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In this paper, a new channel estimation algorithm in Orthogonal Frequency Division Multiplexing (OFDM) systems is

proposed. The proposed algorithm is suitable for cases with low density of pilot sub-carriers, where standard interpolation
methods (linear, second order and cubic spline interpolation) are inaccurate. The algorithm improves the interpolation
methods by employing memory based collaborative filtering (CF) techniques which are less sensitive to the number and
location of the pilot subcarriers. CF algorithms are usually used in the context of recommender systems (e-commerce) for
predictions of the unknown user-item ratings based on known values of similar users. The advantage of CF is the ability
to efficiently produce quality predictions with highly sparse data. Computer simulations are used to verify the proposed
channel estimation algorithm and demonstrate that the proposed algorithm improves predictive accuracy metrics, such as
Root Mean Squared Error (RMSE), compared to usual estimation methods.
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1 Introduction

Over the last decade, the accelerated development of
wireless broadband access technologies has been noted
as a response to the increasing demand for higher qual-
ity services with heterogeneous demands on quality of
service (QoS). An increasing number of different (dy-
namic) applications with different QoS parameters simul-
taneously demand different transmission data rates from
the network, with supported latency ranges from a few
milliseconds up to a few seconds, and a number of con-
nections that can change to tens of thousands [1]. Or-
thogonal Frequency Division Multiplexing (OFDM), as
one of the most widespread modulation techniques suc-
cessfully deals with above-mentioned requirements. It is
actively used in wireless broadband systems such as IEEE
802.16 (WiMAX), digital video broadcasting-terrestrial
(DVB-T) and 3GPP (LTE, LTE-Advanced) [2]. OFDM,
as a modulation technique where available frequency
spectrum is divided into several orthogonal subcarriers, is
characterized by simple implementation, high transmis-
sion data rates, high spectral efficiency and robustness
against multipath propagation [3].

As the channel in wireless communication systems is
time variant and frequency selective, efficient and accu-
rate channel estimation is needed for a coherent detection
of transmitted data, and it is therefore a challenging task.
Channel estimation is aimed to estimate the time domain
or the frequency domain response of the channel in order
to increase the capacity of an OFDM system by improv-
ing the bit error rate (BER) performance. In OFDM, ca-
pacity of the system highly depends on the knowledge

of channel characteristics (Channel State Information –
CSI) between transmitter and receiver and consequently,
if channel distortion effect for each of the active subcar-
riers within an OFDM symbol is estimated accurately,
undesirable effects on channel response can be compen-
sated [4]. Channel estimation methods can be grouped
into two categories: non-pilot aided and pilot aided (block
and comb type) [5].

In OFDM based systems, pilot-aided comb type chan-
nel estimation usually involves some form of interpola-
tion for estimation of channel states at non-pilot (data)
subcarriers. Interpolation methods can have a strong in-
fluence on accuracy of channel estimation. Interpolation
methods that are commonly used are linear interpola-
tion, second order interpolation, and spline cubic inter-
polation [5]. Currently there is a great interest in chan-
nel estimation techniques and interpolation methods that
are used in OFDM systems and thus have been studied
by many researchers [6–8]. However, the performance of
most of them is limited by either the number or the po-
sition of pilot subcarriers [5].

In this paper, we propose a new channel estimation
algorithm which improves the commonly used interpola-
tion methods by employing memory based collaborative
filtering (CF) techniques, which are less sensitive to the
number and location of the pilot subcarriers. Such chan-
nel estimation algorithms based on irregular and scarce
pilot arrangements can be very useful in orthogonal fre-
quency division multiple access (OFDMA) systems where
different user channels need to be simultaneously deter-
mined at the base station which can induce an irregular
overall pilot arrangement [9].
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CF techniques in a recommender system are using

knowledge about a set of users preferences to make pre-
dictions of other unknown user preferences. CF algo-

rithms can deal with highly sparse data and the in-

creasing number of users/items while at the same time
making satisfactory recommendations in a short period

of time. CF techniques can be divided into three cate-
gories: memory-based, model-based, and hybrid CF tech-

niques [10]. Memory-based CF methods, which are using
the entire or a sample of the user-item database to gen-

erate a prediction, are mostly deployed into e-commerce

systems because of their easy implementation and high
effectiveness [11]. If we assume that every user is a part

of a group of people with similar interests, then by iden-
tifying “neighbours” of an active/new user, a prediction

of related preferences on new items can be produced [12].

