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Screen printed and laminated electrodes for
low-cost capacitive level measurement systems
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The fabrication procedure and characterization of low-cost electrodes for capacitive level sensors realized on a flexible
substrate are presented in this paper. The aim was to prepare conductive electrodes by printing of silver and PEDOT:PSS
pastes on coated PET foil. Individual interdigital capacitors and a system with embedded microcontroller readout were
designed for a comparative study. Individual capacitors in the form of interdigital electrodes (IDT) were designed with
different finger width/spacing dimensions from 300/300 µm to 800/800 µm, a finger length 10 mm and 15 mm and an
overall length of 100 mm. A demonstrator device featuring an integrated microcontroller, sensing and reference capacitive
sensors and a resistive temperature sensor was realized to proof a practical utilization. The microcontroller is used to calculate
capacitances of IDT electrodes in terms of charging time proportional to the fluid level. The design with reference capacitor
can be directly applied to different fluids with a wide range of conductivities and dielectric constants without recalibration.
The printed structures were thermally laminated with covering PET foil. The sensitivity of the fabricated devices was
characterized in liquids with different relative permittivity and conductivity (water and oil). The highest measured sensitivity
was 0.7 pF/mm and 0.08 pF/mm for water and oil respectively, with resolution down to 0.1 mm.
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1 Introduction

Polymer-based electronics are currently forming a new
basis for low-cost microelectronic technology on typically
thin, light-weight, and mechanically flexible substrates.
Low-cost sensors are highly demanded, especially with
the coming of the Internet of Things, and conventional
microelectronic technologies usually do not meet the cri-
teria regarding cost-effectiveness. The future in sensing
technology will therefore supposedly partly lie in addi-
tive technologies of material printing using low-cost ad-
ditive processes like screen, ink-jet or roll-to-roll printing
on substrates such as plastic foils or paper [1]. Capacitive
sensing has gained popularity in the detection of touch [2],
force [3], chemicals [4], and level measurements [5, 6] due
to the achievable sensitivity, accuracy, and easy process-
ing directly with microcontrollers enabled for capacitance
measurement. Capacitance level sensors can be used for

wide variety of materials in a liquid or solid form (in-

cluding powdered and granulated solids). The principle

of operation is based on the fact that the air, which typi-

cally surrounds the insulated electrodes, is replaced by a

material with a different relative permittivity [7].

The capacitive sensors for measurement of fluid levels

have been heavily investigated and presented in a num-

ber of papers [2–12]. Different applications require dif-

ferent sensor topologies with respect to measured range,

shape, flexibility, dimensions, fluid properties, the mate-

rial of tank etc. Capacitive electrodes are mostly fabri-

cated with cylindrical or coaxial [8, 9], parallel [10] or co-

planar topology [11, 12], as is depicted in Fig. 1.

Capacitive level sensors are widely used in the man-

ufacturing industry for liquid level detection in tanks or

barrels, detection of fluid flow, and presence of granulated

or pasty materials often in plastic or glass tubing. Highly
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Fig. 1. : Basic topologies of capacitive sensors for fluid level measurement
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Fig. 2. : Structure of the interdigital capacitor (IDC)
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sensitive and flexible level sensors are currently demanded
by the market.

2 Materials, structures and methods

2.1 Sensor layout

The comb drive or interdigital electrode capacitor
(IDC, see Fig. 1) is probably the most used structure
for level measurement due to its simplicity, versatility
and easy planar manufacturing. Several footprints of IDC
were designed with different finger width/spacing di-
mensions (W/G) from 300/300µm to 800/800µm, fin-
ger length (L) 10 mm and 15 mm and overall length
of 90–100 mm. Four individual sensors with scale were
placed on the substrate with dimensions of 130×70mm2 .

IDCs are suitable for level measurement of materials
with a wide range of relative permittivity from εr = 1
(air) to εr ∼ 80 (water). Since the electrodes are insu-
lated, the measurement of conductive liquids is also pos-
sible.

2.2 Fabrication process

The sensor structures were printed using the semi-
automatic screen print machine RokuPrint SD05. A
screen printing mesh with 120/34 threads/inch was used.

