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Numerical simulation study on bowtie antenna-based time
reversal mirror for super-resolution target detection

Baidenger Agyekum Twumasi
∗,∗∗

, Jia-Lin Li
∗

Bowtie antenna-based time reversal mirror (TRM), incorporating with randomly distributed and arbitrarily shaped wire

metamaterials medium, is proposed to realize super-resolution target detection. The achieved performance for standard
and scatterer bowtie antenna TRM is compared and discussed. The dual-band bowtie antennas resonate at 2.45 GHz and
5.2 GHz and a super-resolution of 0.0817 of the free-space wavelength at 2.45 GHz has been achieved. For the first time,
studies show that the TRM with microstructure perturbations (namely scatterers) can enhance the resolution in some cases.
Proposing a method of super-resolving transmission of electromagnetic waves is very important to realize multi-independent
channels in a compact space for the related applications.
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1 Introduction

Time reversal, a common method in wave transmission
in inhomogeneous media when a signal is recorded at
points of a device known as time reversal mirror (TRM),
gets time flipped and retransmitted back into themedium.
The resulting field has a focusing property. Basically, time
reversal (TR) technique is motion inversion and not time
return, which is first in, last out [1].

An innovative technique, which makes use of multipath
components in super-resolution focusing is the TR tech-
nique, which can improve the detection performance of a
radar system in the midst of clutter as well as the signal
to noise ratio in a two-way communication system. In a
TR process, the medium is illuminated with a probing
pulse. The scattered signals are received and recorded by
an array of TRM, time reversed and retransmitted into
the same medium. As the name suggest, it is like playing
a movie backwards. The time-reversed signals propagated
backwards through the time autonomous medium will go
through the same multiple scattering, reflection and re-
fractions as they went through in the forward transmis-
sion, resulting in the focus of energy at the initial source
or a scatterer in the medium [2].

The TR technique, introduced in acoustics by M. Fink
and others, has opened the door to various applications
in electrical engineering and related studies. Typically,
multipath is thought to be disadvantageous and unde-
sirable whose effects should be curtailed. That notwith-
standing, the TR takes advantage of the multipath effect
and manipulates it to constructive use, the more, the bet-
ter. Electromagnetic TR methods have attracted increas-
ing interest recently with wide applications [3–8] because

of focusing waves, both temporally and spatially, through
an inhomogeneous medium [9, 10]. The TR technique was
postulated on the reciprocity property of the wave equa-
tion and is analogous to phase conjugation in optics.
G. Lerosey et al [11, 20] proposed an approach of over-
coming the diffraction limit with a narrow band TR focus-
ing using some vertical wire array with element spacing of
λ/30 for far-field time reversal. This has stimulated lots
of interest in subwavelength imaging and target localiza-
tion applications including this contribution [21, 22].

To date, most studies about the electromagnetic TR
applications are focused on how to excite the fine struc-
ture close to the target [22–27] while for the time re-
versal mirror (TRM) in the far-field, simple or standard
probes/sensors are considered [28]. However, our studies
show that the TRM is also important to achieve good
super-resolution for target detections. In this paper, we
primarily discuss the TRM, specifically, bowtie antenna
with dual-band operation. Further, micro-structured scat-
terer bowtie antenna is discussed as the TRM to achieve
better resolution. Performance of the standard and scat-
terer bowtie antennas is comparatively studied. For the
first time, we found that the TRM with microstructure
perturbations (namely scatterers) can enhance the reso-
lution in some cases.

