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On the total internal reflection frustrated by a dielectric slab:
Goos-Hänchen shift and deformation of the beam-wave profile

Jozefa Červeňová, Rastislav Dosoudil,

Jaroslav Franek, L’ubomı́r Šumichrast
∗

The total internal reflection of a beam wave on planar dielectric boundary in presence of a nearby dielectric slab is
thoroughly investigated together with its influence on the Goos-Hänchen shift and on the beam-wave-profile deformation.
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1 Introduction

Reflection and transmission of a homogeneous plane
wave at the plane boundary of two dielectric media is
a well known phenomenon commonly treated in nearly
all standard textbooks. Investigation of the total inter-
nal reflection of inhomogeneous plane waves and spa-
tially confined beam waves is subject of permanent in-
terest since the discovery of the Goos-Hänchen shift [1].
There is a huge number of papers published over the
last seventy years concerning this topic, just a small non-
representative sample is for illustration exemplified by [2-
6].

In [7] we have investigated the effects occurring due to
the total internal reflection on a simple boundary of an
inhomogeneous plane wave with a sinusoidal profile – the
classical Goos-Hänchen shift – and subsequently we have
considered a spatially-confined periodic beam wave. The
results lead to the conclusion that the maximum shift of
the beam axis due to the total internal reflection is about
one quarter of the beam width.

In this subsequent paper the proximity effects of a di-

electric slab on the totally reflected beam wave at the

planar dielectric interface are investigated. They are pre-

sented for both polarisations, for the TE-polarised-wave

case, as well as for the TM-polarised-wave case.

2 Standard approach to the plane wave

reflection and transmission on plane boundaries

Within the framework of the standard treatment of

wave reflection and refraction on the planar boundary

as depicted in Fig. 1, the electric intensity vectors of

the incident, reflected and refracted homogeneous TE-

polarised plane wave are expressed as [7]

Ed(r) = uyEd exp(−jβ1nd · r) =
= uyEd exp(−jq1x) exp(−jkz),

x < 0,
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Fig. 1. TE and TM configuration of a plane wave reflection and refraction on the planar dielectric boundary
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Er(r) = uyEr exp(−jβ1nr · r) =
= uyEr exp(jq1x) exp(−jkz),

x < 0,

(2)

Ep(r) = uyEp exp(−jβ2np · r) =
= uyEp exp(−jq2x) exp(−jkz),

x > 0,

(3)

where the propagation directions of the incident, reflected
and transmitted plane waves are given by the unit vectors
nd , nr , np , coplanar in the plane of incidence, where β1

and β2 are the phase constants of the respective media
with permittivity ε1 and ε2 and

q1 =
√

β2
1
− k2 = β1 cos θd = β1 cos θr, (4)

q2 =
√

β2
2
− k2 = β2 cos θp, k = β1 sin θd = β2 sin θp. (5)

In order to be dealing with propagating homogeneous
plane waves the relation k < β1, β2 must hold.

From the above directly stem the following well-known
Snellius laws of reflection and refraction

θd = θr, (6)

sin θp =
√

ε1/ε2 sin θd. (7)

The magnetic intensity vectors are easily obtained from
the following formulae for homogeneous plane waves

Hd(r) = nd ×Edr/Z1, Hr(r) = nr ×Er(r)/Z1,

Hp(r) = np ×Ep(r)/Z2,

where Z1 =
√

µ/ε1 , Z2 =
√

µ/ε2 are the wave impedan-
ces of the respective media.

The condition of continuity of tangential components
of the E and H vectors on the boundary x = 0, yields
two equations for three constants Ed , Er and Ep . Any
two of them can be expressed by means of the third
one. Customary the reflection and transmission factors
ρTE and τTE are used expressing Er and Ep by Ed ,

ie Er = ρTEEd , Ep = τTEEd , where

ρTE =
Er

Ed

=
q1 − q2
q1 + q2

, τTE =
Ep

Ed

=
2q1

q1 + q2
, (8)

For the TM configuration (Fig. 1) the role of E and H

vectors is interchanged, the H vectors are tangential to
the boundary (in direction of y -axis) fulfilling equations
identical with (1) - (3), the E vectors are determined
from

Ed(r) = −nd × Z1Hd(r),

Er(r) = −nr × Z1Hr(r),

Ep(r) = −np × Z2Hp(r),

and the continuity conditions of the tangential compo-
nents on the boundary x = 0 lead to the formulae

ρTM =
Hr

Hd

=
ε2q1 − ε1q2
ε2q1 + ε1q2

,

τTM =
Hp

Hd

=
2ε2q1

ε2q1 + ε1q2
.