The printed electrodes were then thermally cured
at the recommended temperatures for each ink. Silver

paste (EDAG PF050 E&C, Henkel, Düsseldorf, Germany)
is cured at 121 ◦C for 15 min. PEDOT:PSS (Heraeus

CleviosTM ) paste is cured at 110 ◦C for 5 min. Thermal
curing was done in a convection oven.

The microcontroller and passive components (a charg-
ing resistor for each capacitive sensor) are optionally
placed using tweezers and connected using silver conduc-
tive paste (PF050).

The printed structures were contacted to the external
terminal board using a silver adhesive and thin copper
wires and then thermally laminated (at 120 ◦C, Fig. 3)
with covering PET foil featuring a thickness of 80µm.
The lamination of the electrodes serves both, as a pro-
tection of the electrodes and a dielectric layer, and al-
lows immersion and proper functionality in liquids being
even highly conductive (eg , salt water). The laminated
electrodes can also be stuck to the outer surface of non-
conductive barrels or tanks. Moreover, PEDOT:PSS elec-
trodes are semi-transparent as is depicted in Fig. 4.

Fig. 4. Fabricated samples of four individual capacitive level sen-
sors with silver and semi - transparent PEDOT:PSS electrodes (IDC

finger length 10 mm)

The thickness and the 3D profile of the electrodes
were scanned with a Bruker Dektak XT profile-meter.
The thickness of the silver layer on PET substrate is
∼ 10µm, the thickness of PEDOT:PSS is ∼ 300 nm.
The 3D scan of the IDT electrode is depicted in Fig. 5.
The total thickness (including lamination) of the finished
sensor is only 180µm, and thus is highly flexible.

2.3 Capacitance measurement using a microcontroller

To keep the simplicity of manufacturing of the measur-
ing system using screen printing, the measurement princi-
ple is based on measuring the R–C time constant, since a
minimum of external components beside microcontroller
is required. It is commonly known that charging and dis-
charging of a capacitor occurs exponentially with time,
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Fig. 5. 3D profile of silver interdigital electrode on pet substrate
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and the charging time depends on the resistance which is
connected in series to the capacitor, see Fig. 6. When an
uncharged capacitor C is charged from a constant volt-
age source Vin through a series resistor R at time t = 0
and s - is the instantaneous voltage across the capacitor
is given by

Vcap(t) = Vin

(

1− e−
t
τ

)

(1)

where Vin is applied voltage and τ = RC is the time
constant. In the time t = τ = RC we get

Vcap(τ) = 0.63Vin . (2)

The microcontroller sets the charging pin to 3.3 V and
starts the timer. An analog to digital converter assigned
to the ADC pin (see Fig. 3.) continuously reads the in-
stantaneous voltage across the capacitor until it reaches

63% of Vin when the timer is stopped. From the mea-

sured charging time and the known resistance, we can

calculate the capacitance.

An ARM-based STM32F030 microcontroller is used

in the printed capacitive level measuring system. Only

three external charging resistors are required for reading

vertically and horizontally oriented sensing IDCs, refer-

ence IDCs and one resistor to form a half-bridge with a

printed resistive temperature sensor. These sensors help

to compensate the variation in the permittivity of the liq-

uid measured (the reference capacitor must be fully im-

mersed in the liquid during the measurement) and tem-

perature changes.

As presented in [13], the electrical behavior of flu-

ids depends on the excitation frequency. Water exhibits

practically conductive behavior represented by an equiv-

alent ohmic resistance at low-frequency operation (up to

∼ 100 kHz). The electrical characteristic (namely resistiv-

ity) is also affected by the concentration of dissolved so-

lutes. The equivalent circuit of the laminated IDC struc-

ture is depicted in Fig. 7., where CIDT is the mutual

capacitance of comb drive electrodes, Clam1,2 are capaci-
tances of the laminated layer (which is influenced mainly

by the thickness of the laminating foil), and Rliquid rep-

resents resistivity of the measured liquid. In the case of

conductive liquids, increasing level of fluids gradually con-
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nects Clam1 and Clam2 in parallel to the CIDT and thus,
the overall capacitance of the sensor increases.