2 Design of standard and

scatterer based bowtie antennas

Characterized by light weight, boresight radiation per-
formance and compactness, planar subwavelength dual-
band bowtie antennas etched periodically with defected
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Fig. 1. 3-D view of the dual-band scatterer based bowtie antennas: (a) – scatterers on both patches(type I), (b) – scatterers on top patch
and top side of substrate (type II), (c) – scatterers on bottom patch and bottom side of substrate (type III), (d) – scatterers on both

patches and both sides of substrate (type IV)
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Fig. 2. Dimensions of the proposed scatterer bowtie antenna, where a unit cell of the scatterer is detailed

Table 1. Dimension parameters of dual-band scatterer based Bowtie antenna TRM

Parameter Unit (mm) Parameter Unit (mm) Parameter Unit (mm)

L1 19.0 L7 4.95 R4 0.30

L2 18.0 L8 3.69 R5 2.16

L3 1.50 L9 0.20 R6 1.45

L4 2.0 R1 18.57 R7 1.65

L5 4.74 R2 18.70 R8 0.80

L6 9.50 R3 1.03 R9 0.30

θ 130◦
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Fig. 3. Performance of the studied dual-band scatterer bowtie antenna: (a) –photographs of the proposed dual-band scatterer based
bowtie antenna (type ii), (b) – simulated and measured return losses, (c) – simulated radiation patterns at 2.45 GHz, (d) – simulated

and measured radiation patterns at 5.2 GHz
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Fig. 4. The numerical simulation setup: (a) – scatterer based bowtie antenna as the TRM, (b) – standard bowtie antenna as the TRM,
(c) – the randomly placed wire metamaterial medium
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Fig. 5. The ideal Gaussian pulses used in simulations: (a) – at 2.45
GHz, (b) – at 5.2 GHz

Table 2. Dimension parameters of vertical scatterers

Parameter Unit (mm) Parameter Unit (mm)

Cylinder 3 radius 2.5 Square 2 z = h 20

Cylinder 3 height 30 Rectangle 1 x 3

Square 2 x 5 Rectangle 1 y 4

Square 2 y 5 Rectangle 3 z = h 10

scatterers on the radiators and substrate for super-
resolution focusing with far-field time reversal incorpo-
rating with wire metamaterials medium is proposed here
as TRM. It is found that majority of the reported sub-
wavelength arrays such as [16–22, 27] were all wide-band
to ultra-wide-band antenna designs to the best of our
knowledge. In this work, a dual-band bowtie antenna [26]
referred as the basic structure is first considered. The
dual-band operation is specified as 2.45 GHz and 5.2 GHz
for potential industrial-scientific-medical (ISM) band ap-
plications. Details of the standard dual-band bowtie an-
tenna can be found in [26].

The scatterer bowtie antennas, based on the basic
structure for dual-band operations, have been designed,
fabricated and characterized, as shown in Fig. 1(a)–(d)
with details shown in Fig. 2(a)–(c). As can be seen from
Fig. 1, the split-ring microstructures were etched on var-
ious sides of the top and bottom patches and the sub-
strate, giving us four different variations of the dual band

antennas designed with very similar characteristics. All
the four scatterer based dual-band bowtie antennas were
fabricated on a substrate with a thickness of 0.8 mm, a
relative permittivity of 2.65 and a loss tangent of 0.003.
The substrate dimensions are 48.9 mm by 38.8 mm. De-
tails of the dimension parameters are listed in Tab. 1.

Photographs of one of the fabricated proposed dual-
band bowtie antenna (type II) are shown in Fig. 3(a).
The simulated and measured return losses are shown in
Fig. 3(b). From Fig. 3(b), the impedance bandwidth of
the dual band antenna referred to |S1,1| ≤ −10 dB are:
2.26 GHz to 2.51 GHz for the lower band and 4.54 GHz to
5.52 GHz for the upper band from measurements, while
2.32 GHz to 2.56 GHz for resonance at 2.45 GHz and
4.75 GHz to 5.51 GHz for resonance at 5.2 GHz from
simulations. Figures. 3(c) and 3(d) present the radiation
patterns at the two resonances, where Fig. 3(c) shows only
the simulated radiation patterns at 2.45 GHz due to the
lack of measuring horns currently. Figure 3(d) shows the
measured and simulated radiation patterns at 5.2 GHz.
The simulated and measured radiation patterns are in
reasonable agreement with a slight discrepancy, where the
slight difference in the backside radiation pattern for the
E-plane may be due to the reflections from the coaxial
cable and mounting fixtures used in the measurements.