(9)
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Fig. 2. Dielectric boundary frustrated by a presence of a dielectric

slab (TE configuration)

Let us now consider the wave in TE configuration
incident on the boundary of the structure in Fig. 2, where
a dielectric slab of the thickness d2 is placed in distance
d1 from the boundary. The seven electric-field-vectors in
the respective domains of Fig. 2, x < 0, 0 < x < d1 ,
d1 < x < d1+d2 and x > d1+d2 , are defined as functions
of (x, z )

E1d,1r = uyE1d,1r exp(∓pjq1x) exp−jkz, (10)

E2d,2r = uyE2d,2r exp(∓jq2[x− d1]) exp(−jkz), (11)

E3d,3r = uyE3d,3r exp(∓jq3[x− d1 − d2]) exp(−jkz),
(12)

E4 = uyE4 exp(−jq4[x− d1 − d2]) exp(−jkz), (13)

with

k = β1 sin θ1 = β2 sin θ2 = β3 sin θ3 = β4 sin θ4,

q1 = β1 cos θ1, q2 = β2 cos θ2 . . . etc.

From the six continuity conditions for tangential com-
ponents of the E and H vectors on the boundaries
x = 0, x = d1 and x = d1 + d2 , for the seven un-
knowns E1d ,E1r ,E2d, ..., E4 , one can express arbitrary
six E -components by the seventh one, eg expressing six
components E1d, E1r, E2d, ..., by E4 , yields for the first
few terms

E3r = E4

q3 − q4
2q3

, E3d = E4

q3 + q4
2q3

,

E2r =
E4

22q2q3
{[(q2 − q3) (q3 + q4)] exp (jq3d2) +

+ [(q2 + q3) (q3 − q4)] exp (−jq3d2)} ,

E2d =
E4

22q2q3

{

[(q2 + q3)(q3 + q4)] exp
(

jq3d2
)

+

+
[(

q2 − q3
)(

q3 − q4
)]

exp
(

−jq3d2
)}

,

etc, with quickly growing number of terms in each step.
For TM configuration one has to proceed analogously.
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3 Total internal reflection

Consider for the single boundary the case ε1 > ε2 and

β1 > k > β2 . While it still holds that β1 =
√

k2 + q2
1
, to

have β2 =
√

k2 + q2
2
one has to take imaginary value of

q2 = −jκ resulting in β2 =
√
k2 − κ

2 .

If the incident wave impinges upon the boundary with

the angle of incidence θd , θd = arcsin
√

ε2/ε1 , then (7)
yields sin θp = 1, ie refracted wave propagates in direc-
tion parallel with the boundary. This is the definition of
the critical angle θc , ie

θc = arcsin
√

ε2/ε1. (14)

If the wave impinges upon the boundary with the in-
cidence angle larger than critical, θd > θc , then

sin θp = sin θd/ sin θc > 1 (15)

holds. This can be mathematically resolved by introduc-
ing the complex angle

θp = π/2 + jς.

Then

sin θp = sin (π/2 + jς) = cosh ς = sin θd/ sin θc > 1,

and cos θp becomes purely imaginary

cos θp = cos
(

π/2 + jς) = −j sinh ς.

It also means that

k = β2 cosh ς = β1 sin θd,

q2 = −jβ2 sinh ς = −jκ,
(16)

and

κ =
√

k2 − β2
2
= β1

√

sin2 θd − sin2 θc. (17)

ie the same result as above.

For the reflection and transmission factors in the TE-
case one obtains instead of (8)

ρTE =
Er

Ed

=
q + jκ

q − jκ
= exp

(

j2ΨTE
)

, (18)

τTE = Ep/Ed = 1 + ρTE = 2 cos
(

ΨTE
)

exp
(

jΨTE
)

,

(19)
where for the sake of brevity, the index 1 in q1 (4) has

been omitted in (18). For the phase angle ΨTE simple
relations hold reading

tanΨTE = κ/q, cosΨTE = cos θd/ cos θc. (20)

Thus the complex reflection coefficient has the magnitude
∣

∣ρTE
∣

∣ = 1, and the phase 2ΨTE , ie in the course of the
total reflection the wave amplitude is not changed and
the phase acquires the shift equal to 2ΨTE .