In our newly proposed channel estimation algorithm,
we have modified CF logic for the users of a wireless

network in a way that items correspond to the subcarriers

of respective users. In a prediction of unknown channel
states at non-pilot subcarriers, the assumption was made

that channel states at subcarriers of similar (close) users
are behaving similarly.

2 Wireless channel estimation and

interpolation techniques in OFDM systems

OFDM is a type of a low complexity modulation tech-
nique that allows data transmission by radio waves and
as such is widely used in radio transmission systems. In
general, this modulation allows data transmission using
many parallel narrow-band sub-streams. Each sub-stream
is modulated on closely spaced orthogonal frequency sub-
carriers. Orthogonality of the subcarriers is crucial in
OFDM for simultaneous transmission of data as there
is no interference between adjacent subcarriers [13]. The
block diagram of OFDM transmitter/receiver system is
presented in Fig. 1. In OFDM systems, pilot symbols
(known signals for the receiver and transmitter) are typi-
cally inserted into data streams, allowing the channel esti-
mation within the receiver. The pilot symbols can be scat-
tered in the time and/or frequency directions in OFDM
frames.

Although the main part of an OFDM transmission is
the FFT/IFFT operation, capacity of an OFDM system
highly depends on CSI and, because of that, it is cru-
cial to estimate the channel accurately, so that undesir-
able effects on channel response can be compensated [14].
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Various techniques for channel estimation in OFDM sys-
tems have been proposed [15, 16]. There are two cate-
gories: non-pilot aided, and pilot aided. The pilot aided
techniques provide better results while sacrificing some
part of available bandwidth for pilot data [15]. The pilot
aided channel estimation techniques can be performed by
either inserting pilot symbols with a specific period into
all subcarriers of OFDM symbols (block type) or inserting
pilot symbols into each OFDM symbol (comb type) [16],
as shown in Fig. 2. Block type is better for slower fading
channels while comb type is better for faster fading.

The estimation of the channel for block-type technique
arrangement can be based on Least Square (LS) or Min-
imum Mean-Square Error (MMSE) algorithms. LS and
MMSE algorithms are used for obtaining channel infor-
mation at pilot subcarriers [17].

In a comb-type technique, after obtaining the chan-
nel information at pilot subcarriers, the OFDM sys-
tem receiver needs to use an efficient interpolation tech-
nique to estimate channel values at all non-pilot subcar-
riers [18, 19]. High transmission rates and low BER in
OFDM systems force the use of interpolation methods
that simultaneously fulfil low complexity and high accu-
racy, as these requirements are crucial for the accuracy
of channel estimation. In general, interpolation is used
to estimate unknown data points between known data
points. Popular one-dimensional interpolation methods
like linear interpolation, second-order polynomial interpo-
lation, and cubic spline interpolation, are often adopted
in OFDM systems to accomplish the trade-off between
complexity and accuracy [5, 6, 20, 21].

2.1 Linear interpolation

In linear interpolation, the frequency response of data
subcarriers is considered as a straight line between two
adjacent pilot subcarriers. Using linear interpolation, es-
timation at the frequency of a data subcarrier k located
between the mth and (m + 1)th pilot subcarrier which
are spaced by L is given by [22]

Ĥ(k) = Ĥ(mL+ l) = (1−
l

L
)Ĥp(m) +

1

L
Ĥp(m+ 1)

= Ĥp(m) +
l

L

(
Ĥp(m+ 1)− Ĥp(m)

)
, 0 ≤ l < L (1)

where Ĥp(m) is the value of the received pilot subcarrier
at the frequency m .