3 Super-resolution characterization

of the dual-band standard

and scatterer bowtie antennas

Achieving any resolution better than the Rayleigh res-
olution or imaging beyond the diffraction limit is referred
to as super resolution. Now, the above developed dual-
band bowtie antennas are further served as the TRM for
super resolution applications. For performance compar-
isons, here both standard and scatterer based bowtie an-
tennas are simulated and numerically verified using CST
simulation software. The simulation scenarios are shown
in Fig. 4(a)–(c) with the wire metamaterial medium.

Figures 4(a) and (b) show the setup of the experiment.
Fig. 4(c) shows the close-up view of the layout of the
monopoles and the distribution of the near-field arbitrary
scatterers. The TRM bowtie were placed 150 mm from
the monopoles and at a height of 80 mm from the ground
plane as shown in Fig. 4(a) and (b). The distance of
150mm was the experimentally determined far-field dis-
tance of this scatterer-based dual-band bowtie antennas
and the tightly coupled monopoles in the setup shown in
Fig. 4(a). This distance can also be calculated numerically

as |γ|D2/π , where γ is the propagation constant of the

medium, or at a distance greater than 2D2/λ , where D is
the largest dimension of the antenna for far-field observa-
tion and λ is the operation wavelength. A total of 57 ar-
bitrary shaped wire metamaterials were used, numbered
as shown in Fig. 4c and its detailed dimension parameters
are listed in Tab. 2. An initial probing pulse from one of
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Fig. 6. Super-resolution performance of the SCATTERER based bowtie antenna TRM incorporating with wire metamaterials: (a) –
port 1 excitation, where two monopoles are of the same height and resonating at 2.45 GHz, (b) – port 1 excitation, where two monopoles
are of the same height and resonating at 5.2 GHz, (c) – port 1 excitation corresponding to the monopole resonating at 2.45 GHz, but
another monopole has a resonance of 5.2 GHz, (d) – port 2 excitation corresponding to the monopole resonating at 5.2 GHz, while the

other monopole has a resonance of 2.45 GHz
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Fig. 7. Typical electric fields of the scatterer based bowtie antenna TRM incorporating with wire metamaterials corresponding to
Fig. 6(a)–(d)

the two monopoles (with a separation of 10 mm) is trans-
mitted into the detection domain, and signals received by
the TRM were recorded and time reversed by a computer
with an in-house MATLAB code and re-transmitted back
into the detection domain for each test frequencies. The
same procedure was repeated with the scatterer bowtie
TRM for performance comparisons. The excitation pulse
was an amplitude modulated Gaussian pulse with a dura-
tion of 3 ns centered at 2.45 GHz and 5.2 GHz, as shown
in Fig. 5.

The final detection signal received by the respective
monopoles focused on the jth element, denoting a time
reversed transmitted signal. The signal received at the jth

monopole and electric field distributions were observed

for super resolution characterizations. In our numerical

experiments, we outlined two super resolution conditions

to be met simultaneously as follows from Tu et al [23,24]:

• After the time reversed transmission, the peak signal

amplitude of the channel response from the antenna
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Fig. 8. Super-resolution performance of the STANDARD bowtie antenna TRM incorporating with wire metamaterials: (a) – port 1
excitation, where two monopoles are of the same height and resonating at 2.45 GHz; (b) – port 1 excitation, where two monopoles are of
the same height and resonating at 5.2 GHz, (c) – port 1 excitation corresponding to the monopole resonating at 2.45 GHz, but another
monopole has a resonance of 5.2 GHz, (d) – port 2 excitation corresponding to the monopole resonating at 5.2 GHz, while the other

monopole has a resonance of 2.45 GHz

that transmitted the initial probing signal before the
TR phase should be greater by at least 50 percent of
the amplitude of the other non-transmitting antennas
and should be clearly distinguishable.