The overall E -field in domain x < 0, in the medium
with ε1 , E1 = Ed + Er = uyE1 is a non-homogeneous
plane wave with a cosinusoidal amplitude profile propa-
gating in the direction of z -axis, ie

E1 = 2Ed cos
(

qx+ΨTE
)

exp{−j
(

kz −ΨTE
)

}, (21)

while the E -field E2 = Ep = uyE2 in second domain
x > 0, in the medium with ε2 , becomes the so-called
”evanescent wave”, see Fig. 3, with exponentially atten-
uated profile in x-direction

E2 = 2Ed cosΨ
TE exp

(

−κx
)

exp
{

−j
(

kz −ΨTE
)}

,

(22)

both acquiring the phase shift ΨTE in direction of prop-
agation (Fig. 3).
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Fig. 3. Schematics of the total reflection and overall wave profile for
θc = 10◦ , and for θd = 15◦ (red), θd = 30◦ (black), θd = 75◦ (blue)

In the TM-case the reflection and transmission factors
ρTM and τTM are defined for H vectors, Hr = ρTMHd ,
Hp = τTMHd , resulting in

ρTM =
qε2 + jκε1
qε2 − jκε1

=
q sin2 θc + jκ

q sin2 θc − jκ
=

= exp
(

j2ΨTM
)

,

(23)

with

tanΨTM = κ/q sin2 θc = tanΨTE/ sin2 θc (24)

and with the same expression for τTM as (19), τTM =

1 + ρTM = 2 cos
(

ΨTM
)

exp
(

jΨTM
)

.

In both, the TE as well as in the TM configuration,
for the wave incident upon the critical angle θd = θc ,
the reflection coefficients are equal to one, ρ = 1 and
Ψ = 0. For the limiting case of θd = π/2 (so called
”grazing incidence”), ρ = −1 and Ψ = π/2. For the TM

configuration is the phase angle ΨTM always larger than
the phase angle ΨTE for the TE configuration, as it is
clearly seen in Fig. 4.
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Fig. 4. Dependence of phase shift Ψ on the angle-of incidence θd (in
degrees, full line for TE the, dashed line for TM configuration)

4 Total internal reflection

frustrated by a dielectric slab

Let us consider the structure as in Fig. 2. with ε3 = ε1
in domain 3, d1 < x < d1 + d2 , and ε4 = ε2 in domain
4, x > d1 + d2 , provided ε1 > ε2 , and the wave incident
on the boundary 1− 2, x = 0, with angle θ1 = θd larger

than the critical angle θc =
√

ε2/ε1 .

The electric-field-vectors as functions of (x, z) in re-
spective domains are defined as

E1d,1r = uyE1d,r exp
(

∓jqx
)

exp(−jkz), (25)

E2d,2r = uyE2d,r exp{∓κ(x− d1)} exp
(

−jkz
)

, (26)

E3d,3r = uyE3d,r exp{∓jq
(

x− d1 − d2
)

} exp
(

−jkz
)

,

(27)

E4 = uyE4 exp{−κ

(

x− d1 − d2
)

} exp
(

−jkz
)

, (28)

ie as the homogeneous plane waves in domains 1 and 3
and the evanescent waves in domains 2 and 4, where q
and κ are given by (4) and (17).

For the seven unknowns E1d ,E1r ,Ed2 , . . . , E4 , one
can express arbitrary six E -components by the seventh
one. Expressing six components E1d ,E1r ,Ed2 , . . . , E3r

by E4 from the six continuity conditions for tangential
components of the E and H vectors on the boundaries
x = 0, x = d1 and x = d1 + d2 yields

E3r = E4

exp
(

jΨ
)

2 cos
(

Ψ
) , E3d = E4

exp
(

−jΨ
)

2 cos
(

Ψ
) , (29)

E2d = E4

sin
(

2Ψ− qd2
)

sin
(

2Ψ
) , E2r = E4

sin
(

qd2
)

sin
(

2Ψ
) , (30)

E1d = E4

A exp(−jΨ) +B exp(jΨ)

2 cos(Ψ) sin(2Ψ
) , (31)

E1r = E4

A exp(jΨ) +B exp(−jΨ)

2 cos(Ψ) sin(2Ψ)
, (32)

where Ψ = ΨTE as in (20), and

A = sin(2Ψ− qd2) exp(κd1),

B = sin(qd2) exp(−κd1).
(33)

For the TM configuration the formulae (29) through
(33) remain the same for H1d ,H1r ,Hd2 , . . . , H3r ex-

pressed by H4 , and for Ψ = ΨTM as in (24).