Linear interpolation has a low computational complex-
ity and gives best performance in models where there
are enough pilot subcarriers and where the subcarriers
are close to each other [23]. Although linear interpola-
tion significantly degrades BER performance if the chan-
nel is changing fast between neighbouring pilot subcarri-
ers [8] (which is a non-linear behaviour), it is still most
frequently used in OFDM systems because of its easy im-
plementation and inherent simplicity.

2.2 Second order interpolation method

As linear interpolation requires more pilot subcarri-
ers for a better performance in highly frequency selec-
tive channels, usage of higher order polynomials can re-
sult in better estimation performance but at the expense
of higher computational complexity [19]. Polynomials of
higher order are better for highly time and frequency se-
lective channels, otherwise use of them can degrade the
performance, as the modelling uses noise to represent the
channel [24]. Channel estimation by second order inter-
polation is given by [22]

Ĥ(k) = Ĥ(mL+ l)

= c1Ĥp(m− 1) + c0Ĥp(m) + c−1Ĥp(m+ 1) (2)

with

c1 = α(α+ 1)/(2), c0 = −(α− 1)(α+ 1),

c−1 = α(α− 1)/2 and α =
l

N
,

where, N is the number of subcarriers in an OFDM
symbol.

2.3 Cubic spline interpolation

Cubic spline curve, as a piecewise curve, can reflect
the change trend of real curves more accurately by fit-
ting a series of unique cubic polynomials between each of
subcarriers [25]. To make estimation, values are obtained
using the following equation [16]

Ĥ(k) = Ĥ(mL+ l) = α1Ĥp(m+ 1) + α0Ĥp(m)+

Lα1Ĥ
′p(m+ 1)−Lα0Ĥ

′p(m), m = 0, 1, . . . , Np−1, (3)

where Ĥ ′

p(m) is the first order derivative of Ĥp(m), Np

is the number of pilot symbols and

α1 = 3
(L− l)2

L2
− 2

(L− l)3

L3
,

α0 = 3
l2

L2
− 2

l3

L3
.

3 Collaborative filtering techniques

Collaborative filtering (CF) techniques are among the
most successful techniques for building recommender sys-
tems [12]. Recommender systems are based on learn-
ing systems and are used in e-commerce to recom-
mend/predict useful items to new users from its databases
of preferences for items by users. CF techniques use the
known preferences of a group of users to make estimates
of the unknown preferences for other users, with general
assumption that if users X and Y rate some items simi-
larly then they will also rate other items similarly [10]. To
make satisfactory recommendations in a short time pe-
riod, CF algorithms are required to manage highly sparse
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data and to scale with increasing numbers of users and
items.

Typically, in each CF scenario [26], there is a list of
m users U = {u1, u2, . . . , um} and a list of n items
I = {i1, i2, . . . , in} . Each user ui has associated list of
items IUi

which the user has rated. User ratings are
stored in a rating matrix V which is used for generating
recommendations. Element ru, i of V denotes the rating
given by user u to item i , while value 0 indicates that
the item is not rated yet. Objective of the CF algorithm
is to accurately predict the values of V in these cases as
shown in Fig. 3.

Depending on how the data of the rating matrix
are processed, CF algorithms can be divided in two
main categories: memory-based and model-based [28].
The memory-based algorithms are broadly deployed into
commercial systems because they are easy-to-implement
and highly effective [12]. They are using the entire or
a sample of the user-item database to generate predic-
tions. With assumption that every user is a part of some
group of users with similar interests, by identifying the
“neighbours” of a new user a prediction of her/his rat-
ings on new items can be produced. Model-based CF al-
gorithms differ from memory-based by first developing
and learning a model to find patterns of user ratings us-
ing the pure rating data. The most popular approaches
for model-based CF algorithms are performed with ma-
chine learning models such as Bayesian Belief Net models
and Clustering models [28]. In this paper we propose to
employ a memory-based CF approach in a previously un-
used context, to address challenges of wireless channel
estimation in OFDM systems, especially the sensitivity
to the number and location of the pilot subcarriers.