3 Measurement and results

3.1 Individual electrodes

The laminated electrodes were placed in a plastic
beaker which was filled gradually with a liquid under test
(water, oil). The capacitance of the sensor was measured
at each step by a precision RLC meter HP 4284A. The
initial capacitance of printed sensor (without fluid in air
environment) decreases with finger distance. The capac-
itance of printed sensor linearly increases with increas-
ing level of the liquid in all cases (for different liquids
and different IDT dimensions). The measured sensitivities
(Fig. 8.) of the silver and the PEDOT:PSS electrodes are
comparable. The sensitivity of the individual sensors to
the water level is 0.61–0.68 pF/mm and 0.66–0.7 pF/mm
for silver and PEDOT:PSS electrodes respectively. The
sensitivity of the individual sensors to the oil level is
0.063–0.082 pF/mm and 0.034–0.061 pF/mm for silver
and PEDOT:PSS electrodes respectively. The lower sen-
sitivity measured for oil corresponds to its lower relative

permittivity εr,oil ∼ 3. The results from measurements
of frequency characteristics (Fig. 9) shows that the oper-

ating frequency should be kept in the range of units of

kilohertz, especially for PEDOT:PSS electrodes.

Vertical electrodes Programming and
communication pins

Microcontroller

Horizontal
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Reference
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Fig. 10. Realized sample of the system with a microcontroller,
horizontally and vertically oriented sensing electrodes, reference

electrodes, and resistive temperature sensor
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3.2 Demonstrator device with microcontroller

As the next level of integration, a microcontroller ca-
pacitance meter based on an STM32F030 was designed
and fabricated for a comparative study. The microcon-
troller in a tiny SMT package (TSSOP20) is integrated
directly to the PET substrate close to the measuring elec-
trodes. The realized sample of the printed flexible level
measuring system and experimental results are depicted
in Figs. 10 and 11. The sensitivity is higher compared
to the IDC without microcontroller due to higher finger
length (15 mm). The capacitance of reference electrodes
is constant over the measured range and can be used for
evaluating the permittivity of the measured fluids and
measurement of the fluid level without recalibration.

The printed temperature sensors with T20 resistance
of 1090.6Ω and calculated TCR = 0.00289K−1 was con-
nected in series with a 1 kΩ resistor to create a half-
bridge. An output voltage of the half-bridge was measured
directly by an internal 12-bit analog-to-digital converter
(ADC) built in the microcontroller without a further con-
ditioning. Just a small part of the ADC dynamic range
is used to measure the temperature dependent voltage
which leads to a relatively low temperature resolution of
0.4 ◦C, but keeps the proposed measurement system ex-
tremely simple.

4 Conclusions

Screen printed and laminated electrodes for capacitive
level sensors were successfully fabricated on flexible PET
foil in the form of both individual interdigital capacitors
and the integrated system with microcontroller readout.
The fabricated structures were tested in liquids with dif-
ferent relative permittivity (water and oil).

The sensitivity of the individual sensors to the water
level is 0.61–0.68 pF/mm and 0.66–0.7 pF/mm for silver
and PEDOT:PSS electrodes respectively. The sensitivity
of the individual sensors to the oil level is 0.063–0.082

pF/mm and 0.034–0.061 pF/mm for silver and PE-
DOT:PSS electrodes respectively. Characteristics of fab-
ricated sensors are comparable with sensors fabricated
on rigid substrates like a glass of FR4 [6] of flexible sub-
strates like PET [11] or Kapton [5].

The integrated solution with a microcontroller mea-
sures the capacitor charging time in dependence on
the level of the fluid with the highest sensitivity of
2.1 ms/mm. The main advantage of the system is that
the measurement results can be sent to an acquisition
unit in digital form using a serial bus (UART or I2C).
Moreover, the design contains also reference sensors for
recognition of measured fluids (according to their relative
permittivity) and temperature measurement. The resolu-
tion of temperature measurement is 0.4 ◦C.

The experimental results demonstrated that lamina-
tion of printed structures is a fast and low-cost method
for a simple encapsulation and protection of printed layers
and allows direct integration of conditioning circuits on
the laminated substrate. This feature can also be used for
integration of antennas with suitable RFID/NFC wire-
less functionality and fabrication of novel low-cost sensor
nodes for the upcoming Internet of Things (IoT).
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