Defining reflection factors on the respective boundaries
yields

ρ34 = exp
(

j2Ψ
)

, ρ23 =
sin

(

qd2
)

sin
(

2Ψ− qd2
) , (34)

ρ12 =
A exp

(

jΨ
)

+B exp
(

−jΨ
)

A exp
(

−jΨ
)

+B exp
(

jΨ
) = exp

(

j2Θ
)

, (35)

tanΘ =
A−B

A+B
tanΨ, (36)

for both TE and TM configuration respectively.
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Fig. 5. Dependence of the phase shift ΘTE on the angle-of inci-
dence θd for β1d2 = 100◦ , d1 = 0, (red), d1/d2 = 0.5, (blue),
d1/d2 = 2, (black), and the same critical angles θc as in Fig. 4

On the boundary 3 − 4, x = d1 + d2 , the reflection
factor ρ34 in (34) is in fact the same as on the single
boundary (18). On the boundary 1 − 2, x = 0, the
magnitude of the reflection factor ρ12 equals to one and
the phase angle Θ given by (36) is depicted in Figs. 5
and 6. This dependance is, similarly as in the case of the
single boundary, always monotonically increasing. Note
the substantial differences in curve shapes between the
TE and TM case.

The maximum value of Θ = π/2 is reached for the
grazing incidence θd = π/2 and the minimum value is
reached for the wave incidence upon the critical angle
θd = θc , ie as the limiting case of (35) for Ψ → 0 yielding

ρTE

12

∣

∣

Ψ=0
=

exp
(

−jqd2
)

−qd1 sin
(

qd2
)

exp
(

jqd2
)

−qd1 sin
(

qd2
) , (37)
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Fig. 6. Dependence of the phase shift ΘTM on the angle-of in-
cidence θd for β1d2 = 100◦ , d1 = 0,(red), d1/d2 = 0.5 (blue),
d1/d2 = 2 (black), and the same critical angles θc as in Fig. 4

ρTM

12

∣

∣

Ψ=0
=

exp
(

−jqd2
)

−qd1 sin
2 θc sin

(

qd2
)

exp
(

jqd2
)

−qd1 sin
2 θc sin

(

qd2
) . (38)

For d1 = 0, ie for the zero gap between the bulk do-
main of ε1 and the dielectric slab of the same permittiv-
ity, one obtains from (35)

ρ12 = exp{j2
(

Ψ− qd2
)

}. (39)

This is a self-evident result since this case represents
just the simple boundary case, comparing the incident
and the reflected wave in depth of the ε1 domain, in
distance d2 from the boundary. The result must be the
phase shift of 2Ψ due to total reflection, together with
the phase shift −2qd2 , ie twice the wave phase shift in
x-direction along length d2 - to the boundary and back.

For d1 → ∞ (36) yields Θ = Ψ, ie an infinitely distant
dielectric slab of course has no influence on the reflected
wave.

For sin(2Ψ−qd2) = 0, ie qd2 = 2Ψ+nπ , one gets, see
(33), A = 0, and (36) yields value of Θ independent from
d1 , equal to Θ = −Ψ. These are just the intersection
points of red, blue and black curves in Fig. 5 and 6 for
particular values of θc equal to 10, 30, 50 and 70 degrees
respectively. Observe that for this condition E2d in (30)
(and analogously H2d for TM configuration) equals to
zero, ie the exponentially decreasing term E2d(x, z) =
. . . exp(κ[x − d1]) . . . in the domain x ∈ (0, d1) does not
exist, only the exponentially increasing term E2r(x, z) =
. . . exp(κ[x − d1]) . . . plays a role.

The condition qd2 = 2Ψ + nπ can be recast into the

form of two equations q tan(qd2/2) = κ and
√

q2 + κ
2 =

√

β2
1
− β2

2
, for two variables q and κ . This two equa-

tions represent exactly the condition for the existence of
a waveguide mode in dielectric slab waveguide of thick-
ness d2 with permittivity ε1 , surrounded by the infinite
medium of permittivity ε2 .

If sin(2Ψ − qd2) exp(κd1) = sin(qd2) exp(−κd1), ie if
A = B accordingly (33), then (36) yields Θ = 0, ρ12 = 1.

These are the intersection points of the curves in Fig. 5
and 6 with the horizontal axis.