3.1 CF-based estimation algorithm

Memory-based CF algorithms are using an entire rat-
ing matrix to make predictions. Commonly, they use
neighbourhood-based statistical techniques to select users
that are like the target user. Prediction to a user is then
calculated from the ratings of these neighbours, taking

into account the similarity or weight wu,v which reflects
the ratings correlation between users u and v , and tak-
ing the weighted sum (a simple weighted average) of all
considered ratings for that item [29].

3.1.1 S i m i l a r i t y c o m p u t a t i o n

To accurately compute the correlation-based similarity
wu,v between two users u and v that have rated some
common items, we first must isolate the co-rated cases
(items rated by both u and v ). Then correlation-based
similarity can be measured by computing the Pearson
correlation, which is widely used in the CF research com-
munity, between users u and v [12]

wu,v =

∑
i∈I(ru,i − ru)(rv,i − rv)√∑

i∈I(ru,i − ru)2
√∑

i∈I(rv,i − rv)2
(4)

where I is the set of co-rated items, and ru and rv denote
the average rating of the co-rated items by uth and vth

user.

3.1.2 P r e d i c t i o n c o m p u t a t i o n

The goal of a CF technique is to generate the predic-
tion. Once we isolate the subset of nearest neighbours of
the target user, the next step is to investigate the tar-
get users ratings and make a weighted aggregate of their
ratings to make a prediction [12].

Prediction of the rating of user v on item i is calcu-
lated according to the following equation [30]

Pv,i = rv +

∑
u∈U (ru,i − ru)wv,u∑

u∈U |wv,u|
(5)

where U is the set of nearest neighbours of v , rv and ru
are the average ratings for user v and user u on all other
rated items, and wv,u is the weight (similarity) between
the user v and user u . If a user is more like the target
user, the estimation is going to be more accurate.
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Fig. 4. Flow chart of the newly proposed channel estimation algorithm

3.2 Evaluation metrics

Root Mean Squared Error (RMSE) is a commonly
used accuracy metric based on the absolute errors be-
tween the predictions and the actual values. It places
greater weight on the higher errors which can have the
greatest impact on the user decision. For this reason,
RMSE should better reveal model performance differ-
ences than simple mean absolute error [31]. It is calcu-
lated using the following equation [12]

RMSE =

√
1

K

∑

u,i

(pu,i − ru,i)2, (6)

where K is the total number of ratings over all users, and
pu,i and ru,i denotes prediction rating and actual rating
for user u on item i .

In this paper, we are focused on the RMSE with the

standard assumption that the errors are unbiased and

follow a normal distribution.

4 Proposed wireless channel

estimation algorithm

To address the challenges of wireless channel estima-

tion on non-pilot subcarriers in OFDM systems, espe-

cially the sensitivity to the number and location of the

pilot subcarriers, we propose the new channel estimation

algorithm as shown in Fig. 4. The basic idea is to com-

bine commonly used interpolation methods with memory-

based CF techniques.
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The input data is the matrix r with dimensions U×N ,
where U is the number of users and N the number of
subcarriers. Let ru,i denote the frequency response value

of user u at subcarrier i . For each user u in the uth

row we have frequency response values of the channel at
pilot subcarriers, while values at non-pilot subcarriers are
unknown. Let Du denote the density of known values
of uth matrix row. The output data will be a matrix
filled with estimated values of the channel at non-pilot
subcarriers. We assume that there are groups of users
with very similar channel conditions and, consequently,
similar channel frequency response values. This is the
motivation to use collaborative filtering.

The proposed algorithm is realized in the following
way. First, we sort the users in descending order based on
their density of pilot subcarriers Du (known values). De-
pending on a constant C , which is a predefined threshold
value of the pilot density for which interpolation should
be performed, the algorithm will perform either exist-
ing interpolation method or CF method for a particu-
lar user (eg 5%). The reasoning for such methodology
is that interpolation methods work better when there is
higher density of pilot subcarriers, otherwise they do not
work well. A predefined value C in the algorithm can
be changed to find the best threshold value for which the
prediction accuracy will be highest. Flow chart of channel
estimation process is shown in Fig. 4.

