be evaluated in the decoding
process. Calculated values of erasures Za , Zb , Zc and Zd

which will be used to correct received symbols at erasure
positions must fulfill the following conditions

ca = va + Za ,

cb = vb + Zb ,

cc = vc + Zc ,

cd = vd + Zd .

(10)

Syndromes are evaluated based on the following set of
equations

Sk =
q−2
∑

i=0

αki ĉi + p̂k , k ∈ (0, 4) (11)

After calculating syndromes, the next decoding step
is to form a set of syndrome equations in order to calcu-
late the correction values for erasure corrections. We will
suppose that the encoder and decoder agreed on a proto-
col in advance. Therefore, the decoder knows the control
matrix (2), which could be expressed in a compact way
as

H =

[

HP

... I

]

(12)

where Hp is the parity part of the control matrix (2)
and I is the identity 5× 5 matrix. The detector supplies
the decoder with the number of erasures ζ and their
respective positions in the received vector v . The erasure
correcting algorithm then proceeds as follows:

1. If ζ = 0 → (end of decoding), there are no erasures
in the received vector, therefore it can be delivered as
decoded or as an estimated codeword, else → go to
step 2

2. If 1 ≤ ζ ≤ 4 → go to step 3, else → end of decoding
(decoding failure – the code distance does not allow us
to correct more than 4 erasures)

3. Evaluation of syndromes S0, S1, S2, S3 using (11). If
S0 = S1 = S2 = S3 = 0 → end of decoding (it indi-
cates decoding failure - there is a discrepancy between
delivered message: 1 ≤ ζ ≤ 4 and calculated syndrome
values), else → go to step 4

4. Out of matrix (2) create ”erasure” matrix Hz so that
its columns are columns of (2) corresponding to the
respective erasure positions in v . (There is a one to
one correspondence between its rows and syndromes).
dim{Hz} = 5× ζ , and → go to step 5

5. Find a ζ × ζ submatrix denoted as Hζ of Hz with
nonzero determinant, and → go to step 6

6. Solve the system of linear equations: S = Z × H
⊤

ζ

for Z , where S is a syndrome vector containing syn-
dromes from {S0, S1, S2, S3} corresponding to rows of

Hz contained in Hζ , Z is a vector of erasures, H⊤

ζ

is a transposed matrix Hζ , and → go to step 7

7. By using calculated values of Z (obtained in the pre-
vious step) and (10) correct ocurred erasures, and →
end of decoding

4 Conclusion

In this paper a decoding algorithm was presented for
the recently discovered codes described in [5]. This algo-
rithm allows correcting up to 4 erasures in each codeword
of these codes.
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