5 Goos-Hänchen shift of a non-homogeneous

plane wave with the cos-like amplitude pattern

Let us now consider an interference of two incident
homogeneous TE-polarised plane waves propagating in
directions given by ndA and ndB as in Fig. 7

Ed(r) = uyE0 exp
(

−jβ1ndA · r
)

+uyE0 exp
(

−jβ1ndB · r
)

,
(40)

ndA = cos θAux + sin θAuz ,ndB = cos θBux + sin θBuz

assuming θA > θB .

Introducing two perpendicular non-unit vectors nd0

and nAB (Fig. 7) by

nd0 =
(

ndA + ndB

)

/2 =

= cos θAB

(

cos θd0ux + sin θd0uz

)

,

nAB =
(

ndA − ndB

)

/2 =

= sin θAB

(

− sin θd0ux + cos θd0uz

)

,

θd0 = (θA + θB)/2, θAB = (θA − θB)/2,

one may rewrite (40) as

Ed(r) = uy2E0 cos
(

β1nAB · r
)

exp
(

−jβ1nd0 · r
)

, (41)

ie as an inhomogeneous plane having in the transversal
direction nAB , perpendicular to the propagation direc-
tion nd0 , a non-constant, cosinusoidal amplitude pattern
of the wavefront

2E0 cos(β1nAB · r) =
=2E0 cos{β1 sin θAB

(

−x sin θd0 + z cos θd0
)

} =

=2E0 cos {qABξ} , (42)

with the spatial frequency qAB = β1 sin θAB and trans-
versal variable ξ . This non-homogeneous plane wave
propagates in direction nd0 with the propagation factor
exp

(

−jβ1nd0 · r
)

equal to

exp
{

−jβ1 cos θAB

(

x cos θd0 + z sin θd0
)}

= exp {−jkABζ} , (43)

thus propagating with the wavenumber kAB = β1 cos θAB

along the longitudinal variable ζ .

If both directions ndA and ndB fulfil the condition of
the total reflection θA, θB > θc , then for the resulting
reflected wave one obtains

Er(r) = uyE0

{

exp
(

2jΨA

)

exp
(

−jβ1nrA · r
)

+

+exp
(

2jΨB

)

exp
(

−jβ1nrB · r
)} (44)
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Fig. 7. Definition of the vectors ndA , ndB , nd0 , nrA , nrB , nr0 ,
nAB and nBA , and of the pertaining angles θA , θB , θd0 , together
with the schematic picture of the Goos-Hänchen shift s for the

plane wave with the cosinusoidal amplitude pattern
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YAB
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Fig. 8. Single-boundary GH-shift-phase ΨTE

AB
in TE configuration,

θc = 10◦ , θAB ∈ {5◦, 35◦} in steps of 5◦ , as a function of the
beam-axis angle of incidence θd0

where the reflection factors exp
(

j2ΨA

)

and exp
(

j2ΨB

)

pertain to the angles of incidence θA and θB respectively,
and

nrA = − cos θAux + sin θAuz ,

nrB = − cos θBux + sin θBuz .

Denoting similarly as above

nr0 =
(

nrA + nrB

)

/2 =

= cos θAB

(

− cos θd0ux + sin θd0uz

)

,

nBA =
(

nrA − nrB

)

/2 =

= sin θAB

(

sin θd0ux + cos θd0uz

)

,

formula (44) can be rewritten into the form

Er(r) = uy2E0 cos
(

β1nBA · r −ΨAB

)

×
× exp {−j(β1nr0 · r −Ψ0)} ,

(45)

where Ψ0 = ΨA +ΨB and ΨAB = ΨA −ΨB .

The cosinusoidal amplitude pattern of the reflected
wave along the transversal variable χ is now given by

2E0 cos (β1nBA · r −ΨAB) =

= 2E0 cos {β1 sin θAB (sin θd0x+ cos θd0z)−ΨAB} =

= 2E0 cos {qABχ−ΨAB} , (46)

with the same spatial frequency qAB as the amplitude
pattern of the incident wave but shifted in the direction
of nBA by

s = ΨAB/β1 sin θAB. (47)

This effect is called the Goos-Hänchen (GH) shift. The
propagation factor exp {−j (β1nr0 · r −Ψ0)} of the re-
flected wave, propagating in direction of the vector nr0 ,
ie along the longitudinal variable η ,

exp
{

−j
[

β1 cos θAB

(

− cos θd0x+ sin θd0z
)

−Ψ0

]}

=

= exp
{

−j
(

kABη −Ψ0

)}

, (48)

has, due to the total reflection acquired the phase shift
Ψ0 .