In the first phase of the algorithm, for every user that
satisfies Du > C , we use existing interpolation method
for estimating values of the channel at non-pilot sub-
carriers. Three existing interpolation methods will be
considered in the simulations. In the second phase, the
neighbourhood-based CF method is performed, consist-
ing of the following steps for each user u that meets the
criterion Du < C :

(1) calculation of all correlation-based similarities Wx,u

for other users x to the target user u using Pearson
correlations (4),

(2) identify subset of most similar users,

(3) for each unknown value at a non-pilot subcarrier i ,
calculate the estimation ru,i by taking the weighted
average of values rx,i of all similar users x at the same
subcarrier using equation (5).

The CF method in each step considers all the values
calculated in previous steps by interpolation method.

The algorithm’s time complexity is dominated by the
similarity calculations, which are performed in the overall
time of O(U ′UN), where U ′ is the number of “sparse”
users for which Du < C . The meaning of O(U ′UN) is
“of order of magnitude U ′ times U times N ”, which is
standard Big-O notation for the algorithm complexity.
This is because the algorithm calculates the similarity
of every such user (U ′ ) and every other user (U ), and
the complexity of calculating the Pearson correlation is
proportional to the number of subcarriers: O(N). In the
best case, the number of users with the subcarrier density
below the threshold (Du < C ) is much less than U , so

U ≈ O(1) and the complexity becomes O(UN). In the

worst case, U ′ ≈ U with the complexity of O(U2N).

5 Simulation results and discussions

In the experiments, we assumed pilot-aided comb type
channel estimation based on irregular and scarce pilot
arrangements. The main goals of simulations were:

– to compare RMSE for different selections of the algo-
rithm threshold C ,

– to compare existing interpolation methods and the
newly proposed channel estimation algorithm, and

– to investigate the effect of the matrix density with dif-
ferent predefined algorithm thresholds on the proposed
channel estimation algorithm performance.

In the simulation, we have used Rayleigh frequency-
selective fading channel, which assumes complex Gaus-
sian matrix elements with independent in-phase and
quadrature components, modelled as the sum of N Ray-
leigh flat fading sub-channels. We have used a Rayleigh
fading model with power delay profile P (t) = [1, e−1, e−2,

e−3, e−4] . The number of subcarriers per OFDM sym-
bol was 128, while the pilot patterns are non-equidistant
with irregular pilot placement distribution. An irregular
arrangement of pilot subcarriers for each user was chosen
randomly in range for example from 5% to 30% (matrix
density) without any pilot pattern structure in order to
simulate the worst case scenario regarding performance
and complexity of the system. In each experiment the al-
gorithm was tested on 100 different channel matrices and
the results were then averaged. The linear, second-order
polynomial and cubic spline interpolation were simulated
and compared with the proposed interpolation method
using MATLAB built-in functions.

The first was to generate the whole matrix r with fre-
quency response values of the channel at all subcarriers.
Then we inserted zeroes into the original matrix, forming
a new matrix with some unknown values. Unknown values
represent non-pilot subcarriers, while known values rep-
resent values of the channel at pilot subcarriers. Matrix
density can be arbitrarily chosen in order to simulate dif-
ferent implementation scenarios. If not otherwise stated,
in the experiments we generated 5 groups each having
20 users which have similar channel conditions and chan-
nel frequency response values inside the respective group.

At the end, after completion of proposed channel es-
timation algorithm RMSE metrics is used to evaluate
the accuracy of the results obtained with proposed algo-
rithm and finally to compare it with existing interpolation
methods.

5.1 Impact of threshold C on proposed channel estima-

tion algorithm

In the first simulation scenario, on generated matrix
with total average density D = 15% (The user densities
Du was chosen randomly in range from 5% to 30%.) we
simulated the proposed algorithm in combination with
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each of three different interpolation methods for different
threshold values C = [0 to 25%] by 1% step and further,
[30% to 100%] by step of 10% as shown in Fig. 5. The
legends “CF/Lin”, “CF/Spline”, and “CF/Polynomial”
denote the new channel estimation algorithm which com-
bines the commonly used interpolation methods with the
CF algorithm.

