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COMMUNICATIONS

On interactions of static magnetic fields

Ömer Zor
∗

We investigated the interaction energy of a Gilbertian magnetic charge with each of the “point” magnetic field sources.
Finally we extrapolated a Dirac string can only be defined if there is at most one Dirac monopole in the medium. If there is
only one Dirac monopole/string in the universe, the probability of detecting it is essential zero, such that Dirac’s monopole
would remain just a “theorist’s particle”.
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1 Introduction

Dirac[1, 2] constructed a quantization using the Hamil-

tonian for an electric charge interacting with the field of

a fixed magnetic monopole, thus showing that the elec-

tric vector potential must be singular in the presence of

a magnetic monopole. The singularity occurs on a line

instantaneously extending outward from the monopole

to spatial infinity (Dirac string). In the works of Dirac,

Schwinger [3] and Zwanziger [4], it was shown that it is

not possible to develop an electromagnetic theory of point

electric and magnetic field sources without introducing

the Dirac string or multi-valued potential [5].

The quantization of magnetic monopoles led to many

works on the Hamiltonian for magnetic monopoles. One of

the applications to systems containing both electric and

magnetic charges is the interaction between two sources

of magnetic fields. This problem has been investigated by

several authors [6–12]. Comay introduced a paradox in his

works [8–10], which is that the interaction of Gilbertian

magnetic monopole with an Amperian magnetic dipole

does not conserve energy. Lipkin and Peshkin [6, 7] dis-

cussed similar paradoxes. They suggested that magnetic

monopoles should be at the ends of strings of magnetic

flux as described in Dirac’s theory [1, 2] when calculating

interaction energy. However, Lipkin and Peshkin could

not provide a clear resolution of these paradoxes. Getino,

Rojo and Rubio finally defined the interaction energy

between an Amperian magnetic dipole and the Dirac

string associated with a Gilbertian magnetic charge to be

−~ma · ~Bp , which resolves Comay’s paradox to the extent

that such strings are physical. However, McDonald calcu-

lated the field energy associated with a pair of Gilbertian

magnetic charges with Dirac strings and produced a new

paradox. McDonald [12] noted that one possible resolu-

tion of this paradox is that Gilbertian magnetic charges

cannot exist.

2 Formulation

A Coulomb-like magnetic field at the position ~r ∈ R3 ,
excited by a magnetic monopole p fixed at ~r0 ∈ R3 where
~r 6= ~r0 , can be written in Gaussian units as

~Bp(~r) =
p(~r − ~r0)

|~r − ~r0|3
. (1)

The magnetic field of any given point-like charge dis-
tribution 4πpδ3(~r−~r0), where δ3 is the three-dimensional
delta function, satisfies the following magnetic Gauss
equation,

~∇ · ~Bp(~r) = 4πpδ3(~r − ~r0) . (2)

Dirac [1] introduced the magnetic flux as 4πp , carried
by the string that spans from the point charge p to in-
finity. A string is infinitesimally thin solenoid, so we can
define the magnetic field of the string using a delta func-
tion,

~Bs = 4πp~δs, (3)

where the vector delta function ~δs is parallel to ŝ (unit

vector tangent to the string), and ~δs = ~0 for points not
on the string.

For any two fields ~F1, ~F2 (both are electric or mag-
netic fields) in the volume v , which are excited by dif-
ferent electric or magnetic sources, the interaction energy
between the two fields can be defined as

Uint =
1

4π

∫

~F1 · ~F2dv . (4)

In the following sections, we investigate the interaction
energy of a Gilbertian magnetic charge with each of the
“point” magnetic field sources.