Exactly the same development is valid for the case
of total internal reflection frustrated by a dielectric slab,
just the phase angles Ψ have to be substituted by phase
angles Θ.

15 25 35 45 55 65 75 85

YAB
TM

qd 0

q AB = 5
o q AB = 35

o

90

60

30

Fig. 9. The same as in Fig.8, but for the TM configuration
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Fig. 10. Single-boundary GH-shift-phase ΨTE

AB
in TE configura-

tion, θc = 50◦ , θAB = {2◦, 14◦} in steps of 2◦ , as a function of
the beam-axis angle of incidence θd0
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Fig. 11. The same as in fig.10, but for the TM configuration
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Fig. 12. Single-boundary GH-shift-phase ΘTE

AB
in TE configura-

tion, θc = 10◦ ,s1 = 0, β1d2 = 100◦ θAB = {5◦, 35◦} in steps of
5◦ , as a function of the beam-axis angle of incidence θd0

The depedence of the GH-shift-phase-angles ΨAB (or
ΘAB ) on the angle of incidence θd0 are depicted in Figs.
8 through 17 for different critical angles θc and different
angles θAB , ie for the different spatial frequencies qAB =
β1 sin θAB of the cosinusoidal amplitude pattern of non-
homogeneous plane wave.

As it is easily seen from Fig. 8 for TE configuration
and θc = 10◦ , doubling the angle θAB approximately
doubles the value of ΨTE

AB too. Apart from the low and

high end of θd0 dependance, the values of ΨTE

AB are pretty
constant. This is not the case for the TM configuration
having completely different character of this dependance
as seen from Fig. 9.

In fact the curves of ΨAB (or ΘAB ) in Fig. 8 - Fig. 17
follow directly from the respective curves in Fig. 4 -Fig. 6
as a difference of values Ψ (or Θ) for two values of θ ,
namely θA = θd0 + θAB and θB = θd0 − θAB .

As seen from Fig. 10 and 11 for the critical angle
θc = 50◦ the respective curves for TE and for TM config-
uration are quite similar to each other as it can be con-
cluded also from Fig. 5 and 6, since the respective curves
there, are mutually much closer for θc = 50◦ , than for
θc = 10◦ .

As already mentioned, for d1 = 0 one deals with the
single boundary, where the GH shift is investigated within
the bulk domain in a plane shifted a distance d2 from the
boundary. For this case one obtains from (39) the relation

ΘAB = ΨAB + 2β1d2 sin θd0 sin θAB (49)

bounding together the curves in Fig. 8 with the curves in
Fig. 12 as well as curves in Fig. 9 with curves in Fig. 13.

The increased range of ΘAB angles is clearly manifested.

If there is a growing gap of width d1 between the bulk
material and the dielectric slab, then the range of angles
ΘAB grows further and the shape of curves, particularly
for TE configuration, changes significantly. However one
has to keep in mind that, though the angles ΘAB larger
than 180◦ indicate the GH shift larger than a half-period
to the right on the χ axis, they can be equally well
interpreted also as a GH shift to the left smaller than
a half-period corresponding to the angle π −ΘAB .

If the gap d1 is further increased the influence of
the dielectric slab decreases and the curves in Figs. 14
through 17 gradually converge to the curves in Figs. 8
and 9 - compare eg Fig. 17 with Fig. 9.
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Fig. 13. The same as in fig.12, but for the TM configuration
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Fig. 14. Dielectric-slab-frustrated GH-shift-phase ΘTE

AB , in TE

configuration, θc = 10◦ , d1/d2 = 0.5, β1d2 = 100◦ , θAB ∈
{5◦, 35◦} in steps of 5◦ , as a function of the beam-axis angle of

incidence θd0 .
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Fig. 15. The same as in fig.14, but for the TM configuration
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Fig. 17. The same as in fig.16, but for the TM configuration
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Fig. 16. Dielectric-slab-frustrated GH-shift-phase ΘTE

AB , in TE

configuration, θc = 10◦ , d1/d2 = 2, β1d2 = 100◦ , θAB ∈ {5◦, 35◦}
in steps of 5◦ , as a function of the beam-axis angle of incidence θd0 .

