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A note on magnetic vector potential

Raghavendra G. Kulkarni
∗

This paper presents a non-traditional way of determining an unknown constant encountered in the expression for magnetic
vector potential due to an elemental dipole antenna.
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1 Introduction

We briefly review the derivation of the expression for
magnetic vector potential due to a Hertzian dipole an-
tenna, with an emphasis on the evaluation of a constant
encountered in the expression. Then we describe a new
method of evaluation of this constant, which is normally
not dealt in the textbooks.

The concepts of time varying magnetic vector poten-
tial, A , and the electric scalar potential, V , are invari-
ably introduced in the very first few lectures while teach-
ing a basic course on antennas [1, 2, 3, 4, 5, 6]. The
time varying magnetic flux density, B , is determined
from the curl operation on magnetic vector potential,
ie, B = ∇ × A . The time varying electric field inten-

sity, E , is obtained from the relation, E = −∇V − Ȧ .
Elimination of electric and magnetic field terms from the
Maxwell equations using the above mentioned relations
between the potentials and the fields results in two cou-
pled partial differential equations in A and V , which
are difficult to solve. The introduction of Lorentz gauge
condition in the coupled equations leads to the two un-
coupled in-homogeneous Helmholtz wave equations in A

and V . For sinusoidal time variations, these Helmholtz
equations become,

(∇2 + ω2µε)A = −µJ,

(∇2 + ω2µε)V = −ρ/ε,
(1)

where J is the current density; ω , µ, ε and ρ have the
usual meaning as described in [1]. Many textbooks in-
troduce z -directed infinitesimal current element (Idl)
placed at origin as an elemental antenna, or, Hertzian
dipole antenna, and proceed to determine the potential,
A , due to this source. As a result, the in-homogeneous
Helmholtz wave equation (in potential A) reduces to a
scalar equation as shown below,

(∇2 + k2)Az = −µJz (2)

where Az is the scalar part of z -directed magnetic vector
potential, k2 = ω2µε and Jz is the scalar part of z -
directed current density. At any point P in the source-free
field region, see Fig. 1, equation (2) reduces to,

(∇2 + k2)Az = 0 (3)

which is homogeneous Helmholtz equation. Expressing
∇2Az in spherical coordinate system, and noting that
there is no variation of Az in θ and φ directions, the
solution of (3) is obtained as,

Az =
C

r
e−jkr (4)

where r is the radial distance of P from the origin; and C
is an unknown constant. The textbooks deal with either
of the following two methods for evaluation of C.

The first method makes use of the similarity that exists
between the inhomogeneous Helmholtz wave equation (2)
when k → 0 and the Poisson’s equation,

∇2V = −ρ/ε

for the electrostatic potential, V . Notice that k → 0
corresponds to ω → 0, which is electrostatic case [3, 4,
5, 6]. A comparison with the solution of the Poisson’s
equation, for the case of a point charge placed at origin,
leads to evaluation of C as

C =
µIdl

4π
(5)

The second method employs divergence theorem for
the evaluation of C as described below [1, 2].

Consider an infinitesimal spherical volume centered at
the origin having radius r0 , enclosing the current element
Idl . Now, consider (2), which includes the source term.
Taking the volume integral of (2) within the in
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nitesimal sphere results into,

∫

v

∇2Azdv +

∫

v

k2Azdv = −

∫

v

µJzdv (6)

As the infinitesimal spherical volume starts shrinking
(and in the limit becomes zero), the radius r0 ; also tends
to zero. So, applying this limit, in (6), the right-hand-side

is determined as −µIdl ; and since dv = r2sinθdθdφdr
the second term vanishes. Thus we have,

lim
r0→0

∫

v

∇2Azdv = −µIdl
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Fig. 1.

Rewriting ∇2Az as ∇·∇Az , and applying divergence
theorem to convert the volume integral the above expres-
sion to a closed surface integral leads to,

∫

v

∇ · ∇Azdv =

∮

s

∇Az · ds

and further it becomes,

lim
r0→0

∮

s

∇Az · ds = −µIdl (7)

where ds = arr
2

0
sin θdθdφ ; and because of spherical sym-

metry ∇Az reduces to: ∇Az = ar∂Az/∂r : Therefore

∇Az · ds = r2
0
sin θ (∂Az/∂r) dθdφ

and since the integration is over the closed spherical sur-
face of radius r = r0 ,

∂Az

∂r
|r=r0 = −

C

r2
0

(1 + jkr0)e
−jkr0

and so (7) can be written as,

lim
r0→0

∮

s

C sin θ(1 + jkr0)e
−jkr0dθdφ = µIdl (8)

After the integration and the application of the limit, (8)
becomes, 4πC = µI dl ; yielding again (5).

A third method to evaluate C is presented in the next
section, which is normally not dealt in the textbooks.

2 New method

A new method to determine C, which does not make
use of the divergence theorem for the volume integral in
(6) is described below.

Since the potential, Az , has no variation in θ and φ
directions, ∇2Az is expressed as [1]:

∇2Az =
1

r2
∂

∂r

(

r2
∂Az

∂r

)

.

Use of the above expression in (6) and applying the
limit leads to

lim
r0→0

∫

v

∂

∂r

(

r2
∂Az

∂r

)

sin θdθdφdr = −µIdl (9)

Since (∂Az/∂r) = −C(1+jkr) exp (−jkr)/r2 ; using it in
(9), and after the double integration with θ ∈ (0, π) and
φ ∈ (0, 2π), one obtains,

limr0→04πC

∫

∂

∂r
(1 + jkr) e−jkr0dr = µIdl (10)

Note that integration of a differentiation of a function is
the function itself, and since r ≤ r0 , as r0 → 0 we have
r → 0, so

lim
r→0

4πC (1 + jkr) e−jkr = µIdl (11)

and after applying the limit, one gets the same result (5)
as before.

3 Conclusion

A brief review of derivation of expression for magnetic
vector potential, A , is given; the two traditional methods
to evaluate a constant (C ) encountered in the expression
for A are discussed along with a new method presented
in this paper. The new method will provide the readers a
broader insight into the subject beyond what they learn
from the textbooks.
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