2.1 Two Gilbertian magnetic charges

The magnetic field of Gilbertian magnetic charge p at

location ~rp is ~Bp = −p~rp/r
3
p with ~∇· ~Bp = 4πpδ3(~r −
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~rp). The interaction energy of two Gilbertian magnetic
charges can be written (in Gaussian units) as

Uint=
1

4π

∫

~Bp1 · ~Bp2dv = −
1

4π

∫

~Bp1 ·~∇
p2

|~r − ~r2|
dv , (5)

Uint = −
1

4π

∫
(

~∇ ·
p2 ~Bp1

|~r − ~r2|
−

p2~∇ · ~Bp1

|~r − ~r2|

)

dv . (6)

Using the divergence theorem, the integral can be trans-
formed to

Uint = −
1

4π

(
∫

A at ∞

p2 ~Bp1 · d ~A

|~r − ~r2|
−

∫

p2~∇ · ~Bp1

|~r − ~r2|
dv

)

. (7)

~Bp1 ∝ 1/r2 , d ~A ∝ r2 , and therefore the first integral
vanishes with 1/r as r becomes very large. And if we use

the definition ~∇ · ~Bp1 = 4πp1δ
3(~r − ~r1), we obtain

Uint =
p1p2
r12

. (8)

The implication is that the interaction of a Gilbertian
magnetic charge with a Gilbertian magnetic charge does
conserve energy.

2.2 Two Gilbertian magnetic charges, each with an

associated Dirac string

The magnetic field of Gilbertian magnetic charge p at
location ~rp with an associated Dirac string can be defined

as ~B = ~Bp+ ~Bs . The interaction energy of two Gilbertian
magnetic charges, each with an associated Dirac string,
would be

Uint =
1

4π

∫

( ~Bp1 + ~Bs1) · ( ~Bp2 + ~Bs2)dv , (9)

Uint =
1

4π

(
∫

~Bp1 · ~Bp2dv +

∫

~Bp1 · ~Bs2dv

+

∫

~Bs1 · ~Bp2dv +

∫

~Bs1 · ~Bs2dv

)

. (10)

Using the formulation in section 2.1 for first integral and
assuming that the Dirac strings do not intersect, the
fourth integral goes to zero. For the other integrals, we
use the formulation,

U =
1

4π

∫

~Bp1 · ~Bs2 dv = p2

∫

~Bp1 · ~δs2dv . (11)

We can express the volume integral as an integral along
the Dirac string times integrals over surfaces (A) pene-

trated by the string, then since ~δs and d~s are parallel,
they can be exchanged in the integrand,

U =p2

∫

s

∫

n̂A ||ŝ

( ~Bp1 · ~δs2)(d~s · d ~A)

=p2

∫

s

∫

n̂A ||ŝ

( ~Bp1 · d~s)(~δs2 · d ~A)

=p2

∫

s

( ~Bp1 · d~s) = −p2

∫

s

~∇(
p1

|~r − ~r1|
) · d~s

=
p1p2

|~r1 − ~r2|
=

p1p2
r12

,

(12)

and we obtain

Uint = 3
p1p2
r12

. (13)

As a result of these calculations, the interaction of
two Gilbertian magnetic charges, each with an associated
Dirac string, does not conserve energy.

2.3 Gilbertian magnetic charge and Gilbertian magnetic

dipole

The “point” magnetic dipole ~mG , consisting of a pair

of opposite magnetic charges with the field ~BmG =

−~∇(~mG · ~r/r3) related to the gradient of scalar poten-
tial, is taken to be at the origin. The field at the dipole
(ie, at the origin) due to the magnetic charge p at loca-

tion ~rp is ~Bp = −p~rp/r
3

p with ~∇ · ~Bp = 4πpδ3(~r − ~rp).

The interaction energy of these fields is

Uint =
1

4π

∫

~BmG · ~Bpdv = −
1

4π

∫

~∇(
~mG ·~r

r3
)·~Bpdv , (14)

Uint = −
1

4π

∫
[

~∇·(
~mG · ~r

r3
~Bp)−

~mG · ~r

r3
~∇ · ~Bp

]

dv . (15)

Using the divergence theorem, the expression can be
transformed to

Uint = −
1

4π

(
∫

A at ∞

~mG ·~r

r3
~Bp·d ~A−

∫

~mG ·~r

r3
~∇· ~Bpdv

)

. (16)

~Bp ∝ 1/r2 , d ~A ∝ r2 ; therefore, the first integral vanishes
with 1/r as r becomes very large. And if we use the

definition ~∇ · ~Bp = 4πpδ3(~r − ~rp), we obtain

Uint = −~mG · ~Bp . (17)

As a result of these calculations, the interaction of a
Gilbertian magnetic charge with a Gilbertian magnetic
dipole does conserve energy.