6 Total reflection of the beam wave-beam

shift and beam profile deformation

In this section we follow the development thoroughly
explained in [7]. Generally, the spatially confined beam
wave can be expressed as [7]

Ed(r) = Ed

(

ξ, ζ
)

= uyEy

(

ξ, ζ
)

= uyE0ϕd

(

ξ, ζ
)

, (50)

ie as the beam wave propagating along the longitudinal
ζ -axis under the angle-of-incidence θd0 to the x-axis (see
(41) through (43) and Fig. 19). The amplitude profile
ϕd(ξ, ζ) of the beam wave is a finite sum of discrete
spatial frequency components of type

ϕdn(ξ, ζ) = cos {qnξ} exp {−jknζ} , n = 0, 1, . . . , N,
(51)

with the transversal ξ -axis perpendicular to ζ -axis, and
qn = β1 sin θn ,kn = β1 cos θn .

The reflected beam wave propagating along the longi-
tudinal η is given analogously as

Er(r) = Er(χ, η) = uyEy(χ, η) = uyE0ϕr(χ, η) (52)

where ϕr(χ, ζ) is a finite sum of discrete spatial frequency
components of the type

ϕrn(χ, ζ) = cos {qnχ−Ψn} exp {−j(knζ −Ψ0n)} (53)

where Ψn = ΨAn − ΨBn , Ψ0n = ΨAn + ΨBn and ΨAn ,
ΨBn are the total-reflection-phase-shifts accordingly (20)
(for TE configuration, or (24) for TM configuration, or
ΘAn , ΘBn accordingly (36) in case of frustrating di-
electric slab presence respectively) for the angles of in-
cidence θAn = θd0 + θn and θBn = θd0 − θn , with

θn = arcsin
(

qn/β1} .
In our case we have taken as the initial profile in the

plane ζ = 0, ie in the incident-beam waist plane, the
periodic function ϕd(ξ, 0), with the period ξmax , on the
interval (−ξmax/2, ξmax/2), in the form

ϕd(ξ, 0) =
1

2N + 1
+

N
∑

n=1

2

2N + 1
cos(n∆qξ) (54)

leading to the electric field of the propagating beam in
the form

Ed(ξ, ζ) = uyE0

{

1

2N + 1
exp

(

−jβ1ζ
)

+

+

N
∑

n=1

2

2N + 1
cos

(

n∆qξ
)

exp
(

−jknζ
)

} (55)

where qn = n∆q , ∆q = 2πξmax , kn =
√

β2
1
− n2∆2

q .

In fact the sum in (54) is the ”periodic discrete nu-
merical δ -function”

ϕd(ξ, 0) = sin
{(

N + 1

2

)

∆qξ
} /

(2N + 1) sin
(

1

2
∆qξ

)

(56)

with unit value in the center point ξ = 0 and with zero
values in the other 2N ”sampling points” ξk = k∆ξ ,
k = ±1,±2, . . . ,±N , where ∆ξ = ξmax /(2N + 1) as
depicted in Fig. 18 for N = 7.
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Fig. 18. The incident beam-wave-amplitude-pattern in the beam
waist-plane ϕd(ξ, 0) for N = 7
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Fig. 19. Schematics of the beam total reflection with the GH-shift

Table 1. Angles (in degrees) Ψ0n , or Θ0n for TE configuration:
A - reflected beam single boundary, B - shifted single boundary
β1d2 = 100◦ , d1 = 0, C - frustrating slab β1d2 = 100◦ , d1/d2 =

0.35, D - detto d1/d2 = 0.65, E/ detto d1/d2 = 1.

n A B C D E

0 98.51 -30.05 28.25 64.61 84.91

1 98.49 -29.55 21.81 54.87 78.49

2 98.42 -28.04 5.41 15.50 19.93

3 98.28 -25.50 -11.93 -27.38 -51.00

4 98.05 -21.89 -23.68 -43.56 -61.12

5 97.64 -17.16 -30.08 -49.09 -63.26

6 96.78 -11.42 -33.05 -50.61 -62.93

7 93.52 -6.32 -34.85 -50.67 -61.48

The reflected wave is expressed analogously as

E(χ, η) = uyE0(χ, η) =

= uyE0

{

1

2N + 1
exp {−j(β1η −Ψ00)}+

+
N
∑

n=1

2

2N + 1
cos

(

n∆qχ−Ψn

)

exp {−j (knη −Ψ0n)}
}

,

(57)

with the amplitude distribution in the reflected-beam
waist plane

ϕr(χ, 0) =
1

2N + 1
exp

(

jΨ00

)

+

+

N
∑

n=1

2

2N + 1
cos

(

n∆qχ−Ψn

)

exp (jΨ0n) .