RMSE value at threshold C = 0% represents pure
linear/spline/polynomial interpolation method, while
RMSE value at threshold C = 100% represents pure
CF method. From the results can be seen that among
pure interpolation methods, best results are achieved by
the spline interpolation method. Generally, it can be also
seen that, in proposed channel estimation algorithm, com-
paring to the existing interpolation methods, better per-
formance results are achieved for threshold values C from
2% to 25% (depending on the proposed method). Gain
is calculated using the following equation:

gain =
RMSE(C = 0)−RMSE(C)

RMSE(C = 0)
× 100 . (7)

For CF/Lin interpolation method, best RMSE is
achieved for threshold C = 9%, and comparing with

RMSE for pure linear interpolation method (C = 0) the

gain is 21.3%. For CF/Spline and CF/Polynomial inter-
polation, best RMSE is achieved at thresholds C = 7%

(gain of 20.32%) and C = 11% (gain of 33.7%), respec-
tively.

5.2 Impact of pilot subcarriers density on channel esti-

mation algorithm

In the next simulation scenario, five matrices r with

different total average matrix densities in range from 6%
to 40% were created in order to investigate the behaviour

of RMSE values if density of pilot subcarriers is rising.
Figures 6, 7, and 8 show the RMSE values with respect

to the total average matrix density for each proposed
interpolation method and different threshold values C =

[0% 5% 10% 15% 20% 100%].

The results showed that performance of the proposed

interpolation methods correlates with the density of the
observed matrix. The result was expected since higher

number of pilot subcarriers (higher average matrix den-
sity) in interpolation methods eventually gives better sys-

tem performance results.
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It can also be observed that the proposed channel esti-
mation algorithm mostly perform better on lower matrix
densities, while on the higher densities their effect disap-
pears. This is in line with the fact that CF techniques are
less sensitive to the number of the pilot subcarriers.

5.3 Impact of the user similarity amount on proposed

channel estimation algorithm

In the last simulation scenario, we generated matri-
ces r with different total average matrix densities in
range from 5% to 30% and differently grouped 120 users
(4 groups with 30 users; 6 groups with 20 users; 12 groups
with 10 users; 20 groups with 6 users) with similar fre-
quency response values of the channel at pilot subcarriers.
Figure 9 shows that RMSE is dependent on the number of
similar user groups in the generated matrix: if the number
of groups is high and thus the similarity between users is
low, the proposed channel estimation algorithm is less ac-
curate. On the other hand, when there is more similarity
between users (fewer groups), the effect of CF techniques
in the proposed channel estimation algorithm is more vis-
ible as predictions are getting more accurate.

The simulations showed that the proposed channel es-
timation algorithm improve prediction accuracy metrics,
compared to usual channel estimation methods. Hence,
they are more effective in situations when there are fewer
pilot subcarriers. Also, as there were not assumed a reg-
ular pilot placement, the proposed channel estimation al-
gorithm may be distributed in OFDMA systems with an
irregular overall pilot arrangement.

6 Conclusion

High transmission rates and low BER in OFDM sys-
tems forces usage of some kind of interpolation meth-
ods for calculating the estimation of channel distortions
at non-pilot subcarriers within the symbol transmissions.
Those interpolation methods need to simultaneously fulfil
low complexity and high accuracy, as they can have dra-
matical impact on the accuracy of channel estimation.

As efficiency of the channel estimation is a challeng-
ing problem in wireless systems with time and frequency
selective variance, we proposed a new channel estimation
algorithm which combines commonly used interpolation
methods and a memory-based CF technique. The pro-
posed interpolation channel estimation algorithm is less
sensitive to the number and location of the pilot sub-
carriers. Compared to existing estimation methods, the
simulation results of the proposed algorithm show im-
provements in prediction accuracy metrics for scenarios
with low number of pilot subcarriers. However, by in-
creasing the number of pilot subcarriers, the quality of
the proposed channel estimation algorithm and, conse-
quently, the accuracy of channel estimation decreases.

In conclusion, the proposed channel estimation algo-
rithm based on collaborative filtering techniques for wire-
less channel estimation provides a practical algorithm for
pilot-aided comb type OFDM based systems.
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