2.4 Gilbertian magnetic charge with an associated

Dirac string and Gilbertian magnetic dipole

The magnetic field of Gilbertian magnetic charge p at
the origin with an associated Dirac string can be defined

as ~B = ~Bp + ~Bs . The interaction energy of a Gilbertian
magnetic charge with a Gilbertian magnetic dipole ~mG

can be obtained using the formulation in sections 2.2 and
2.3,

Uint =
1

4π

∫

~BmG · ( ~Bp + ~Bs)dv = −2~mG · ~Bp . (18)

The implication is that the interaction energy of a Gilber-
tian magnetic charge with an associated Dirac string and
a Gilbertian magnetic dipole is not conserved.
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2.5 Gilbertian magnetic charge and Amperian magnetic

dipole

Consider the interaction energy of a Gilbertian mag-
netic charge p at the origin with an Amperian magnetic

dipole ( ~BmA = [3(~m · r̂)r̂ − ~m] /r3 with ~∇ · ~BmA = 0),

Uint =
1

4π

∫

~BmA · ~Bpdv = −
1

4π

∫

~BmA · ~∇
p

r
dv , (19)

Uint = −
1

4π

∫

[

~∇ ·
(p

r
~BmA

)

−
p

r
~∇ · ~BmA

]

dv . (20)

If we use the definition ~∇ · ~BmA = 0, we obtain

Uint= −
1

4π

∫

~∇·
(p

r
~BmA

)

dv = −
1

4π

∫

A at ∞

p

r
~BmA·d ~A . (21)

~BmA ∝ 1/r3 , d ~A ∝ r2 ; therefore, the integrand vanishes
with 1/r as r becomes very large. Thus, we obtain

Uint = 0 . (22)

As a result of these calculations, the interaction of
a Gilbertian magnetic charge with a “point” Amperian
magnetic dipole does not conserve energy.

2.6 Gilbertian magnetic charge with an associated

Dirac string and Amperian magnetic dipole

Consider the interaction energy between a Gilbertian
magnetic charge p at the origin with an associated Dirac

string and Amperian magnetic dipole with the field ~BmA ,

Uint =
1

4π

∫

~BmA · ( ~Bp + ~Bs)dv , (23)

Uint= −
1

4π

∫

(

~∇·
p ~BmA

r
−
p~∇· ~BmA

r
− ~BmA· ~Bs

)

dv . (24)

If we use the divergence theorem and the definition ~∇ ·
~BmA = 0, the integral can be transformed to

Uint= −
1

4π

∫

Aat∞

p

r
~BmA · d ~A+

1

4π

∫

~BmA · ~Bsdv . (25)

~BmA ∝ 1/r3 , d ~A ∝ r2 ; therefore, the first integral van-
ishes with 1/r as r becomes very large. Thus, we obtain

Uint =
1

4π

∫

~BmA · ~Bsdv = p

∫

~BmA · ~δsdv , (26)

Uint =p

∫

s

∫

n̂A ||ŝ

( ~BmA · ~δs)(d~s · d ~A)

=p

∫

s

∫

n̂A ||ŝ

( ~BmA · d~s)(~δs · dA)

=p

∫

s

~BmA · d~s = −p

∫

s

~∇
~mA · (~r − ~rm)

|~r − ~rm|3
· d~s

=pϕmA(0) = −p
~mA · ~rm

r3m
= −~mA · ~Bp .

(27)

The implication is that the interaction energy between

a Gilbertian magnetic charge with an associated Dirac

string and a “point” Amperian magnetic dipole does con-

serve energy.

3 Conclusion

We proposed that a Dirac string is defined for only one

magnetic monopole in the medium. If there is another

magnetic monopole in calculable distance to the resting

monopole in the medium, we cannot introduce the defi-

nition of a Dirac string. The proposition that there could

exist at most one Dirac monopole/string in the universe

is probably not what Dirac had in mind, although it is a

logical possibility.
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