(58)

or with Θ00,Θ01, . . . ,Θ0N and Θ1,Θ2, . . . ,ΘN in case
of frustrated reflection. The values of angles are shown
in Tab. 1 and Tab. 2 for θc = 10 ◦ , θd0 = 50 ◦ and
∆q/β1 = 0.09.

Table 2. Angles Ψn , or Θn for the same parameters as in the
Tab. 1

n A B C D E

1 10.61 24.39 40.25 34.59 23.44

2 21.32 48.89 82.16 91.93 95.61

3 32.24 73.61 120.28 149.93 178.95

4 43.54 98.70 150.24 179.99 201.11

5 55.43 124.37 173.62 198.98 215.38

6 68.36 151.09 193.26 214.14 227.60

7 84.55 181.07 212.30 228.54 239.50

The intensities of respective waves are shown in Fig. 20
and 21. The intensity of single-boundary reflected-wave in
Fig. 20 is due to GH-shift shifted with respect to the inci-
dent wave approximately one-quarter of the beam width,
(if the beam width is defined as the distance between the
first two central zero points), corresponding to the an-
gle Ψ7 = 84.55◦ in column A, row n = 7, of Tab. 2.
One-quarter exactly would correspond to Ψ7 = 90◦ . The
shifted-boundary reflected-wave is shifted approximately
one-half of the beam width corresponding to the angle
Θ7 = 181.07◦ for β1d2 = 100◦ (column B in Tab. 2).

The intensity patterns of the dielectric-slab-frustrated
reflected waves in Fig. 21 clearly show that the originally
single beam splits into a doublet corresponding to two
total reflections, first on the boundary 1 − 2 in Fig. 2
and the second on the boundary 3 − 4. Notice that the
magnitude of the reflection coefficient is, on the both
boundaries, equal to one.

One part of the incident beam power is by a tunneling
mechanism transferred by evanescent waves through the
gap domain 2 to the dielectric slab and after being totally
reflected on the boundary 3 − 4 again by the tunneling
mechanism returned into the domain 1. Therefore obvi-
ously, the left peak corresponds to the reflection on the
boundary 1− 2 and the right one to the boundary 3− 4.
For d1/d2 = 0.35 (curve c) the reflection on the bound-
ary 3 − 4 dominates, the right peak is shifted farther to
the right when compared with the case c in Fig. 20 since
the slab is shifted more to the right too.

When the gap is increased (curve b , d1/d2 = 0.6)
the two reflection peaks are nearly equal and finally for
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Fig. 20. Central portion(zoomed 2:1)of beam-intensity patterns at
the beam waist of the (a) – incident wave, (b) – single-boundary
reflected-wave, (c) – shifted-boundary reflected-wave d1 = 0,
β1d2 = 100◦ , all in the TE configuration, for ∆q/β1 = 0.09,N = 7
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Fig. 21. Central portion(zoomed 2:1)of beam intensity patterns at
the beam waist of the dielectric-slab-frustrated reflected-wave (a) –
d1/d2 = 1, (b) – d1/d2 = 0.65, (c) – d1/d2 = 0.35, all in the TE

configuration for β1d2 = 100◦ , ∆q/β1 = 0.09, N = 7

curve a , d1/d2 = 1, the reflection on the boundary 3-4
decreases, the power of reflected wave on the boundary
1-2 grows and gradually approaches the position of the
peak b in Fig. 20.

If the origin of the coordinate system of the incident
beam (ξ, ζ) is placed in the point (x0, z0), then the origin
of the reflected beam coordinates (χ, η) is in the point
(−x0, z0 ), see Fig. 19. The planes ζ = 0 and η = 0 are
called ”beam waists” and the amplitude distributions in
the beam-waist’s planes ϕd(ξ, 0) (54) and ϕr(χ, 0) in (58)
determine fully the next course of propagating wave.

7 Conclusions

We have analysed and numerically modeled proximity
effects when a dielectric slab is placed in the vicinity of a
dielectric boundary, where total internal reflection occurs.
It has been shown that the reflected beam-wave splits into
a doublet due to two total reflections - on the original
boundary and on the remote boundary of the slab. This
leads in case of beam propagation to effectively wider
beam and larger Goos-Hänchen shift.
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