• The magnitude of the field distribution of the source
transmitting antenna before the TR phase should show
a strong electric field distribution and should be clearly
distinguishable than the others after TR phase. This
implies the energy of the signal could also be con-
sidered as a criterion for the observation of super-
resolution and for our simulation studies, we observed
these two criteria for super-resolution.

Figures 6(a)–(d) show the time signal plots of the
time reversed transmissions received from the two tightly
coupled monopoles labelled as port 1 and 2 after the
TR phase under the four frequency scenarios investigated,
where ports 1 and 2 refers to the monopole 1 and 2
respectively in all cases.

From Fig. 6, here again, monopoles 1 and 2 with their
corresponding frequencies of operation indicated on the
graphs. We can observe from Fig. 6(a), monopoles 1 and
2 are operating at the same frequencies but monopole 1
transmitted the initial probing signal before TR and af-
ter TR, it is observed that the signal amplitudes from the
two tightly coupled monopoles compared indicates that
monopole 1 has a peak signal amplitude 50 percent far

more than monopole 2 [22]. Similar trend can be observed
from Fig. 6(b)–(d) with their corresponding electric field
plots in Fig. 7(a)–(d) clearly indicating the realization
of super-resolution of the scatterer bowtie antenna at
the respective frequencies. Fig. 6(a)–(d) also show that
TR focusing offers a gain in amplitude of the time sig-
nals proportional to the reverberation time of the clutter
medium. Further, Fig. 8(a)–(d) show the super-resolution
performance of the standard dual-band bowtie antenna
TRM [26] without scatterers inclusion where it failed to
achieve super resolution at 5.2 GHz as shown in Fig. 8(b).
The random distribution of arbitrary scatterers influences
the transmitting characteristics and performance of the
selected frequencies of transmission rather than the fre-
quency band with super-resolution performance.

From Fig. 6(a)–(d), 7(a)–(d) and 8(a)–(d), we can ob-
serve that the scatterer dual-band bowtie TRM incorpo-
rating with the wire metamaterial medium has achieved
supper-resolution in all the four frequency scenarios com-
pared while the standard bowtie failed at 5.2 GHz. With
a separation of 10 mm between the two monopoles, it
is found that a super-resolution of 0.0817× the free-
space wavelength at 2.45 GHz is observed. The observed
super-resolution phenomenon is due to the resonance phe-
nomenon between the tightly coupled monopoles and the
arbitrary shaped metamaterials in the near-field of the
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target which was further enhanced by the scatterers in-
clusion on the TRM as demonstrated by the simulation
results. Moreover, it is believed that the introduced scat-
terers of the TRM could enhance the near field to be con-
verted to the far field and therefore, this increases the ra-
diation efficiency of the TRM, and finally, enhancing the
strength of the received signal for the focusing monopole
thus further improving the resolution.

4 Conclusions

A scatterer based dual-band bowtie antenna TRM
incorporating with arbitrary shaped wire metamateri-
als medium have been proposed and numerically exper-
imented and compared with a standard bowtie TRM in
a time reversal target detection scheme. The dual-band
bowtie scatterer based antenna TRM with scatterers in-
clusion at resonance frequencies of 2 .45 GHz and 5.2GHz
has out-performed the standard dual-band bowtie an-
tenna TRM at 5.2 GHz when both monopoles resonate at
5.2 GHz as compared. It is, for the first time, studied the
TRM with microstructure perturbations (namely scatter-
ers) and found the resolution can be further enhanced in
some cases. Based on the studies, we have demonstrated
the realization of super-resolution focusing of 0.0817×
the free-space wavelength at 2.45 GHz on a particular
target at dual-band frequencies in the ISM band in this
contribution.
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